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ABSTRACT

Knowing the set of physical protein—protein interac-
tions (PPIs) that occur in a particular context—a tis-
sue, disease, or other condition—can provide valu-
able insights into key research questions. However,
while the number of identified human PPIs is expand-
ing rapidly, context information remains limited, and
for most non-human species context-specific net-
works are completely unavailable. The Integrated In-
teractions Database (IID) provides one of the most
comprehensive sets of context-specific human PPI
networks, including networks for 133 tissues, 91 dis-
ease conditions, and many other contexts. Impor-
tantly, it also provides context-specific networks for
17 non-human species including model organisms
and domesticated animals. These species are vitally
important for drug discovery and agriculture. IID in-
tegrates interactions from multiple databases and
datasets. It comprises over 4.8 million PPIs anno-
tated with several types of context: tissues, subcellu-
lar localizations, diseases, and druggability informa-
tion (the latter three are new annotations not avail-
able in the previous version). This update increases
the number of species from 6 to 18, the nhumber of
PPls from ~1.5 million to ~4.8 million, and the num-
ber of tissues from 30 to 133. IID also now supports
topology and enrichment analyses of returned net-
works. IID is available at http://ophid.utoronto.ca/iid.

INTRODUCTION

Physical protein—protein interaction (PPI) data have be-
come a widely used resource in molecular biology. They are
important because most cellular processes, such as growth,
metabolism, and repair, occur primarily through PPIs. Con-
sequently, understanding the molecular mechanisms behind

diseases and treatments requires knowledge of PPIs. Cur-
rently available PPI data, though far from complete, have
provided important insights into numerous problems in
molecular biology including identification of gene function
(1,2), disease genes (3,4), biomarker signatures (5,6), drug
targets (7,8), and drug efficacy (9).

While PPI data can help address numerous research prob-
lems, effectively using these data can be challenging due
to several reasons: false positive and false negative errors,
lack of context information (e.g. tissue and disease annota-
tions of PPIs), and difficulty extracting meaningful conclu-
sions from PPI networks. For example, improving a lung
cancer signature would require a reliable, comprehensive,
lung-specific network involving prognostic signature pro-
teins, and ways of interpreting how this network can im-
prove the signature; unfortunately, meeting these require-
ments can be difficult. False positive rates have been esti-
mated at over 80% for some PPI detection studies (10), but
may be typically lower, and can be reduced by filtering PPIs
based on the quantity and reliability of supporting evidence.
False negatives (i.e. missing interactions) can often be a big-
ger problem; about 50% of human proteins have few or no
detected interactions (Figure 1)—rendering any PPI-based
analysis inapplicable to much of the proteome and affecting
data interpretation. The rate of missing interactions is un-
evenly distributed across proteins; some proteins may have
high rates due to technical challenges of detecting their in-
teractions (11), or research bias in favor of other proteins
(12). The overall false negative rate for human PPI data may
be greater than 50%, based on an estimated human inter-
actome size of 650,000 PPIs (13). The number of detected
human PPIs has already exceeded several lower estimates
of interactome size (10,14), and the yearly rate of detected
PPIs has not plateaued—further implying a large percent-
age of missing interactions. If PPIs are available, they need
to occur in the relevant context, such as the tissue, cell-type,
or disease state being studied. However, PPI detection is
typically conducted in yeast or cell-lines. The chances of
detected PPIs occurring in a relevant context may be low,
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Figure 1. Figure shows the percentage of proteins with degree 5 or lower in each species, taking into consideration the entire set of interactions in IID

(light blue) or only the experimental ones (dark blue).

since tissues may express less than half of the genome (15).
Estimating the in vivo context of interactions requires inte-
grating transcriptomic, proteomic or other data. If PPIs in
the relevant context can be detected, the next challenge is to
interpret the network and its biological significance.

Our database portal, the Integrated Interactions
Database (IID), focuses on addressing the problems of
errors, context, and interpretability of PPI data. Given a
set of proteins and a context (e.g. tissue, subcellular lo-
calization, disease), IID returns a reliable, comprehensive,
context-specific interaction network for these proteins, and
helps to interpret this network through topological and
enrichment analyses. IID provides extensive options for
controlling false positive and false negative rates, context,
network annotation, and analysis. The content of IID has
greatly expanded since the previous release in 2015: the
number of species has increased from 6 to 18, the number
of tissue contexts has expanded from 30 to 133, three new
types of contexts have been added, as well as network
analysis.

MATERIALS AND METHODS
PPI sources

Experimentally detected PPIs were obtained primarily from
seven curated databases: BioGRID (16) 3.4.158, DIP (17)
2017-02-05, HPRD (18) Release 9, 12D (19) 2.3, Innat-
eDB (20) 5.4, IntAct (21) 4.2.12, and MINT (22) down-
loaded 2018-05-15. Smaller numbers of PPIs were ob-
tained through targeted curation of literature and from cu-
rated PPIs reported in Lefebvre e al. (23). Predicted PPIs
were obtained from five sources: predictions from Rhodes

et al. (24) with a likelihood ratio cut-off of 381, predictions
from Lefebvre et al. (23) with probabilities greater than 0.5,
predictions from Elefsinioti et al. (25) with probabilities
greater than 0.7, predictions from Zhang et al. (26) with
likelihood ratios of at least 600, and FpClass predictions
from Kotlyar et al. (11) with a false discovery rate less than
0.6. Predicted interactions were available only for human
and yeast.

Orthologous PPIs were generated by mapping experi-
mentally detected PPIs in each of the eighteen 11D species to
orthologous protein pairs in the other 17 species. Mappings
were done using 1:1 orthologs from Ensembl (27) release 92.

Mapping between gene and protein IDs

Mappings between various gene and protein IDs were based
on UniProt (28) release 2018_06. For a more complete set
of mappings between Ensembl and UniProt IDs, mappings
from Ensembl release 92 were also used; this enabled more
orthologous PPIs and better support for queries using En-
sembl IDs.

Assignment of context to PPIs

Tissues. A PPI was assigned to a tissue if its two en-
coding genes were expressed in the tissue. A gene was
considered expressed in a tissue if its mas5 normalized
expression was greater than 200, as in Bossi et al. (29).
Gene expression levels in tissues were determined from
20 gene expression datasets downloaded from NCBI
GEO (30): GSE1133, GSE3526, GSE7307, GSE7763,
GSE9485, GSE10246, GSE20113, GSE20990, GSE23328,



GSE24207, GSE25138, GSE39796, GSE89347, GSE90449,
GSE100083, GSE106641, GSE107494, GSE108033,
GSE115799, GSE117834. All datasets were normalized
using the mas5 function in the affy package (31) in R. In
each dataset, disease tissues were removed, replicates were
averaged and probeset IDs were mapped to Entrez Gene
IDs. If a gene was represented by multiple probesets, the
one with the highest variance was selected.

Detailed joint-related tissues. Human PPIs were assigned
to joint-related tissues by the same approach as other tis-
sues, described above. Gene expression levels in joint-related
tissues were determined from seven gene expression datasets
downloaded from NCBI GEO (30): GSE9329, GSE10024,
GSE10500, GSE18338, GSE32398, GSE39795, GSE40942.

Detailed brain structures. Human PPIs were assigned to
brain structures where both encoding genes were expressed.
Normalized microarray gene expression data for brain
structures was obtained from the Allen Human Brain Atlas
(32) (http://human.brain-map.org/static/download). Probe
expression levels were averaged across samples and if a
gene was represented by multiple probes, the probe with the
highest variance was sclected. A gene was considered ex-
pressed in a brain structure if its log;-normalized expression
was above 5—a threshold described in the database docu-
mentation (http://help.brain-map.org/display/humanbrain/
Documentation). A PPI was assigned to a brain structure if
its two encoding genes were expressed at or above this level
in the structure.

This procedure was used to assign human PPIs
to 38 brain structures, each represented by at least
20 samples. PPIs were also assigned to 64 higher
level brain structures that subsume these 38 struc-
tures according to the Human Brain Atlas ontology
(http://help.brain-map.org/display/api/Atlas+Drawings+
and+Ontologies#AtlasDrawingsandOntologies-
StructuresAndOntologies). A PPI assigned to a given
low-level structure, was also assigned to all ancestors of
this structure in the ontology.

Subcellular localizations. PPIs were assigned to 13 high-
level subcellular localizations, based on Gene Ontology
(GO) (33,34) compartment annotations of the interacting
proteins. A PPI was assigned to a localization if both pro-
teins were annotated with the localization or with its descen-
dent terms in the GO compartment ontology. GO compart-
ment annotations for proteins were obtained from UniProt
(28) release 2018_06.

Diseases. PPIs were assigned to 37 diseases and 54 dis-
ease categories from Disease Ontology (35), based on gene-
disease associations from DisGeNET (36) v5.0. A PPI was
assigned to a disease if its two encoding genes were associ-
ated with the disease in DisGeNET. To increase the reliabil-
ity of gene-disease associations, only associations supported
by at least two publications were used.

DisGeNET disease names were mapped to Disease On-
tology names by using UMLS (37) concept IDs. PPIs were
annotated with these diseases and also with categories from
Disease Ontology that encompassed these diseases; a PPI
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assigned to a disease was also assigned to all ancestors of
the disease in the ontology. PPIs were annotated with 91 dis-
eases and higher level disease categories. Non-human PPIs
were assigned to diseases based on disease associations of
orthologous human protein pairs.

Drug target categories. PPIs were assigned to four major
classes of drug targets (38): enzymes, ion channels, recep-
tors, and transporters. A PPI was assigned to a class if one
or both proteins were annotated with the GO category of
this class according to UniProt (28) or with a descendent of
the category in the GO ontology.

Drug targets. PPIs were annotated with drugs that target
either of the interacting proteins according to DrugBank
(39) v5.0. PPIs were also annotated with drugs that target
orthologs of the interacting proteins.

Topology analysis

Topology analysis calculates degree, clustering coefficient,
and normalized betweenness centrality of proteins in re-
turned networks. Degree and clustering coefficient are cal-
culated by custom javascript code and normalized between-
ness centrality is calculated by cytoscape.js (40).

Enrichment analysis

Enrichment P-values are calculated using a hypergeomet-
ric cumulative distribution (hed) function implemented in
javascript. To calculate the enrichment of a given PPI an-
notation, PPI, (e.g. presence in plasma membrane), in the
returned network, the following parameters are used with
the hed function: N = number of PPIs matching the user-
selected evidence and species (e.g. number of experimentally
detected PPIs in mouse); M = number of PPIs matching
the selected species and evidence type, and having annota-
tion PPI,; n = number of PPIs in the returned network; m
= number of PPIs in the returned network, with annota-
tion PPI,. Enrichment is available for the following anno-
tations: tissues (not detailed structures), subcellular local-
izations, diseases, and drug target categories.

WEBSITE DESCRIPTION

IID provides access to detected and predicted PPIs in 18
species (Table 1). PPIs are annotated with tissue, subcellular
localization, disease and druggability information. These
annotations can be used for filtering PPIs or helping to in-
terpret the resulting network. Returned networks can be an-
alyzed by topology or enrichment for PPI annotations.

Inputs

Required inputs to IID comprise gene or protein IDs and
their species. IDs may include gene symbols, Entrez, En-
sembl, and UniProt. Optional inputs control how IID
searches for PPIs (e.g. retrieves interactions between pairs
of query proteins, or between query proteins and any oth-
ers), the required evidence for PPIs, the context for filtering
PPIs, and PPI annotations included in output.
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Table 1. Number of proteins and interactions per type of evidence per species

Species PPIs
Common name Latin name Proteins Experimental Orthologous Predicted Total
alpaca” Vicugna pacos 13 0 13 0 13
cat Felis silvestris catus 14 491 0 296 308 0 296 308
chicken Gallus gallus domesticus 11744 399 223 386 0 223701
cow Bos taurus 14 812 561 301 684 0 302123
dog Canis lupus familiaris 14 568 59 292 826 0 292 857
duck Anas platyrhynchos 11 569 0 221125 0 221 125
fly Drosophila melanogaster 10 275 62 249 51916 0 111975
guinea pig Cavia porcellus 14252 0 294 510 0 294 510
horse Equus caballus 14 572 5 303 500 0 303 504
human Homo sapiens 19 250 334 315 50 866 667 804 975877
mouse Mus musculus 16 297 37 683 287031 0 316 402
pig Sus scrofa 14 733 76 300 884 0 300 945
rabbit Oryctolagus cuniculus 13 444 135 257965 0 258 056
rat Rattus norvegicus 15468 6929 276 002 0 281 909
sheep Ovis aries 14 476 3 289985 0 289 986
turkey Meleagris gallopavo 10 960 2 201 945 0 201947
worm Caenorhabditis elegans 6 898 13723 46 595 0 59 463
yeast Saccharomyces cerevisiae 6318 161 851 9736 61 720 197 041
Totals 224 140 617 990 3706 277 729 524 4927742

“TID contains few alpaca proteins and PPIs because most alpaca proteins have not been identified: UniProt contains 164 alpaca protein IDs, corresponding

to 28 unique Ensembl genes.

Controlling error rates

11D provides ways of controlling false positive and false neg-
ative rates of retrieved PPIs. The false positive rate can be
controlled by setting a minimum number of publications or
bioassays supporting each PPI. PPIs supported by a sin-
gle publication and bioassay have been considered less re-
liable (12), but increasing these thresholds may remove true
PPIs detected only by specialized assays or in specific con-
texts (41), and thus may substantially increase false negative
rates.

The false negative rate can be reduced by allowing
more types of interaction evidence: experimental (i.e., de-
tection by bioassays), orthology based, or predicted. Exper-
imental evidence is typically considered most reliable, but is
largely unavailable for most non-human species, and even
in human, less than 50% of PPIs may have been detected
by bioassays. Using orthology-based PPIs may dramati-
cally decrease the false negative rate in most non-human
species, but the false positive rates of these PPIs have not
been extensively benchmarked. Computationally predicted
PPIs may also substantially decrease the false negative rate,
but are currently available in IID for human and yeast net-
works only. Predicted PPIs comprise high-confidence pre-
dictions from five computational studies (11,23-26), which
conducted extensive assessments of false positive rates, in
most cases with experimental validation. These predictions
decrease the number of low-degree proteins and PPI ‘or-
phans’ (11), making PPI-based analysis methods (e.g. for
improving disease signatures) applicable to a larger portion
of the proteome and less biased.

Specifying context

IID enables filtering PPIs by tissue, subcellular localization,
disease and druggability. Tissue options include 26 high-
level categories (e.g. adipose tissue, brain, Figure 2A), and

comprehensive options for joint-related tissues (five cate-
gories, Figure 2B) and human brain structures (102 cat-
egories, Figure 2C). As visible in Figure 2A, options for
non-human species are more limited. IID uses gene expres-
sion data from GEO (30) and Allen Brain Atlas (32) to
assign tissues—a PPI is annotated with tissues where the
two encoding genes are expressed above background noise.
This annotation approach has been used previously (29,42
44), and resulting networks have been shown to outperform
unfiltered networks for applications such as prioritization
of disease genes (45-47). As an example, we queried 11D
for interactions of SLC22A6, a protein involved in renal
sodium-dependent transport and excretion of organic an-
ions (https://www.genecards.org/cgi-bin/carddisp.pl?gene=
SLC22A6). A researcher who would be interested in know-
ing the molecular basis of SLC22A6’s role in kidney and
who would collect all interactions of SLC22A6 would use
a misleading network: as highlighted in Figure 2D, only
two-thirds of SLC22A6 PPIs are predicted to be in kid-
ney. The output of IID is a tab-separated file that can be
used for network visualization and analysis—in our exam-
ple we used NAViGaTOR 3.08 (http://ophid.utoronto.ca/
navigator) (48).

Subcellular localizations comprise 13 high-level GO cel-
lular compartment categories (e.g. Golgi apparatus, cyto-
plasm) (Figure 3). A PPI is annotated with a localization if
the two proteins are annotated with the localization or its
Gene Ontology descendants. Similarly, a PPI is annotated
with a disease if the two encoding genes are associated with
the disease according to DisGeNET (36). PPIs are also an-
notated with higher level disease categories, based on Dis-
ease Ontology (35). Figure 4 shows the distribution of hu-
man PPIs per disease. The last context type, druggability,
helps identify PPIs that may be amenable to modulation
by drugs (Figure 3). There are two ways to filter by drug-
gability: using drug target classes or drug targets. Filtering
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Figure 3. Drug target class (top) and localization (bottom) distributions
of PPIs in each IID species.

by target classes returns PPIs where one or both interacting
proteins are members of protein classes (enzymes, ion chan-
nels, receptors, transporters) that are commonly targeted by
drugs. Filtering by drug targets returns PPIs where one or
both interacting proteins are targeted by drugs or have or-
thologs that are targeted.

IID enables users to select any number of contexts and
combine these contexts in different ways. Within each con-
text type (e.g. tissue), users can specify whether returned
PPIs can be in any of the selected contexts (e.g. present in
either kidney or liver) or must be in all selected contexts
(e.g. present in kidney and liver). If multiple context types
are selected (e.g. tissues and subcellular localizations), the
context types will be combined as conjunctions.

Output and downloads

Results are returned in a tabular format with one PPI
per row. Users can choose to include interaction evidence
(PubMed IDs, detection methods) in the results, as well as
any context annotations. Full networks for each species,
including context annotations, can be downloaded in tab-
delimited format.

Analysis

IID provides topology and enrichment analysis for returned
networks. Topology analysis can identify important pro-
teins in the network based on degree and betweenness. Pro-
teins of high degree (hubs) tend to be conserved across
species and frequently have a large impact on phenotype
(49), though high degree may also be due to research bias
(50). Such proteins may be the best candidates for fur-
ther investigating pathways, disease signatures, or drug side-
effects. Topology analysis can also help identify protein
complexes comprising more than two proteins, by calculat-
ing clustering coefficients. Proteins with high clustering co-
efficients may form complexes involving most of their inter-
action partners. Proteins in the same complex typically have

similar properties. Consequently, a complex can be helpful
for predicting the properties of its members, such as func-
tion, subcellular localization and disease.

IID enrichment analysis can help identify conditions
where the network is physiologically important. Typically,
enrichment analysis determines whether a set of proteins
(genes) is enriched for certain annotations, relative to a
background population such as all proteins in the known in-
teractome or the proteome. However, IID determines if re-
trieved PPIs (rather than proteins) are enriched for annota-
tions, relative to all PPIs in the same species, and with the
same interaction evidence that was selected in the query. For
example, if a user searched for mouse PPIs supported by
experimental evidence, then enrichment will be calculated
relative to all mouse PPIs with experimental evidence. En-
richment analysis can be done on tissue, subcellular local-
ization, disease, or drug annotations.

Novel features in IID 2018

This update substantially expands both the content and
functionality of IID 2015-09. The number of species has in-
creased from 6 to 18 (Table 1). While the first 6 species were
human and common model organisms, the 12 new species
are meant to support veterinary and agricultural research.
The total number of PPIs has increased from ~1.5 million
to ~4.8 million. Available context annotations for PPIs have
substantially expanded as well. The number of tissues in-
creased from 30 to 133 with the addition of detailed human
brain structures and joint-related tissues. Three new context
types have been added: subcellular localizations, diseases,
and druggability information. The functionality of ITD now
includes two types of network analysis: topology analysis
to identify important parts of the network and enrichment
analysis of tissues, localizations, diseases, and druggability.

The addition of comprehensive options for brain and
joint-related tissues supports the use of PPI networks in
neurological and arthritis research. Brain disorders are
increasing in incidence worldwide, but there is no cure
for diseases like neurodegenerative disorders, autism, or
schizophrenia. Unfortunately, failure rates in drug develop-
ment for neurologic and psychiatric diseases are quite high,
due to the complexity of the human brain—Ilinked to diffi-
culties developing appropriate animal models, and resulting
in pharmaceutical companies losing interest in the field (51).
Similarly, the degenerative disease osteoarthritis affects a
large part of the population globally, yet remains without
curative treatment (52). We previously demonstrated that
many drug targets and evolutionarily recent proteins (like
the ones present in brain) are understudied. With the cur-
rent IID update we aim to provide the tools to fill this
research gap, and enable molecular and pharmacological
researchers to improve the success of drug development
strategies (11).

IID displays available brain tissues as an ontology tree,
and joint-related and high-level tissues as lists; users can se-
lect any number of these tissues. Moreover, IID provides an-
notations for druggability of PPIs (calculated as described
in methods). Figure 3 shows the number of PPIs per species,
annotated with different classes of targets.
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Figure 4. Disease distributions of human PPIs. PPIs are annotated with a disease if both interactors are annotated with the disease in DisGeNET.

PPIs are not static but rather occur in specific environ-
ments or conditions and change with time (53). We fo-
cused on two types of annotations that can change with
time—Ilocalization and disease conditions. Localization, for
example, is important because even if a PPI is reported in a
database, if the two binding proteins do not share the same
localization, the interaction is unlikely to happen in vivo
(54). We added 13 localization annotations in this update,
and Figure 3 shows the distribution of PPIs per species an-
notated with each localization. Finally, we annotated PPIs
with 91 diseases based on DisGeNET (36). Available dis-
eases are displayed as an ontology tree, and users can re-
trieve PPIs present in at least one or in multiple diseases of
interest.

Comparison with other PPI resources

Compared to other PPI resources, IID is one of the broad-
est and largest physical interaction databases, and pro-
vides more options for reducing false negatives, specifying
context, and analyzing networks (especially in non-human
species). Several resources, including APID (55), HIPPIE
v2.0 (44), HINT (56), iRefWeb (57), MyProteinNet (43),
STRING (58) and TissueNet v.2 (42) provide some of the

same functionality, but have important differences in their
options for error-reduction, filtering by context, and net-
work analysis.

Control of false positive rate is quite similar among these
resources—all provide PPI scores, calculated in various
ways, to indicate the reliability of PPIs. Reduction of the
false negative rate is achieved by integration of PPIs from
multiple databases that conduct literature curation. IID is
the only PPI resource that also offers high-confidence pre-
dicted physically binding PPIs, which further reduce the
false negative rate (e.g. for human, about two-thirds of
available PPIs are predicted). Several databases, including
STRING (58) and FunCoup (59), provide predictions for
functional rather than physical interactions.

Filtering PPIs by context is supported by HIPPIE v2.0,
MyProteinNet, and TissueNet v.2. All three provide filter-
ing by tissue, HIPPIE v2.0 and MyProteinNet also provide
filtering by Gene Ontology, and HIPPIE v2.0 provides fil-
tering by disease as well. IID supports filtering by these con-
texts as well as by druggability, detailed brain structures and
joint-related tissues. Users can specify whether PPIs can be
in any of the selected contexts or should be present in all
of them. Also, IID provides context filtering for the largest
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number (17) of non-human species; HIPPIE v2.0 and Tis-
sueNet v.2 are available only for human, and MyProteinNet
is available for 11 species.

Network analysis is supported by HIPPIE v2.0 and
STRING. HIPPIE v2.0 analyses enrichment of disease and
GO annotations of network proteins. STRING provides
summary topology statistics for networks, and enrichment
analysis of pathways and functions. IID provides both
topology and enrichment analysis; it identifies important
network nodes, and calculates enrichment of tissues, local-
izations, diseases, and druggability for network interactions,
rather than network proteins.

CONCLUSION

IID helps address key challenges of using PPI data: high
error rates, lack of context, and networks that are difficult
to interpret. IID provides unique functionality for reduc-
ing false negatives by integrating multiple curated and high-
confidence computationally-predicted interaction sources.
It specifies context by using ontologies and multiple tis-
sue, localization, disease, and drug-related data resources.
It helps interpret returned networks by providing topolog-
ical and enrichment analyses. Importantly, IID supports
non-human species, many of which are vitally important
in biomedical research but lack comprehensive, context-
specific PPI networks. Future IID updates will focus on in-
cluding more species, reliably transferring interaction infor-
mation between species, and further expanding interaction
annotations from ontologies and relevant data sets.
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