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Abstract

Histone deacetylases (HDAC) are metal-dependent enzymes and considered as important tar-
gets for cell functioning. Particularly, higher expression of class | HDACs is common in the
onset of multiple malignancies which results in deregulation of many target genes involved in
cell growth, differentiation and survival. Although substantial attempts have been made to con-
trol the irregular functioning of HDACs by employing various inhibitors with high sensitivity
towards transformed cells, limited success has been achieved in epigenetic cancer therapy.
Here in this study, we used ligand-based pharmacophore and 2-dimensional quantitative struc-
ture activity relationship (QSAR) modeling approaches for targeting class | HDAC isoforms.
Pharmacophore models were generated by taking into account the known IC5q values and
experimental energy scores with extensive validations. The QSAR model having an external
R? value of 0.93 was employed for virtual screening of compound libraries. 10 potential lead
compounds (C1-C10) were short-listed having strong binding affinities for HDACs, out of which
2 compounds (C8 and C9) were able to interact with all members of class | HDACs. The poten-
tial binding modes of HDAC2 and HDACS to C8 were explored through molecular dynamics
simulations. Overall, bioactivity and ligand efficiency (binding energy/non-hydrogen atoms)
profiles suggested that proposed hits may be more effective inhibitors for cancer therapy.

Introduction

Histone Acetyltransferases (HATs) and HDACs regulate the acetylation and deacetylation
events of small alkaline histones associated with DNA double helical structure [1,2]. Interactions
of positively charged amino-terminal tails of histones with negatively charged phosphodiester
backbones of DNA results in chromatin compaction [3,4]. The associated conformational
changes which occur due to acetylation of lysine residues result in chromatin remodeling. Thus,
HATs mediated acetylation promotes chromatin relaxation by loosening the packed histones
and DNA, thereby facilitating the accession of transcription factors to bind to respective DNA
templates [5-7]. In contrast to acetylation, compactness of nucleosome units and controlled gene
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expression as a result of deacetylation is mediated by HDACs [1]. Histones play crucial roles in
stabilizing the heritable epigenetic changes in gene activity and expression [2]. Any disturbances
in these functions may lead to the abnormal expression of genetic material that may cause fatal
diseases like diabetes and cancer [8,9].

The critical roles of HATs and HDACs in tumor progression, cardiac and brain disorders have
been analyzed in many studies [10-13]. In human, at least 18 HDACs have been identified that are
grouped into four classes and comprise of two major categories: Zn** and NAD" dependent [14].
This classification is based on the structural, functional and phylogenetic analysis of HDACs [15].
A detailed overview of cellular compartments and HDAC involvements in diverse biological pro-
cesses is given in Table 1. Class I comprises of HDAC1-3 and 8 [16-18] which controls many func-
tional and regulatory mechanisms [19]. Importantly, implication of class  HDACs has been
monitored in hematological malignancies, resulting in differentiation and proliferation abnormali-
ties of myeloid cells [20]. In tumor progression, most prevailing alteration is linked to abnormal
expressions of HDACs [21]. Aberrant expression pattern of HDACI has been observed in prostate,
gastric, breast and colon [22-25] cancers. Similarly, onset of gastric, cervical and colorectal carci-
noma [26-28] is associated with increased expression of HDAC2. Abnormal expression patterns of
class T HDAC members are also evidenced in cell proliferation and migration during ovarian and
breast carcinomas [29]. In these tumor cells, down-regulation of e-cadherin is associated with
HDACS3 overexpression. Unbalanced expressions of HDAC members also result in Acute Promye-
locytic Leukemia (APL) such as lymphoblastic APL and non-Hodgkin’s lymphomas [28,30].

Table 1. Classification and biological roles of HDACs.

Classes Cofactors HDACs

Class| zZn*? dependent

regulation,
Cell

Class Il  Zn*? dependent

transcription
and cell

Class Il NAD* dependent

Class IV Zn*? dependent

Transcription,
DNA-
dependent
chromatin
modification,
Histone

doi:10.1371/journal.pone.0139588.1001

Cellular Locations Biological Processes References

1,2,3,8 Nucleus, Cytoplasm, Transcriptional repressor complex, Cell cycle

Spindle microtubule, Replication fork

differentiation, DNA damage [16—18]
response, Epidermis

development, Regulating cardiac

myocyte proliferation on the

course of cardiac development

4,5,6,7,9, 10 Cytoplasm, Nucleus, Neuromuscular junction, Golgi Regulation
apparatus, Cytosol caveola of
differentiation, Regulation of [1,17]

cardiac muscle contraction,
Inflammatory response, Nervous
system development, Heart
development, Protein
polyubiquitination, Response to
toxic and organic substances,
Macroautophagy,
Vasculogenesis

Sirtuins SIRT1-SIRT7 Nucleus, Cytoplasm Histone

deacetylation, Regulation of [16]
phosphorylation, Regulation of
double-strand break repair via
homologous recombination, DNA
repair mechanism
Nucleus

Deacetylation [16]
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Another mechanism of HDAC-mediated tumor onset is due to transcriptional repression of
tumor suppressor genes and their aberrant recruitments to promoter regions. In recent years,
many studies potentiate the ways of targeted HDAC inhibition in the context of tumor control
[31,32]. Transcriptional activation of tumor suppressor genes by the inhibition of HDAC activity
is considered as an ideal and innovative strategy. To date, several HDAC inhibitors (HDACi) like
hydroxamic acids, benzamides, short chain carbolic acids, and cyclic tetrapeptides have been
characterized in vitro and ex vivo for various cancers [33-36]. Hydroxamic acids (hydroximates)
include vorinostat (SAHA), belinostat (PXD101), panobinostat (LBH589), dacinostat (LAQ824),
givinostat (ITF-2357) and trichostatin A (TSA). Benzamides are the derivatives of benzoic acid
which include entinostat (MS-275), p-N-acetyldinaline (CI-994), mocetinostat (MGCD0103)
and SK-7041. Short chain carboxylic acids (aliphatic acids) are relatively weak inhibitors which
comprise of valproic acid or VPA, butyrate and sodium phenyl butyrate. Cyclic tetrapeptides or
cyclic peptides are structurally complex molecules which consist of romidepsin (depsipeptide),
apicidin (OSI-2040), trapoxin A and trapoxin B (cyclic hydroxamic acid) [37,38]. Currently,
these inhibitors are under investigations in clinical trials [39-44]. In cancer patients, functional
activity of HDAC] is mediated extrinsically as well as intrinsically due to cell cycle arrest at G1/
G2 phases and up-regulation of apoptosis [31,45]. Sensitivity of actinotheraphy and chemother-
apy for cancers is also enhanced by HDAC inhibition [46].

In silico drug designing strategies are extensively applied for the identification of novel
inhibitors through modeled HDAC structures and their pharmacophore-based studies [47-
53]. However, these inhibitors are unique in terms of HDAC targeting actions. Here, through
comparative ligand-based approaches, several novel candidate hits were proposed and added
in the list of HDACi which are able to target entire class I of HDACs.

Methodology
Dataset

High resolution co-crystallized structures of class I HDACs were retrieved through PDB data-
base [54] with following PDB IDs: 4BKX (HDACI1), 4LXZ (HDAC2), 4A69 (HDAC3) and
1T64 (HDACS) (Table A in S1 File). These structures were further refined by adding charges
and missing residues through dock prep module of UCSF Chimera 1.10 [55]. Binding and cata-
lytic site details of class  HDACs were extracted through PDBSum [56]. Structural superimpo-
sition was performed by UCSF Chimera 1.10 [55]. Additionally, comparative binding mode of
class I HDACs has been reviewed through literature [47,48,53].

Pharmacophore/QSAR Model Generation

In order to generate the ligand-based quantitative structure-activity relationship (QSAR) and
pharmacophore models, 16 known inhibitors (Table B in S1 File) were selected. These known
HDAC inhibitors were collected through literature survey [57-73] and classified on the basis
of their inhibition potential values for class | HDACs. Chemical structures and bioactivities of
these inhibitors were extracted through EMBL-EBI ChEMBL database [74], while their 2D/3D
molecular descriptors values were retrieved through ChemAxon’s Chemicalize [75] and Molin-
spiration [76]. Molecular dockings of these inhibitors were performed against class I HDACs
by AutoDock VINA with default parameters i.e. exhaustiveness = 8 and energy range = 3 [77].
The selection of training set compounds was based on bioactivity and binding affinity attri-
butes of docked protein-inhibitor complexes. The best docked conformations of inhibitors hav-
ing least ICs, values and high binding abilities were filtered out for pharmacophore generation.
In order to design 2D QSAR model, ICs, values of training set compounds against HDACI, 2,
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3 and 8 were converted into pICs, values and average pICs, values were calculated for each of
the training set compound.

Test data set was created to evaluate the quality of pharmacophore hypotheses. Known
selective and non-selective synthetic molecules were gathered through ChEMBL [74] which
were utilized in human assays [68,69,71,73,78-109] to generate a dataset of 71 compounds
(Table Cin S1 File) and their experimental ICs values were assessed. Compounds having
weak inhibition potential (ICso > 2500 nM) for class I HDACs were grouped in decoy set,
whereas high inhibitory compounds (ICsq < 2500 nM) were placed in the active dataset. By
implying the above criteria, 41 compounds were found to be active and 30 were declared as
decoys. 3D generation and optimization of data set compounds was performed by ACD
ChemSketch [110].

To generate pharmacophore models, training set hits were employed in the ligand-based
module of the LigandScout 3.0 [111]. Pharmacophoric sites such as hydrogen bond donor
(HBD), hydrogen bond acceptor (HBA), hydrophobic sites, aromatic ring and positive and
negative ionizable groups were carefully characterized. To incorporate the associated features
of selected compounds, merge feature model generation and atom overlap scoring function of
LigandScout 3.0 was applied. Subsequently, descriptor selection analysis was performed
through forward selection (FS), backward elimination (BE) and stepwise selection (SS), the
classical methods of variable selection [112]. All unique descriptors signifying the model were
selected, while excluding the non-significant descriptors. QSAR model was created by employ-
ing multiple linear regression (MLR) technique [113]. Regression module of the IBM statistical
package for social sciences (SPSS) version 22 [114] was used to create the regression model by
employing Eq 1.

yi:ﬁo+ﬁ1xi+€i, i=1,...,n (1)

Where, y (pICsp) is the dependent variable, x is the independent variable, f is the coefficient
and ¢ is the error value. QSAR and pharmacophore models were statistically evaluated to
check their reliabilities prior to implementation.

Top five models exhibiting significant statistical values were scrutinized as 3D query for vir-
tual screening. Validated 3D pharmacophore models were screened against a total of 48,386
compounds (2,601 of Aurora [115] and 45,785 of Princeton [116] libraries) to prey novel drug
targets. The novel hits were selected for docking analysis on the basis of high query fit values
relative to pharmacophore models.

Molecular docking and dynamic simulation assays

Molecular docking analyses of highly ranked compounds were performed for class I HDACs
through above mentioned parameters of AutoDock VINA [77]. Subsequently, energy scores
and HDAC bound poses of these compounds were carefully evaluated. To study the structural
dynamics of receptor-ligand complex, molecular dynamics (MD) simulations of HDAC2 and
HDACS were performed. Gromacs 4.5.5 [117] and GROMOS96 43al force field with SPC
water model was used for MD simulations. Subsequently, energy minimization was performed
by steepest descent method and appropriate counter ions were added to neutralize the system
[118,119]. Finally, a 12 ns MD simulation run was performed at constant temperature (300 K)
and pressure (1 atm). GROMACS analysis tools were used for the analysis of MD simulation
trajectories (118). The stability of secondary structure elements, conformational changes and
interactions were assessed by computing root mean square deviation (RMSD), root mean
square fluctuation (RMSF) and hydrogen bonds obtained throughout MD trajectories. For
RMSD, RMSF, gyration and hydrogen bonds g_rms, g_rmsf, g_gyrate and g_hbond modules
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of Gromacs were applied, respectively. RMS cluster distribution of HDAC2 and HDACS back-
bone was computed using g_cluster module with nearest neighbor method. Energy values
along the MD trajectories were calculated by Eq 2.

E= Ebond stretch + Eangle bend + Erotation + Evander waals + Eelectrastatic (2)

All simulations were carried out through an open SUSE 11.2 system with Intel(R) core
(TM) i5-2300 CPU containing Linux 2.6.31.5-0.1 operating system. The binding patterns were
carefully monitored through Accelrys Discovery Studio 4 [120].

ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) properties were
predicted through AdmetSAR [121] server to hypothetically depict the positive and negative
biological effects of compounds. Bioavailability, Rule of Five (ROF), lead-likeness and other fil-
ters were assessed using Chemicalize [75]. Toxicity parameters such as mutagenic and tumori-
genic effects of selected compounds were evaluated through OSIRIS [122].

Expected ICs, values of compounds were predicted through QSAR model. Physiochemical
descriptors of compounds were extracted by Chemicalize [75] and Molinspiration [76] servers.
To avoid any redundancy issue, predicted compounds were compared against small molecule
library available in ChEMBL [74] database, based on >90% similarity threshold. Synthetic
accessibility analysis of predicted hits was performed through SYLVIA [123] tool.

Results

Binding site analysis

Binding sites of class I HDAC family members were evaluated by structural comparisons

(Fig 1). Co-crystallized structures of HDACI, 2, 3 and 8 showed structural similarities with an
RMSD value of 0.5A (Fig 1A). Zn*? ions were coordinated by one HIS and two ASP residues of

individual HDACs (Fig 1B). These catalytic residues resided within the 4A region of surface
forming the tunnel shaped pocket.

TyR30sg ~ HISUTS

HISI83-2

b TYR3082 oo™
TYR298-3

HIS180-8

f PHE205-1

PHE210-2
PHE200-3
PHE208-8

ASP264-1
ASP269-2

ASP259-3 HIS141-1
ASP267-8  ASP176-1 HIS146-2
ASP181-2 HIS140- 185, 4 HISI35-3
ASP170-3 HIS145-2 HIS143-8

ASP178-8 HIS134-3

HIS142-8

Fig 1. Zn*2 dependent class | HDACs. (a) Structural superimposition of HDACs. (b) Binding sites of class 1 HDACs. HDAC1, 2, 3 and 8 are shown in
orange, pink, green and blue, respectively. Zn*2 is shown in brown color.

doi:10.1371/journal.pone.0139588.g001
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Pharmacophore-based 2D QSAR modeling

In order to select training set compounds, binding affinities, ICsq and molecular descriptors
values of known class I HDAC inhibitors were monitored (Tables B, D and E in S1 File). These
known hits included MS-275, LBH-589, LAQ-824, Trichostatin A, Saha, Belinostat, Oxamfla-
tin, Pyroxamide, Mocetinostat, and Scriptaid with ICs, values ranging from 5-300 nM. 5-7
pharmacophore models were generated based on the information of docking poses of training
set compounds and their pharmacophore fit values were evaluated. The ideal pharmacophore
models with high query fit values were shown in Figure A in S1 File. These models exhibited
good pharmacophoric features such as hydrogen bond donors, hydrogen bond acceptors,
hydrophobic sites and negative ionizable groups (Zn*? binding locations). QSAR regression
model was generated using 5 descriptors of training set compounds, as shown in Eq 3. Their
pICs, values were shown in Table F in S1 File.

pIC,, = 14.48(%3.8) — 0.13(£0.06) * Mol.polarizability + 0.06(£0.04) * logP
+ 0.17(+£0.04) * Topological Polar Surface Area (TPSA) — 2.54(40.5)
* Hy.Bond Acceptor — 2.57(+1.21) * Balaban Index(3)

To determine the reliability and predictability of models, several statistical parameters
(Table G in S1 File) were applied which showed positive results. Higher sensitivity and specific-
ity values, percent of active yield (%Y), enrichment factor and Guner-Henry score depict the
performance quality of pharmacophore model [124] (Fig 2A). Our generated models showed
high sensitivity and specificity values; models 1 and 2 resulted in 80% and 75% retrieval of
active compounds, respectively. Scores of other statistical parameters were comprised of 80%
score of number of active percent of yields (%Y) and G.H scores of 0.7 and 0.65 for models 1
and 2, respectively. Statistical evaluation of QSAR model included goodness of fit i.e. R* (corre-
lation coefficient) and adjusted R? (goodness of fit) values (coefficient of determination). The
R” value (0.93) and adjusted R” (0.84) were close to 1 and standard error value was close to 0
(Table 2). External validation was performed by predicting pICs, values of training set com-
pounds through generated model and cross-validated against the given activity values (Fig 2B).
Observed ICs, values of training set compounds were comparable with the predicted values

a b
0.9
8.3 8.16,8.19
0.8
o 8.1 8.07,8.02
. ,'-’
0.6 i | 7.9
2 = 7
£ 05 7.7
S 04 @ e
a0 9 75 o ® ObsPred
0.3 - -
= g
0.2 8 73 7-53,.7-21 ----- Best Fit Line
13} e
01 - 7.03,7.05-
0 E . >
— 1 2 3 4 s 6.9 6.72,6.78
= Sensitivity (Se) 0.8 0.75 0.67 0.54 0.5 6.7.6 75'/‘ 6.81,6.76
k=i Sp ecificity (Sp) 0.68 0.67 0.7 0.54 0.74 6.7 N
o-Enrichment Factor (EF) 0.6 0.52 0.57 0.5 0.54 65 5'5896-:,2.‘.’
—e—Guner-Henry (GH score)  0.62 0.6 0.51 0.33 0.51 i 6.51.6.48 6.6,6.51
~o—Percent Yield (%Y) 0.80 0.71 0.75 0.61 0.72 6.3

6.3 6.5 6.7 6.9 7.1 73 75 7.7 7.9 8.1 83
Pharmacophore Models

Observed pICS0

Fig 2. Statistical validation of designed pharmacophore and QSAR models. (a) Top five pharmacophore models labeled as Model (1-5). (b) Correlation
analysis of QSAR regression model. Green dots depict the observed vs predicted IC5q values and correlation best fit dotted line is shown in blue.

doi:10.1371/journal.pone.0139588.9002
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Table 2. Statistical parameters for regression model.

N R R? Adjusted R? Std. Error Significance
10 0.96 0.93 0.84 0.24 0.02
doi:10.1371/journal.pone.0139588.1002

and residual error values were < 0.5. ANalysis of V Ariance (ANoVA) test [125] also verified
the model with a p-value of 0.02.

Virtual screening

Pharmacophore model was incorporated to the virtual screening of compound libraries and
about 2000 hits were screened out with high to low query fit values. 81 top scoring hits were
selected for docking and drug-like analysis. 16 novel hits (1-16 in Table H in S1 File) exhibited
interactions with specified binding sites of class  HDACs. These novel compounds were fur-
ther exploited for the analysis of steric and physiochemical properties (Table I in S1 File) and
10 compounds (C1-C10) were identified as potential inhibitors for class  HDACs. The 2D
structures and binding profile of these compounds are listed in Fig 3 and Table J in S1 File indi-
cates their [IUPAC names and SMILE codes. These compounds (C1-C10) exhibited interac-
tions with Zn*? and binding pocket residues of class  HDACs. C8 and C9 showed class
specific binding (Fig 4), while other hits were specific for individual HDACs (Figures B-E in S1
File). Binding pattern of new drug-like compounds coincides with the experimental known
binding of existing inhibitors. Bound complexes of SAHA with HDAC2 and Trichostatin A
with HDACS8 were shown in Figure F in S1 File which depicted that these inhibitors have simi-
lar interaction mode as described for the newly identified inhibitors (Figures B-E in S1 File).
Interacting residues and distances of proposed compounds (C1-C10) were also in good agree-
ment to the experimental results.

ADMET analysis, binding contributions and physiochemical properties suggested that pre-
dicted hits (C1-C10) (Table 3) may act as more potent inhibitors against class | HDACs. Syn-
thetic accessibility scores (<5) of these hits (Fig 5) further validated these hits. The expected
pICsq values of these hits were predicted by QSAR model (Eq 1) and compared with the known
pICs, values of training set compounds. As evident, hit C7 (pICs, = 12.5) is the most bioactive
compound (Fig 5).

Compounds

Co c7 c8

oAl A A A A A A A

C10

Cc7

o i .
-30
o ‘ o P BEHDAC1 D HDAC2 BHDAC3 EWHDACS
2l T\o o J

e

£
\
RS
o
Binding Energies (kcal/mol)
o =

Fig 3. 2D structures and binding energies of compounds C1-C10. (a) 2D structures (b) Binding energy overview.
doi:10.1371/journal.pone.0139588.9003
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\
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Recently, the properties like ligand efficiency (LE) or binding energy of ligand per atom
[126-128] and lipophilic efficiency (LipE or LLE) [129, 130] have been considered essential for
lead optimization [131,132], which rely on both potency and lipophilicity profiles. LE is the
ratio of free energy of binding to the number of heavy atoms and was calculated by assuming
the standard conditions of aqueous solution i.e. 300K, neutral pH and remaining concentra-
tions of 1M (Eq 4) [133]. To access the lipophilicity of predicted hits, logP (activity/size) values
were calculated (Table 4) using Bio-Loom version 1.5 [134] and compared with pICs, values.
LE (Eq4) [135,133] and LipE (Eq 5) [129] profiles of inhibitors were used to identify the hits
with higher activities (Table 4).

LE = (1.37/HA) * pIC,, (4)

LLE = pIC50 — clogP (5)

Size-independent ligand efficiency values (LEScale) of these hits were calculated through fit-
ting the top LE values with heavy atom count through a simple exponential function (Eq 6), as
described [127,128]. “Fit Quality” or “FQ” scoring function (Eq 7) is the ratio of LE and

ASN95

Fig 4. Binding pattern of compound C8 with class 1 HDACs. C8 (7-methoxy-N-((4-sulfamoylphenyl)methyl)-1-benzofuran-2-carboxamide) was shown in
blue, whereas hydrogen bonding and hydrophobic residues were shown in pink and yellow, respectively. (a) Hit C8 forms hydrogen bonds with HIS140,
HIS148, HIS178, ASP264 and TYR303 of HDAC1; (b) HIS145, HIS146, HIS183 and TYR308 of HDAC?2; (¢) HIS134, HIS135, HIS172, ASP259 and (d)
TYR298 of HDAC3 and HIS142, HIS143, HIS180 and TYR306 of HDAC8. C8 bonding with Zn+2 is shown in green color with an average distance of 2A.
Hydrophobic residues involved in interaction are (a) ASP99, GLY 149, PHE150 and GLY301 in HDACT; (b) PHE155, PHE210, ASP269 and GLY306 in
HDAC2; (¢) ASP93, PHE144, ASP170, PHE209 and GLY296 in HDAC3 and (d) PHE152, PHE208, MET274 and GLY304 in HDACS8.

doi:10.1371/journal.pone.0139588.9004
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Table 3. ADME and Toxicity Analysis.

Compounds

C1
c2
C3
C4
C5
Cé6
C7
C8
C9
C10

Human Intestinal
Absorption

1
0.8
0.9
0.9
0.7
0.9

1

1
0.9

1

doi:10.1371/journal.pone.0139588.t003

CYP450 Blood Brain Bioavailability No No No
Inhibition Barrier Mutagenic Tumorigenic Irritant
0.72 0.964 + + +
0.6 0.7 + + + +
0.8 0.7 + + + +
0.6 0.7 + + + +
0.6 0.7 + + + +
0.8 0.9 + + + +
0.8 0.7 + + + +
0.8 0.8 + + + +
0.8 0.6 + + + +
0.7 0.6 + + + +

LEScale which was computed to detect the optimal ligand binding properties of predicted hits.
LEScale = 0.104 + 0.65¢ -037+HA ©)

FQ = LE/LEScale (7)

Conventionally, clogP <3, LipE > 5 and FQ close to 1 are considered as optimal properties
for highly bioactive compounds [127-129]. Clearly, clogP values of C1, C2, C3, C4, C7, C8 and
C10 hits ranged in 0.2 to 2.5 (Fig 6A), while about 50% compounds exhibited LipE > 5
(Table 4). Similarly, FQ scores of these compounds were also in acceptable range (Fig 6B), indi-
cating that proposed hits may have better in vivo performance based on their ligand binding,
potency and lipophilicity profiles.

Molecular dynamics simulation analysis

To elucidate the dynamic behavior of class I HDACs upon binding to inhibitor and to gauge
the pattern of system stability, HDAC2 and HDACS8 were subjected to molecular dynamics
(MD) simulations. The stability of secondary structure elements and conformational changes
were assessed by computing root mean square deviation (RMSD) and root mean square fluctu-
ation (RMSF) plots of values obtained throughout MD trajectories. RMSD is a measure of

14

12

10

125
8.1 3 8 8
8 72
62 p 6.4
52
455 457l 504
4.020 330 3.7 342l 352[f 395 4.06
0
1 2 3 4 5 6 7 8 9 10

Compounds
i Sylvia Score HpIC50

Score

- (=)

~

Fig 5. Synthetic accessibility score and expected pICs, values.

doi:10.1371/journal.pone.0139588.9005
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Table 4. Ligand efficiency (LE), Lipophilic Efficiency (LipE) and Fit Quality (FQ) values of C1-C10 hits.

Compounds pICso HA
C1 6.2 25
c2 8.1 25
C3 8 19
C4 5.2 27
C5 6 22
C6 8 19
Cc7 12.5 26
c8 8 25
C9 6.4 25

C10 7.2 23

doi:10.1371/journal.pone.0139588.t004

clogP

2.94
0.81
0.27
1.49
4.11
3.38
2.23
1.7
-0.2
2.5

LE

0.34
0.44
0.58
0.26
0.37
0.58
0.66
0.44
0.35
0.43

LEScale LipE
0.36 3.26
0.36 7.29
0.43 7.73
0.34 3.71
0.29 1.89
0.43 4.62
0.35 10.27
0.36 6.3
0.36 6.6
0.38 4.7

FQ
0.95
1.22
1.35
0.76
1.28
1.35
1.89
1.22
0.97
1.13

stable interaction pattern of docked complex. In case of HDAC2, RMSD trend remained stable
for both bound and unbound complexes within the range of 1.5-2A (Fig 7A). However, In case
of apo HDACS, an increasing trend of RMSD profile (1.5A to 2.8A) was observed between 2-4
ns, while in its bound form with C8, system attained lower RMSD values in a range of 1.5A-
2.2A (Fig 7B). Our analysis indicated that backbone RMSD profiles of HDAC2 and HDACS8
systems remained stable during 12 ns MD runs.
RMSEF plots provided insight into the residual fluctuations upon binding to inhibitor (Fig
8). In HDAC2 bound to C8, higher RMSF values were observed for ILE40-THR43 (2-2.74),
PHE210 (0.8-2A) and LEU333 (1.5-2A) residues (Fig 8A), while residues involved in inhibitor
binding namely, HIS145, HIS146, ASP181, HIS183, ASP269 and TYR308 were quite stable. In
HDACB8-C8 system, fluctuations were more common in ASP87, ASP88, SER193-SER199 and
GLY320 residues. However, RMSF profiles of binding site and Zn*? coordinated residues
(HIS142, HIS143, ASP178, HIS180, ASP267 and TYR306) exhibited a lower trend (Fig 8B).
The observed conformational changes occurring in the proximal residues of HDAC2 and
HDACS8 binding sites induced more flexibility to accommodate the inhibitor.

a b
4.5 c5 2 &=
4 . .
Ccé 1.8
3.5 *
3 TGP e T T Tt o L6
2.5 ¢ cl0 7 = 3 c6
% ¢ g 14 cs
S 2 ca cs E c2cs
i B * o 1.2 ’ClO L 4
1 c2 E
* L I ci®co T
0.5 Cc3
________________________ ) AN 0.8 ¢4
0 ' L 2
€09
-0.5 0.6
0 2 4 6 8 10 12 14 18 20 22 24 26 28
pIC50 Heavy Atoms
Fig 6. Ligand efficiency analysis of 10 selected compounds (C1-C10). (a) ClogP and (b) Fit Quality graph.
doi:10.1371/journal.pone.0139588.g006
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Fig 7. RMSD plot for 12 ns MD simulation. (a) RMSD plot for HDAC2-C8 complex (yellow) and HDAC2 without ligand (red). (b) RMSD plot for HDAC8-C8
complex (green) and HDAC8 without ligand (blue).

doi:10.1371/journal.pone.0139588.g007

The potential energy of system is a measure of its stability. By plotting potential energy as a
function of time, we observed that systems were well equilibrated and remained stable through-
out MD simulations. The HDAC2-C8 (-74100 kcal/mol) system has shown lower potential
energy values compared to HDAC8-C8 (-727500 kcal/mol) complex (Fig 9). The binding char-
acteristics of HDAC2 and HDACS with C8 were analyzed through plotting time-dependent
intermolecular hydrogen bonds. Compared to HDAC8-CS8 system, the intermolecular hydro-
gen bonds were increased in HDAC2-C8 complex after 2 ns of simulation time, indicating
higher interactions (Fig 10). Overall, hydrogen bond interactions remained stable throughout
the simulation time. These results substantiated that C8 exhibited more stable binding to
HDAC?2 compared to HDACS, which is in good agreement to the distribution of RMSD dis-
tances of trajectory conformation pairs. The lower mean RMS values in case of HDAC2-C8
complex displayed the stable nature of system compared to apo HDAC2, while in C8 bound
and unbound HDACS, the pattern of RMS distribution was quite similar (Fig 11). Analysis of
radius of gyration (Rg) together with RMSD profile revealed a convergence of Rg values
between 1.88 nm to 1.91 nm for HDAC2-C8 complex (Fig 12A). In case of apo HDACS, Rg
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Fig 8. RMSF plot for 12 ns MD simulation. (a) RMSF plot for HDAC2-C8 complex (yellow) and HDAC2 without ligand (red). (b) RMSF plot for HDAC8-C8
complex (green) and HDACS8 without ligand (blue).

doi:10.1371/journal.pone.0139588.9008
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Fig 9. Energy plot for 12 ns MD simulation. (a) Energy plot for HDAC2-C8 complex (yellow). (b) Energy plot for HDAC8-C8 complex (green).
doi:10.1371/journal.pone.0139588.g009

trend was quite different compared to its bound form (Fig 12B). These data indicated that
structural transitions in HDAC2 resulted in less tight packing, while in HDACS, binding of C8
induced more compaction in the structure.

Discussion

Ligand-based pharmacophore modeling, based on the energetic binding values of inhibitors (e-
pharmacophore) is considered as effective tool in rational drug design [53]. Here we retrieved a
diverse set of inhibitors for class | HDACs by generating pharmacophore/QSAR models based
on QSAR properties of MS-275, LBH-589, LAQ-824, Trichostatin A, Saha, Belinostat, Oxam-
flatin, Pyroxamide, Mocetinostat, and Scriptaid. The quality of our selected model (R value of
0.93) was quite high, compared to previously proposed pharmacophore/QSAR models for
screening HDAC inhibitors [49-51]. Subsequently, 10 novel hit compounds (C1-C10) were
determined through their query fit values and pharmacophoric features they possess. Our cur-
rent protocol of pharmacophore/QSAR-based virtual screening was quite efficient in predict-
ing the reliable inhibitors as it was based on a subset of selective descriptors which were based
on known scaffolds.

Through docking analysis, the candidate hits with binding affinities for all members of class
I HDACs were selected for detailed analysis. The structural features of predicted hits were
much similar by having a capping region, a linker and a Zn*” ion binding region. The predicted
hits were derivatives of benzamides, acetamides, carboxamides and hydrazides. Out of these
hits, C8 (7-methoxy-N-[(4-sulfamoylphenyl)methyl]-1-benzofuran-2-carboxamide) and C9 2-
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Fig 10. Hydrogen bonds plot for 12 ns MD simulation. (a) Hydrogen bonds for HDAC2-C8 complex (yellow). (b) Hydrogen bonds for HDAC8-C8 complex
(green).

doi:10.1371/journal.pone.0139588.9010
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doi:10.1371/journal.pone.0139588.g011

(5-bromo-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-N-[1-(4-sulfamoylphenyl)ethyl]acet-
amide showed ideal binding energetics for HDACI, 2, 3 and 8 (Fig 3). In C8, carboxamide moi-
ety was involved in hydrogen bonding with Zn** metal ion as well as other active site residues.
Due to possessing Zn*?-binding amide moieties and stereo selectivity, carboxamides are con-
sidered as more potent inhibitors for HDACs [136,137]. Recent experimental evidences sup-
port benzofuran-2-carboxamide derivatives for their antitumor and anti-proliferative
properties [138]. Similarly, various benzofuran-2-carboxylic acids bearing (chlorometyl) indo-
line or benzoyl nitrogen as DNA-binding group serve as structural subunits of synthetic ana-
logues of natural antitumor agents such as dystamycin, CC-1065, duocarmycin, and netropsin
[139-141]. They also act as adenosine A2A receptor antagonists [142]. Based on the essential
value of carboxamides, hit C8 was analyzed in detail for its binding to class I HDAC isoforms.
In the catalytic pockets of HDACs, sulfamoylphenyl ring of C8 actively participated in the
hydrogen bonding with HIS140, HIS148, HIS178, ASP264 and TYR303 residues of HDACI;
HIS145, HIS146, HIS183 and TYR308 of HDAC2; HIS134, HIS135, HIS172, ASP259 and
TYR298 of HDAC3 and HIS142, HIS143, HIS180 and TYR306 of HDACS8 (Fig 4). These inter-
actions were mainly mediated by the conformational readjustments of linker region, while ben-
zofuran ring was uniquely involved in hydrophobic interactions. Consequently, the O-atoms of
SO, coordinated with metal ion in HDAC hydrophobic pockets. Indeed, study of hydrogen
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Fig 12. Radius of gyration (Rg) analysis for 12 ns MD simulation. (a) Rg/RMSD plot for HDAC2-C8 complex (yellow) and HDAC2 without ligand (red). (b)
Rg/RMSD for HDAC8-C8 complex (green) and HDACS8 without ligand (blue).

doi:10.1371/journal.pone.0139588.9012
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bond network between catalytic metal ion and sulfonamide group may be useful to synthesize
more potent inhibitors for HDACs.

The proposed aromatic/heterocyclic compounds possessed isoform-specific interactions.
For example, crystal structure of HDACI exhibited binding with C3, C5 and C6 hits, HDAC2
showed binding with C1-C10, HDAC3 with C5, C6 and C7, while HDAC8 was complexed to
Cl1, C2, C3, C7 and C10. Interestingly, C1, C4, C6 and C9 compounds exhibited halogens as
capping groups which indicated that these inhibitors may prefer class I HDACs for binding.
The importance of halogenated capping in the selectivity of inhibitors has been well docu-
mented. In a series of aroyl pyrrolyl hydroxamide (APHA) compounds screened against maize
HD1-B and HDI-A (homologues of mammalian class I and class I HDACs), non-halogenated
derivatives showed no selectivity for class I or II [143]. Modification of the capping group
region led to 176-fold selectivity for class | HDAC over II. These data underscore that halogens
impart class selectivity. However, further analysis is warranted to understand the significance
of capping region in parallel to variations in the choice of linker region and metal binding
groups in HDACi selectivity.

Moreover, compounds with conserved scaffolds exhibited the comparable binding pattern
and energetics. Here, C1, C2 and C7 analogues (group I) possessed similar linker and Zn*? ion
binding regions with distinguished capping region substituents i.e. difluoromethoxy, carba-
moylmethoxy and dimethoxyphenyl, respectively (Fig 3A). Likewise, compounds C5 and C6
(group II) were distinct only in the capping site where the benzodioxin in C5 was replaced by
chlorophenyl in Cé6. (Fig 3A). Energy profiles of group I analogues (C1, C2 and C7) against
HDAC isoforms depicted more selectivity for HDAC2 and HDACS (Fig 3B). These acetamides
derivatives showed similar binding patterns at Zn*? containing pockets of HDAC2 and 8 (Fig-
ures G and H in S1 File), while at the outward surface of binding tunnel, only C1 and C2
showed binding to the PHE (PHE210 of HDAC2 and PHE208 of HDAC8) and TYR (TYR308
of HDAC2 and TYR306 of HDACS8) residues (Figures G and H in S1 File). Similarly, group II
(C5 and C6) hydrazides showed binding selectivity against HDAC1, 2 and 3 (Fig 3B). Metal
binding regions of C5 and C6 hits formed hydrogen bonds with active site residues of HDAC
enzymes, whereas unlike C6, C5 exhibited binding of benzodioxin with HIS178, HIS183,
HIS172 of HDACI, 2 and 3, respectively (Figures I—K in S1 File). Furthermore, predicted bio-
activity analysis of these compounds also showed variability where C7 (group I) having
dimethoxyphenyl group and C6 (group II) with chlorophenyl substituent exhibited the highest
values (12.5 and 8), respectively. (Fig 5).

MD simulations of C8 with HDAC2 and HDACS impressively illustrated the conforma-
tional readjustments in the corresponding catalytic sites. Generally, certain conformational
changes take place in the vicinity of HDAC catalytic sites to accommodate the inhibitor
[144,145]. Binding of C8 was mediated by coordination with metal ion and hydrogen bond
acceptors such as HIS145, HIS146, HIS183 and TYR308 in HDAC2 and HIS142, HIS143,
HIS180 and TYR306 in HDACS. These residues showed no structural dynamics during the
inhibitor binding. Notably, hydrophobic residues namely ILE40-THR43, PHE210 and LEU333
exhibited more fluctuations in HDAC2 bound to C8 hit. Particularly, PHE210 exhibited the
highest peak (0.8-2A) in RMSF plot. This residue is conserved across the class  HDACs. Previ-
ously, an active contribution of PHE210 was detected in the binding of NSC746457 [146] and
YF479 inhibitor [147] to HDAC2. Moreover, its involvement is also visible in TSA (Trichosta-
tin A)-HDAGC2 crystal structure [148]. The consistent trend in residual conformations sug-
gested an active contribution of PHE210 in the induction of inhibitor binding to HDAC2. In
HDACS8, more pronounced fluctuations were observed in ASP87, ASP88, SER193-SER199 and
GLY320 residues. However, the residues holding the Zn*? ion in the catalytic sites of HDAC2

PLOS ONE | DOI:10.1371/journal.pone.0139588 October 2, 2015 14/23



@.PLOS | ONE Class 1 HDAC Inhibition

Closed chromatin
conformation in the
presence of HDACs and
transcription repressors

No Transcription

Removal of acetyl group
from histone proteins
via HDACs, thereby
down regulating gene

Over expression of expression
HDACs

Silencing of tumor
suppressor genes

\/ ing p21WAF1
Hematological Acute Promyelocytic
N Leukemia (APL)
Prostate, Gastric, Ovarian, Breast,
Colon cancer Colorectal cancer

HDAC Inhibition and @

Inhibitors removal of HDACs

by means of its
Transcriptional

\/ inhibitors Addition of acetyl
group into histone
proteins via HATs
NN
activation of

HATs
Open chromatin HATs \/ HATs
\/ tumor suppressor

conformation by

= genes
the recruitment of
HATs

Cell cycle Mitotic cell death Apoptosis by A Enhanced Degradation of
4 i utophagy P 5 p
arrest at (chromosomal increased expression of (cell death) sensitivity of angiogenesis by
G1/G2 phases segregation) TNFo and TRAIL chemotherapy lowering of VEGF
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doi:10.1371/journal.pone.0139588.9013

(ASP181, HIS183 and ASP269) and HDACS (HIS142, HIS143, ASP178, HIS180, ASP267 and
TYR306) were quite stable.

With these structural insights, our nominated drug-like compounds may prove to be opera-
tional in combinatorial cancer therapy (Fig 13). Further studies are needed to delineate the
inhibitory effects of proposed inhibitors through in-vitro and in-vivo assays.

Conclusions

We employed QSAR approach to generate models of 10 chemical compounds (C1-C10) which
were derivatives of benzamides, acetamides, carboxamides and hydrazides. Pharmacophore
models demonstrated the improved values which stated the higher predictability and reliability
of screened hits. The predicted hits were tested for their inhibitory effects through docking
and MD simulation assays. C8 and C9 targeted all four members of class I HDACs, whereas
other compounds showed member specific interactions. The associated conformational
changes in the close proximity of binding regions assisted in the interaction of C8 to HDAC2
and HDACS. RMSD trends for HDAC2 were much similar in both bound and unbound
forms, while HDAC8 bound to C8 attained more stability than apo HDACS. On the basis of
in-silico binding analysis, these hits may prove as more potent drugs against class I HDACs
than previously known analogs to reverse the disequilibrium of acetylation and deacetylation
events.
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