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Abstract

There is an increasing number of medical use cases where classification algorithms

based on deep neural networks reach performance levels that are competitive with

human medical experts. To alleviate the challenges of small dataset sizes, these systems

often rely on pretraining. In this work, we aim to assess the broader implications of these

approaches in order to better understand what type of pretraining works reliably (with

respect to performance, robustness, learned representation etc.) in practice and what

type of pretraining dataset is best suited to achieve good performance in small target

dataset size scenarios. Considering diabetic retinopathy grading as an exemplary use

case, we compare the impact of different training procedures including recently estab-

lished self-supervised pretraining methods based on contrastive learning. To this end, we

investigate different aspects such as quantitative performance, statistics of the learned

feature representations, interpretability and robustness to image distortions. Our results

indicate that models initialized from ImageNet pretraining report a significant increase in

performance, generalization and robustness to image distortions. In particular, self-

supervised models show further benefits to supervised models. Self-supervised models

with initialization from ImageNet pretraining not only report higher performance, they also

reduce overfitting to large lesions along with improvements in taking into account minute

lesions indicative of the progression of the disease. Understanding the effects of pretrain-

ing in a broader sense that goes beyond simple performance comparisons is of crucial

importance for the broader medical imaging community beyond the use case considered

in this work.
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Introduction

The role of computer vision algorithms based on deep learning in medical imaging in the form

of decision support systems has increased steadily in the past few years [1–7]. There is an enor-

mous amount of data that is being produced on a daily basis from different areas using differ-

ent imaging modalities such as MRI, CT, microscopy, etc., leading to an unprecedented

potential for machine learning algorithms. However, while there exists a lot of data, it is usually

not prepared to be used for research in machine learning. In particular, it is often unlabeled as

the labeling process is expensive and time-consuming or sometimes medical experts may not

agree on the appropriate label.

A practitioner using Deep Neural Networks (DNN) for the task of medical imaging, is

faced with a plethora of options when it comes to the training methodology for the DNN. Sev-

eral factors can influence the decision making process including, but not limited to the size,

noise level and quality of the dataset at hand, computational resources available and robustness

of the trained DNN. Transfer learning, i.e. pretraining models on a large corpora of natural

images has been found to be beneficial for improvements in performance along with speeding

up convergence on downstream tasks such as medical imaging [1, 8]. A straightforward way of

utilizing transfer learning is to finetune a model that has been initially trained on ImageNet [9]

on the medical dataset.

Other common state-of-the-art methods in machine learning are supervised-learning meth-

ods, i.e. models that are trained with labeled data, opposed to other methods that require only

some or even no labeled data such as semi-supervised or self-supervised learning. Fortunately,

the field of self-supervised learning has recently advanced significantly [12–15], which gives

rise to hope for a successful deployment of machine learning in medical applications without

relying on overly large amounts of labeled data. A first result in this regard was obtained in

[6, 16, 17] where the authors showed that pretraining using self-supervision helps to improve

the models for chest x-ray classification [18], dermatology condition classification [19] and

COVID-19 deterioration prediction [17].

With widespread adoption of transfer learning in medical imaging, it becomes essential to

explore the differentiating features of the various training methodologies—supervised or self-

supervised. [1] observe the effects of pretraining on the speed of convergence and feature repre-

sentations learned, but only in a supervised learning setting. [8] find that pretrained models

from ImageNet provide improvements in quality of the features learned performance as well as

improvements in performance on diverse downstream datasets. Despite the benefits of transfer

learning, it has however remained unclear what transfer learning, especially with self-supervised

learning actually exploits when making a prediction. For this (as we will see) simply looking at

performance metrics like classification accuracy or area under the operating curve (AUC) is not

sufficient. The potential advantages of using self-supervised methods over supervised methods

for medical imaging beyond such performance metrics thus remain a challenging object of study.

In this contribution, we demonstrate for diabetic retinopathy (DR) as a particular medical

imaging use case, that going beyond metrics of predictive performance is mandatory. We further

analyze robustness to statistical variations of the data. Furthermore we validate previous results

on smaller data sets which are of ubiquitous interest to practitioners in medical data science.

To this end, we perform a detailed study of what is being learned by the different training

methodologies available to train a DNN for medical imaging. Broadly, the training methodolo-

gies will be categorized into two types:

• Fully supervised (FS)

• Self-supervised with contrastive learning (CL)
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along with two types of initialization of the weights before training on the medical dataset:

• Initialization with no external data (IWNE)

• Initialization from ImageNet (IFI)

The focus of this paper is to study the effects of training the DNN using these strategies and

evaluate the benefits. Fig 1 gives an overview of our contributions which are as follows:

1. We evaluate the performance of the four different training strategies: supervised and self-

supervised models using models trained with or without using external data for pretraining

in detecting diabetic retinopathy in retinal images. We find that IFI helps in achieving sig-

nificant gain in performance, especially when a limited amount of the downstream (medi-

cal) labeled dataset is used. IFI-CL provides a further increase in performance.

2. Given that IFI is beneficial in terms of performance, we investigate what makes them better

by analyzing the eigenvalue spread of the activations on the hidden layers. We find that the

redefined conditioning number for the IFI models is lower than that of IWNE models for

the initial layers that are important for learning diverse and effective feature representations

from the input. IFI makes the eigenvalue spread of the activations of the first hidden layer

broader, implying that a wider range of kernels fire for a given input. In both IWNE as well

as IFI models, we show that CL achieves broader eigenvalue spread compared to its super-

vised counterparts.

3. Using explainability of DNNs, we investigate what the different models look at in the input for

making a decision. With the help of ground-truth segmentation maps available for diabetic

retinopathy on the IDRiD challenge [11], we study in a quantitative manner what information

was used by the models to make the prediction. We find that IWNE-FS overfits to large lesions

like hard exudates and ignores smaller lesions to predict the disease. IFI models show signifi-

cantly reduced tendency to overfit to one particular type of lesions. Especially IFI-CL is able to

consider a wider range of lesions to make an accurate prediction for the disease.

Fig 1. Overview of the experiments presented in this work. a) shows the different pretraining strategies: Initialization from ImageNet (IFI) [9] and

Initialization without any external data (IWNE), i.e. pretraining only on Eyepacs-1 datasets [10]. Such a pretraining step can be performed either in a

supervised or a self-supervised manner. This is followed by finetuning on the Eyepacs-1 dataset. b) investigates the statistics of the eigenvalues of the

feature representations learned by the different methods which lead to increased robustness to distortions. c) shows the experiments we perform using

the Indian Diabetic Retinopathy Image Dataset (IDRiD) challenge data [11] to quantitatively evaluate the cues learned.

https://doi.org/10.1371/journal.pone.0274291.g001
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Related work

Diabetic retinopathy

DNNs have seen wide adoption for the task of DR assessment in [2, 3, 20–42] among others.

While some methods train their model from scratch [20, 21, 32, 35, 43], IFI models have pre-

dominantly achieved higher performance [2, 3, 23, 26, 30, 40]. Some methods also perform

their training on large private data [2, 20, 24, 29, 33]. A reproduction study of [2] was per-

formed by [3] showing difficulty in achieving similar performance for DR when trained on

publicly available datasets. Systematic study of using uncertainty measures for DR were also

conducted by [43, 44]. While [22] studied the probability maps with ground-truth segmenta-

tion maps to ascertain what the DNN prediction was looking for [45], studied a computer-

assisted setting with explanation methods for deep learning models in grading for DR. There

is, however, no dedicated study on the implications of different training methodologies.

Supervised vs. self-supervised learning

Self-supervised learning has been utilized in a wide range of biomedical applications including

chest x-rays [4–6, 17], diabetic retinopathy [47, 48], COVID-19 detection [17] etc. In spite of the

improvements shown by self-supervised learning [49], find that self-supervised models behave

quite similarly to their supervised counterparts in many aspects of robustness. Self-supervised

models report a slightly higher performance gain over their supervised counterparts on medical

imaging [4, 6]. Recent works show the generalizing capabilities of self-supervised learning on

chest x-rays [50]. The improvements and benefits still need to be rigorously investigated to

ascertain the limits of using self-supervised learning on real-life healthcare applications.

IWNE vs IFI

Pretraining on ImageNet dataset (i.e. IFI), either supervised or self-supervised, is considered

an effective strategy [4–6, 8, 51–56]. Several benefits have been attributed to pretraining

including robustness [8, 51–54], generalization [57, 58], finding sparser subnetworks from the

original [59] and also speed up in convergence on the downstream task [1, 8]. Using IFI for

DR has been widely adopted owing to benefits in performance [1–3, 23, 26, 32, 60]. The perfor-

mance benefits of pretraining have been observed even on diverse datasets which seem distant

from the ImageNet dataset [8]. The benefits of pretraining can be attributed to effective feature

extracting capability of pretrained models in the lower layers [1, 8]. Although, it is unclear how

this translates to a DNN being used for a downstream task after finetuning. While the above

mentioned methods investigate supervised learning, we make a comparative study of IWNE vs

IFI along with FS vs CL and their combinations to understand their differentiating features.

Materials & methods

Datasets

We focus on diabetic retinopathy (DR) as a use case for our investigations and solely work on

publicly available datasets, which are summarized in Table 1.

Table 1. Diabetic retinopathy datasets used for this study.

Dataset # instances # patients

EyePacs-1 (EyP) [10] 88,702 44,351

Messidor-2 [46] 1,744 872

IDRiD [11] 80 -

https://doi.org/10.1371/journal.pone.0274291.t001
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We make use of the Eyepacs-1 dataset [10], which is available from a former Kaggle chal-

lenge. The images are graded from a scale of 0 to 4 (0: no DR, 1: mild DR, 2: moderate DR, 3:

severe DR, 4: proliferative DR) according to the International Clinical Diabetic Retinopathy

(ICDR) severity scale. DR advances from a healthy eye to a proliferate one slowly and may also

take years. However, this transition is discrete and often goes undetected to worsen into a pro-

liferate DR. Hence, it is essential that this progression is detected and a timely medical diagno-

sis is performed. In our experiments, we train the models to perform the quinary classification

using all the five grades. During inference, we formulate the outputs predicted by the model to

a binary classification by summing up the output neurons corresponding the the two labels,

i.e. healthy classes [0–2] and disease classes [3–4]. Following the summation, we apply softmax

activation to map the outputs to the range of [0, 1] to obtain output probabilities. This binary

class formulation is consistent with referable DR (rDR) classification in [2, 3].

The Eyepacs-1 dataset [10] consists of 35216 images in the training set and 53576 in the test

set. We utilize non-overlapping set of around 15% of the training set as the validation set. We

train all our different methods on the training set of Eyepacs-1 dataset and evaluate the perfor-

mance of the models on two datasets—test set of Eyepacs-1 and Messidor-2 [46]. Messidor-2

dataset [46] is a benchmark dataset consisting of 1744 images that are 100% gradable. The eval-

uation on the Messidor-2 dataset is supposed to measure the generalization performance of

the algorithms since the dataset is not used for training and was collected under different con-

ditions, at a different geographical location and with different hardware. Hence, we use all the

images of this dataset for testing. We report the AUC for the binary rDR classification task on

the respective test sets of each dataset.

Models & training procedures

We compare the four training setups which are eventually trained on the DR target dataset.

• Initialization With No External Data (IWNE)

• FS: supervised training on the DR dataset starting from randomly initialized weights.

• CL: self-supervised pretraining on the target domain and finetuning also on the same data-

set using labeled data.

• Initialization From ImageNet Data (IFI)

• FS: supervised training on the DR dataset starting from supervised ImageNet-pretrained

weights.

• CL: self-supervised pretraining on ImageNet dataset and finetuning on the DR dataset

using labeled data.

For comparability, we fix the architecture and use a Resnet50 [61] model for all our experi-

ments. In the self-supervised setting, we pretrain the models using MoCoV2 strategy [62]. For

the supervised pretraining, we use the ImageNet-pretrained model provided by torchvision.

The IWNE models are trained for 500 epochs with a learning rate of 10−4. Pretrained models

have shown to be faster at convergence than the models trained from scratch [1, 8]. Hence, we

finetune the IFI models starting from ImageNet-pretrained weights for 50 epochs with a learn-

ing rate of 10−3. The IFI models use the same mean and standard deviation of the ImageNet

dataset while IWNE models use mean and standard deviation computed from the training set

of the Eyepacs-1 dataset. The AdamW optimizer [63] with weight decay was used in all the set-

tings. The best models in each training run was chosen based on the maximum AUC score

achieved on the validation set and this model was used for inference on the test.

PLOS ONE To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy

PLOS ONE | https://doi.org/10.1371/journal.pone.0274291 October 18, 2022 5 / 18

https://doi.org/10.1371/journal.pone.0274291


Experiments & results

Quantitative performance

We evaluate the performance of the different methods discussed in Section Models & Training

Procedures in terms of AUC. Each model was trained on the full dataset and on various frac-

tions of the training set down to a fraction of 10% labeled samples. Fig 2 shows the final AUC

of the binary classification for rDR. We find largely consistent results in terms of the ranking

and overall behavior of the different training procedures between evaluation on a subset of the

Eyepacs-1 dataset used for training and an evaluation on the external Messidor-2 dataset,

which is a reassuring sign that our results generalize across datasets. The best-performing

method across all the training set fractions is IFI-CL, i.e. finetuning a model that was trained

in a self-supervised fashion on ImageNet data, closely followed by IFI-FS, corresponding to

the standard training methodology in medical imaging, where a model pretrained on Ima-

geNet is finetuned on the target dataset. The results for the IWNE-CL model, i.e. self-super-

vised pretraining in target (DR) domain are weaker than the former two results. This trend is

again followed at lower training set fractions where the model is trained with reduced fractions

of the labeled dataset. A training set fractions of 1.0 corresponds to training with the entire

training set of 30, 000 images, while a fraction of 0.1 corresponds to 3, 000 images. While

IWNE models deteriorate in performance, IFI models show only a marginal drop as shown in

Fig 2.

The results clearly advocate the use of IFI models as opposed to not using external data,

which is in line with most part of the medical imaging literature but at first sight contradicts

[1], who found no improvements from IFI as compared to direct training on a considerably

larger closed source DR dataset. The inferior results of IWNE-CL compared to IFI-CL can

potentially be attributed to two factors: the size of Eyepacs-1 as pretraining is with around 30k

samples, very small compared to large natural image datasets, such as ImageNet with 1.2M

images, where self-supervised contrastive methods were demonstrated to work really well. In

addition, for IWNE-CL we used the same set of transformations proposed for ImageNet in

Fig 2. Classification performance on Eyepacs-1 and Messidor-2 dataset for referable DR. The x-axis in both the subfigures correspond to the

fraction of the labeled training set from the Eyepacs-1 dataset used for the downstream training of the four different training procedures. The state-of-

the-art method for DR—Voets et al. [3] and Gulshan et al. [2] are shown as green and black diamonds for training with the full dataset for the

Messidor-2 dataset. (a) Training and evaluation on Eyepacs-1. (b) Training on Eyepacs-1 and evaluation on Messidor-2.

https://doi.org/10.1371/journal.pone.0274291.g002
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[13], which certainly represents a suboptimal choice for the DR images that differ qualitatively

from natural images and the pretraining algorithm is rather sensitive to this choice.

Statistics of eigenvalues

Condition number. To better understand what makes the IFI models achieve higher per-

formance, we study the activations of the hidden layers. In particular, we compute the eigen-

values of the activations of each layer in the four models we considered. Using the eigenvalues,

we plot the condition number [64] as shown in Fig 3a. To prevent the condition number from

having very large values due to division by the minimum of the eigenvalues, we redefine the

condition number as follows:

kðAÞ ¼
jlp99:9

ðAÞj
jlp90
ðAÞj

ð1Þ

where A are the activations of a hidden layer, κ(A) is the condition number and lpiðAÞ is the

eigenvalue corresponding to the ith percentile of the eigenvalues. While the top row in Fig 3a

shows the condition numbers of the IWNE models, the bottom row shows the condition num-

ber of the IFI models. The x-axis in both the figures corresponds to the layers of ResNet50.

We find in Fig 3a that the condition number for IFI models is much lower than that of

IWNE implying significantly more diverse features learned. Also, in both versions of initializa-

tions, we find that the condition number for self-supervised learning is lower than that of

supervised learning in the initial layers. This indicates that self-supervised learning extracts

more diverse features than its supervised counterparts. We also find in Fig 3a that for all the

different models, the condition number is flattened out and becomes indistinguishable for the

latter layers. The initial layers form the crux of the learning process extracting effective and

diverse feature representations while the latter layers learn to aggregate these features. On the

other hand, the final layers are responsible for the discriminative classification, thus reducing

the diversity here can be beneficial. We also observe this phenomenon in Fig 3a, where the

conditional number of IFI models in comparison to IWNE models increase in the final layers,

indicating loss in diversity that in turn leads to superior performance as reported in Fig 2.

Spread of eigenvalues. To investigate the distinctive aspects of the initial layers, we plot

the eigenvalues of the first layer for all four models in Fig 3b. The eigenvalues are made sym-

metrical around 0 and plotted in the form of density to make for better visualization. The bot-

tom row in Fig 3b also zooms in on the tails. We find that the IWNE models obtain high and

peaked eigenvalues in comparison to IFI models. In addition to lower peak values, the IFI

models show heavy-tailedness in comparison to that of IWNE models. Similar to the findings

in the experiments on the condition number, self-supervised learning in contrast to supervised

learning shows a slightly lower peak value. Additionally, in both versions of the initialization,

self-supervised learning models show more heavy tailedness.

The results indicate that IWNE models learn kernels in the first convolutional layer that are

activated for some very specific patterns. On the contrary, IFI models learn kernels that acti-

vate for a broader range of input features. The superior performance of IFI models can be

attributed to this effect while this may also lead to several other benefits including increase in

generalization and robustness.

Distribution fitting. In this section, we fit the eigenvalues of the first convolutional layer

to the parameters of several distributions and report the distribution that fits best [65]. Among

a wide range parameterized distributions, we find in Table 2 that all the four models fit best to

the Pareto distribution, though the parameters vary. Pareto distribution with the shape param-

eter α = 1.16 corresponds to the 80−20 rule, implying that 80% of the results come from 20%
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of the causes [66]. IWNE models show α values higher than 1.16. This indicates that the overall

result comes from less than 20% of the activations. In other words, the kernels learned by the

IWNE models extract small number of, yet highly curated set of features from the input. In

contrast, we find that IFI brings down the value of α for the Pareto distribution implying a

wider range of feature representations learned by the first convolutional layer. Additionally, in

Fig 3. The statistics of the eigenvalues are shown here. a) shows the condition number of all the layers and b) shows the eigenvalues of the activations

of the first convolutional layer. (a) Condition number for each layer of ResNet50 and for the different models. (b) Eigenvalues of the activations of the

first convolutional layer made symmetrical around 0 and plotted in the form of density for better visualization.

https://doi.org/10.1371/journal.pone.0274291.g003

PLOS ONE To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy

PLOS ONE | https://doi.org/10.1371/journal.pone.0274291 October 18, 2022 8 / 18

https://doi.org/10.1371/journal.pone.0274291.g003
https://doi.org/10.1371/journal.pone.0274291


both versions of initializations, CL shows reduced value of α when compared to FS indicating

that the kernels learned by CL methods fire on a further broader range of input.

Our studies show that pretraining and self-supervised learning is beneficial for the down-

stream medical imaging task to be able learn kernels that fire broadly and in turn extract more

diverse and effective features from the input.

Robustness to distortions

The heavy-tailed activation statistics in combination with ReLU-thresholding in Section Statis-

tics of Eigenvalues showed that a larger number of neurons are capable of detecting structures

in the input when the input data is varied according to sampling from the dataset. One can

expect that this also may translate to an increased detection capability when input samples are

varied by data augmentation parameters towards zones of lower data density. We have per-

formed this experiment for the IWNE and IFI models by distorting the input with a set of pre-

defined distortions as shown in [67].

One can see from Fig 4 that for the majority of distortion cases, the score for the self-super-

vised model is higher, indicating a higher robustness to the respective distortions. There is a

marked difference between IWNE and IFI models. In the former case, CL always provides an

Table 2. Distribution fitting for the eigenvalues of the activations of the first layer. For all the four models, the

eigenvalues are best parametrized by a Pareto distribution. We also find that the self-supervised models show smaller

value for the shape parameter of the Pareto distribution.

Method Distribution Parameters

IWNE-FS Pareto α = 1.45

IWNE-CL Pareto α = 1.28

IFI-FS Pareto α = 0.87

IFI-CL Pareto α = 0.73

https://doi.org/10.1371/journal.pone.0274291.t002

Fig 4. This figure shows the robustness to distortions for the different models. The difference in the softmax probabilities of the output between the

CL and FS model is plotted here. The intensity of the color indicates the severity of the distortions. Top row shows the difference for IWNE models.

Bottom row shows the difference for IFI models. In case of IWNE, the difference is consistently positive, implying that the self-supervised model has a

higher prediction score than the plainly supervised model and thus exhibits a higher robustness to distortions. See Section Robustness to Distortions:

for a detailed discussion.

https://doi.org/10.1371/journal.pone.0274291.g004
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increase in robustness in comparison to FS. Using IFI in the latter case is known to provide

good generalization for finetuning with respect to a wide range of target datasets. This

improved generalization levels the difference between FS and CL. However IFI-CL still

improves robustness for different noise types, pixelation and lower levels of saturation

changes. Note the conspicuous outlier in IFI for JPEG compression.

Quantitative analysis of learned cues

Explainability for DNN reveals what the model looks at on the image to make the prediction

[68–79]. Using ground-truth segmentation masks, explanations have been evaluated to show

quantitatively if what the model is looking at, is relevant for making the decision [80]. In the

case of DR, a reasonable expectation is that the trained model looks at lesions in the retina that

are indicative of the disease in order to make its decision. In order to evaluate the explanation

heatmaps, we use the dataset of IDRiD [11] containing detailed pixel-wise annotation of the

different lesions that contribute to the disease. The dataset consists of 80 images with segmen-

tation masks for microaneurysms, haemorrhages and hard exudates. The IDRiD dataset

also contains segmentation maps for soft exudates for a smaller subset of images, which we

excluded from our quantitative evaluation.

To obtain explanation heatmaps, we utilize Layer-wise Relevance Propagation (LRP) [70,

74]. LRP is a principled approach to decompose the decisions of the classifier and assign pixel-

wise relevances determining the contributions of the input pixels towards the decision. The

layer-wise conservation principle in LRP assures that the relevances from a higher layer is pre-

served when propagated to a lower layer
P

iR
ðlÞ
i ¼

P
jR
ðlþ1Þ

j . The forward pass for the activa-

tions of any given layer in a DNN can be defined as be the weighted activation of neuron i
onto neuron j in the next layer. Let zij ¼ aliw

ðl;lþ1Þ

ij , where ali is the activation of a neuron i in the

previous layer, and where zij is the contribution of neuron i at layer l to the activation of the

neuron j at layer l + 1. The relevances are computed using the α1 β0 rule:

Ri ¼
X

j

a �
zþij
P

i0z
þ
i0 j
þ b �

z�ij
P

i0z�i0 j

 !

Rj ð2Þ

The intuition behind LRP is that neurons of the lower layers that mostly contribute to the acti-

vations of the higher layer neuron receive a larger share of the relevance Rj of the neuron j.
Decomposing the relevances into its positive part zþij and the negative part z�ij allows for exact

conservation of the relevances [69].

Fig 5 shows the input followed by the segmentation maps for different lesions in the top

row. The final image in the top row combines the different lesions to form the total. The bot-

tom row shows the explanation heatmaps by using the different training methods. By compar-

ing each result to the total marked in red in Fig 5, we can evaluate the effectiveness of the

model in looking at the lesion to make the prediction. We find that explanation heatmaps

from IWNE overfit on the hard exudates and show minimal correlation with the other lesions.

On the other hand, explanation heatmaps from IFI models are significantly more outspread

correlating better with different lesions.

The correlation of explanation heatmaps to the ground-truth segmentation maps also helps

us make a quantitative evaluation of how accurately the models relies on the disease to make

its prediction. We follow the evaluating strategies adopted in [80] including relevance mass

accuracy and relevance rank accuracy. For a given input RGB image x, relevances Ri determin-

ing the importance of the input features xi are also in the dimensions of the image. However,

the the ground truth segmentation mask S� [0, 1] are only in two dimensions. Hence, we
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pool the relevances across the channels to be able to compare them with the segmentation

masks. We utilize the two pooling strategies followed by [80]:

• sum pos : Rpool ¼ maxð0;
PC

k¼1
RkÞ

• l2 norm sq : Rpool ¼
PC

k¼1
Rk

2

where C is the number of channels. However, the findings here are agnostic to the pooling

strategy utilized. Given pooled relevances and ground truth segmentation masks, the relevance

mass accuracy is defined as:

RMA ¼
P

i2SR
pool
i

P
iR

pool
i

ð3Þ

where the numerator corresponds to the sum of relevances where the ground truth segmenta-

tion maps exists and the denominator is the sum of all relevances. The relevance rank accuracy

is defined as:

RRA ¼
jRpoolpi

\ Sj
jSj

ð4Þ

where Rpool
pi

is the relevances in the top ith percentile. While RMA corresponds to the precision,

RRA corresponds to the recall.

Table 3 shows the results for RMA and RRA for the explanation heatmaps correlated with

the ground-truth segmentation maps from the IDRiD challenge. We report the accuracies for

each lesion—microaneurysms, haemorrhages and hard exudates and a total, where we com-

bine the above mentioned lesions. The heatmaps for each of the methods are computed by

backpropagating from the output neuron corresponding to severe DR, which can also be con-

sidered as the ground truth DR level for the given input. The heatmaps are evaluated using the

Fig 5. Top left image in the figure shows the input followed by the segmentation maps from the IDRiD dataset. Top right image is the total that we

compute by combining the segmentation maps of different lesions. Bottom row shows the explanation heatmaps for the given input. Each explanation

heatmap is correlated with the total image marked in red to evaluate the effectiveness of the model towards making the prediction for the disease. We

find that IWNE-FS overfits on the hard exudates and also fails to pick up on cues related to microaneurysms. We also find that explanation heatmaps of

IFI models show reduced signs of overfitting to a single lesion when compared to IWNE.

https://doi.org/10.1371/journal.pone.0274291.g005
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two pooling strategies mentioned above for each lesion. As a control, we also report the results

by replacing explanation heatmaps with random variables from Gaussian distribution. Any

method that shows similar results to the control indicates that the heatmaps are just random,

i.e. the model looks at random set of input features to make its prediction. In each category

(lesion), the best result among the different training strategies are marked in bold for each

pooling method.

We find in Table 3 that in the case of microaneurysms, random explanations achieve a

mean accuracy of 0.0073 for RMA. Here, the model IWNE-FS achieves results that is very

close to the results for the random explanations. On the other hand, all the other models report

accuracies that are higher than the corresponding control value. This indicates that IWNE-FS

Table 3. Relevance mass accuracy (RMA) and relevance rank accuracy (RRA) on the LRP-α1β0 explanation heatmaps of images of the IDRiD dataset. The results

show that while supervised models overfit on the hard exudates, the self-supervised models look at diverse set of input features (lesions). On the other hand, we also find

that IFI models show higher accuracies when compared to IWNE models.

Lesions Method Pooling RMA RRA

Random LRP-α1β0 Random LRP-α1β0

Mean Median Mean Median Mean Median Mean Median

Microaneurysms IWNE-FS sum_pos 0.0073 0.0064 0.0076 0.0072 0.9885 0.9895 0.3447 0.4146

l2_norm_sq 0.0074 0.0067 0.0041 0.0025 0.9894 0.9900 0.4888 0.5047

IWNE-CL sum_pos 0.0074 0.0064 0.0093 0.0077 0.9879 0.9901 0.4370 0.5224

l2_norm_sq 0.0073 0.0064 0.0075 0.0042 0.9882 0.9912 0.5777 0.5736

IFI-FS sum_pos 0.0073 0.0061 0.0172 0.0143 0.9913 0.9922 0.5097 0.5551

l2_norm_sq 0.0074 0.0068 0.0374 0.0218 0.9891 0.9900 0.5705 0.5713

IFI-CL sum_pos 0.0073 0.0061 0.0198 0.0186 0.9896 0.9897 0.5831 0.6251

l2_norm_sq 0.0073 0.0067 0.0595 0.0381 0.9902 0.9917 0.6357 0.6366

Haemorrhages IWNE-FS sum_pos 0.0234 0.0130 0.0251 0.0165 0.9902 0.9911 0.3845 0.4547

l2_norm_sq 0.0233 0.0126 0.0139 0.0056 0.9880 0.9905 0.5414 0.5565

IWNE-CL sum_pos 0.0232 0.0126 0.0602 0.0458 0.9889 0.9904 0.4971 0.6076

l2_norm_sq 0.0234 0.0125 0.1063 0.0525 0.9881 0.9892 0.6357 0.6371

IFI-FS sum_pos 0.0233 0.0126 0.0711 0.0578 0.9896 0.9895 0.5840 0.6127

l2_norm sq 0.0233 0.0125 0.1438 0.1243 0.9891 0.9904 0.6571 0.6551

IFI-CL sum_pos 0.0234 0.0127 0.0765 0.0722 0.9897 0.9911 0.6898 0.7194

l2_norm_sq 0.0234 0.0125 0.1874 0.1808 0.9873 0.9911 0.7403 0.7405

Hard Exudates IWNE-FS sum_pos 0.0409 0.0195 0.1954 0.1734 0.9897 0.9906 0.5086 0.6959

l2_norm sq 0.0409 0.0190 0.4201 0.4921 0.9898 0.9903 0.7114 0.7435

IWNE-CL sum_pos 0.0409 0.0200 0.1206 0.1018 0.9889 0.9898 0.5136 0.5887

l2_norm_sq 0.0409 0.0191 0.2338 0.1652 0.9892 0.9898 0.6656 0.7038

IFI-FS sum_pos 0.0408 0.0195 0.1103 0.0861 0.9895 0.9905 0.5480 0.6258

l2_norm_sq 0.0410 0.0194 0.2125 0.1659 0.9905 0.9915 0.6125 0.6561

IFI-CL sum_pos 0.0409 0.0188 0.0725 0.0533 0.9890 0.9896 0.5425 0.5762

l2_norm_sq 0.0412 0.0193 0.1195 0.0858 0.9888 0.9903 0.6088 0.6260

Total IWNE-FS sum_pos 0.0710 0.0558 0.2266 0.2000 0.9899 0.9905 0.4459 0.5655

l2_norm_sq 0.0711 0.0563 0.4363 0.5104 0.9893 0.9898 0.6151 0.6503

IWNE-CL sum_pos 0.0710 0.0565 0.1887 0.1619 0.9884 0.9891 0.5015 0.6083

l2_norm_sq 0.0711 0.0565 0.3457 0.3330 0.9884 0.9890 0.6459 0.6334

IFI-FS sum_pos 0.0709 0.0561 0.1969 0.1886 0.9893 0.9897 0.5479 0.5941

l2_norm_sq 0.0711 0.0557 0.3905 0.3964 0.9893 0.9896 0.6150 0.6245

IFI-CL sum_pos 0.0711 0.0576 0.1671 0.1724 0.9893 0.9896 0.5847 0.6144

l2_norm_sq 0.0713 0.0569 0.3625 0.3650 0.9895 0.9897 0.6428 0.6463

https://doi.org/10.1371/journal.pone.0274291.t003
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may be ignoring microaneurysms for making its decision. The RMA results in Table 3 show

that for the IWNE models, CL achieves better results. IFI models, in general report higher

accuracies than that of IWNE models. Similar to IWNE, we find for IFI models that CL reports

better RMA than FS using both the pooling strategies. This is confirmed again with results of

RRA in the same table, where models with CL achieves the best results. Microaneurysms are

the smallest lesions and it is vital for a method to base its decision on them for detecting pro-

gressive cases of DR. Our results indicate that IFI models and CL in particular are better

equipped at including microaneurysms to make their predictions.

Haemorrhages are lesions that are slightly larger than microaneurysms. We find in Table 3

that here again IWNE-FS reports similar accuracies to that of the control indicating that this

model may be ignoring the haemorrhages as well. Among IWNE models, CL clearly achieves

higher RMA as well as higher RRA. This is again the case on the IFI models where CL achieves

higher RMA and RRA indicating that the explanations using this model are better correlated

with the ground-truth than their supervised counterpart FS.

In contrast to the smaller lesions, the hard exudates are large yellowish white deposits with

sharp gradients. Here for RMA, the supervised models achieve better results than the self-

supervised models as shown in Table 3. The results on RRA for hard exudates show that on

majority of the cases, for both IWNE and IFI models, the supervised models show higher accu-

racies than the self-supervised models.

For the total, which measures the sum of the all the different lesions, we find here again that

the supervised models achieve better results with RMA as shown in 3. With RRA, the IWNE

models do not clearly outperform each other in the case of total. However, for IFI, the self-

supervised model clearly outperforms the supervised model for the total of all the lesions.

The results of RMA and RRA in Table 3 reveal that the supervised models overfit on the

hard exudates in both versions of initializations. IWNE-FS in particular fails to base its deci-

sion on microaneurysms and haemorrhages that may be highly relevant for the prediction of

onset of the disease. The results on the total are skewed by the results on the hard exudates. In

alignment with our observations in Section Statistics of Eigenvalues, we find that the IFI mod-

els look at diverse set of input features (lesions) and report consistently higher accuracies than

their IWNE counterparts. Among IFI, the results of CL correlates better with the explanation

heatmaps for a variety of lesions indicating that they look at more diverse set of input features

than any other method.

Summary and conclusions

Deep learning-based methods for the diagnosis of diabetic retinopathy have shown remarkable

performance. In our paper, we study the important question of the robustness of different

training strategies—namely initialization from ImageNet pretraining and self-supervised

learning. Our findings are three-fold: Firstly, we show the performance gains obtained by self-

supervised learning in diabetic retinopathy. Secondly, we demonstrate the advantage of self-

supervised learning along with initialization from ImageNet pretraining for diabetic retinopa-

thy by analyzing the statistics of the eigenvalues of the feature representations learned. We also

show improvements in robustness to distortions for self-supervised learning in comparison

to purely supervised training. Finally, we use interpretability methods to gain quantitative

insights into the patterns exploited by models trained using the different training schemes. In

particular, we find that initialization from ImageNet pretraining significantly reduces overfit-

ting to large lesions along with improvements in taking into account minute lesions, which are

indicative of the progression of the disease.
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With our study, we try to convey that a more holistic view on the benefits of pretraining

and self-supervision in medical imaging along the lines of the present study is important. To

summarize, in absence of large unlabeled domain-specific data that would allow for self-super-

vised pretraining, we see numerous benefits in favor of using self-supervised pretrained mod-

els on ImageNet as starting point for finetuning on domain-specific data, which we put as a

general recommendation.
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