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Abstract 

Proteins perform their functions by folding amino acid sequences into dynamic structural ensembles. Despite the 
important role of protein dynamics, their complexity and the absence of efficient representation methods have 
limited their integration into studies on protein function and mutation fitness, especially in deep learning 
applications. To address this, we present SeqDance, a protein language model designed to learn representation of 
protein dynamic properties directly from sequence alone. SeqDance is pre-trained on dynamic biophysical 
properties derived from over 30,400 molecular dynamics trajectories and 28,600 normal mode analyses. Our 
results show that SeqDance effectively captures local dynamic interactions, co-movement patterns, and global 
conformational features, even for proteins lacking homologs in the pre-training set. Additionally, we showed that 
SeqDance enhances the prediction of protein fitness landscapes, disorder-to-order transition binding regions, and 
phase-separating proteins. By learning dynamic properties from sequence, SeqDance complements conventional 
evolution- and static structure-based methods, offering new insights into protein behavior and function. 

Keywords: protein language model, molecular dynamics, normal mode analysis, deep learning, computational 
biology. 

 

Introduction 

Deep learning has achieved considerable success in predicting various protein attributes such as structure (e.g., 
AlphaFold1, 2 and RoseTTAfold3), function, stability, localization, and interactions. A central challenge in 
developing effective deep learning models is choosing a representation that allows models to interpret and learn 
from easily. The simplest form of representation, one-hot encoding of amino acids, is unbiased and rooted in the 
idea that a protein's sequence determines its properties. Yet, one-hot encoding often underperforms due to its 
simplicity. To overcome this, researchers have introduced more informative representations incorporating amino 
acid physicochemical properties, structural features, evolutionary profiles, and, more recently, embeddings from 
deep learning models. We generally classify these representations into two categories: evolution-based and 
biophysics-based4. 

Evolution-based representation (EBR) introduces extra information of protein homologs in other species that 
experience similar selective pressures. A major source of EBR is multiple sequence alignment (MSA), which 
proves particularly valuable for identifying functional sites5, pathogenic mutations6, and predicting 3D structures1, 

2. Recently, protein language models (pLMs) like ESM1,27, 8, ProtTrans9, and ProGen10 have emerged as powerful 
tools for generating implicit EBR. Trained in an unsupervised manner on large-scale protein sequence datasets, 
pLM has been shown to effectively memorize conserved patterns during the pre-training process11-15. pLM 
provides a computationally efficient alternative to MSA and has been successfully applied to various biological 
questions, including predicting 3D structures (e.g., ESMFold7), predicting signal peptides16, and even generating 
proteins10. However, the effectiveness of EBR relies on the quality and quantity of sequenced homologs. For 
instance, the prediction confidence scores from protein structure predictors are directly related to the number of 
homologous sequences1, 7. As a result, EBR is less effective for rapidly evolving viral proteins, immune proteins, 
and proteins from under-studied species such as extremophiles11, where homologous sequences are either sparse 
or highly divergent. Moreover, evolutionary profiles are consequences of functional protein behaviors rather than 
their causes (Figure 1A). Overreliance on EBR might bias the model toward the conservation pattern. For example, 
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EBR-based pathogenic mutation predictors perform worse when evaluated solely on conserved or unconserved 
regions, as they can achieve good performance by simply predicting mutations in conserved regions to be 
pathogenic and those in unconserved regions to be benign.  

Biophysics-based representation (BBR), primarily derived from protein structures, avoids the limitations of EBR 
and typically maintains uniform performance across the entire protein space. Predicting protein behaviors from 
BBR aligns with the idea that sequence determines structure, which in turn dictates function (Figure 1A). 
Although the experimental determination of protein structures has historically been time-consuming and resource-
intensive, recent advancements such as AlphaFold1, 2, RoseTTAfold3, and ESMFold7 have revolutionized static 
protein structure prediction, enabling proteome-wide analyses. BBR has been applied to a variety of biology 
questions. For example, predicted structures have been used to predict mutation effects and functional and binding 
sites17. The AAindex18 database, which compiles a number of physicochemical properties of amino acids derived 
from structures in the Protein Data Bank19 (PDB), is widely utilized in bioinformatics tools. Similarly, PScore20 
and LLPhyScore21 leverage physical features from PDB structures to identify phase-separating proteins22. 
Additionally, there have been initiatives to integrate biophysical properties into protein language models (pLMs). 
For example, ProSE4 was trained to predict masked residues, contacts within static structures, and structural 
similarities, while METL23 was developed to predict 55 biophysical properties derived from Rosetta models of 
mutated structures. 

However, current BBRs are derived exclusively from static protein structures. These structural snapshots lack 
crucial thermodynamic information and overlook the topological landscape of catalysis, allostery, and other long-
range interactions. Moreover, static structures cannot describe the dynamic structure ensembles of intrinsically 
disordered regions (IDRs), which constitute more than 30% of the human proteome24. Despite lacking fixed 
structures, IDRs use their inherent flexibility to mediate essential biological processes such as signal transduction, 
transcriptional regulation, and phase separation25, 26.  

To capture dynamic protein properties, molecular dynamics (MD) simulations are widely employed for both 
ordered structures and IDRs. MD simulations utilize Newton's laws to update atomic coordinates based on 
interaction forces, generating ensembles of structures over a specified simulation time. However, all-atom MD 
simulations are computationally intensive, often requiring at least a week of GPU time to simulate a single protein 
at the microsecond scale. To mitigate computational demands, coarse-grained MD simulations simplify protein 
residues into pseudo-atoms and use specialized force fields to model interactions at the reduced scale. Another 
commonly used approach is normal mode analysis27, 28 (NMA), which describes protein vibrations (normal modes) 
around equilibrium conformations. Normal modes with varying frequencies represent distinct behaviors, with 
low-frequency modes capturing global movements. While these methods enable large-scale studies of protein 
dynamics, the data generated from MD and NMA are often high-dimensional and irregularly shaped. One current 
challenge is to represent these dynamic properties in a meaningful and efficient manner that can be integrated into 
deep learning models. 

Here, we introduce SeqDance, a pLM designed to provide representation of protein dynamic properties. We first 
collected over 30,400 protein dynamics trajectories for ordered structures, membrane proteins, and IDRs, along 
with performing over 28,600 NMAs for proteins in the Protein Data Bank (PDB). From this dataset, we extracted 
rich residue-level and pairwise dynamic features and pre-trained SeqDance to predict these features from protein 
sequences (Figure 1B). SeqDance effectively learned both local and global dynamic properties in the pre-training 
process. These properties can be easily retrieved from SeqDance by inputting a protein sequence and can be 
applied to various biological questions. We also demonstrate that SeqDance provides informative dynamic 
embeddings for proteins that lack homologs in the pre-training set. 

 

Results 

Pre-training SeqDance with dynamics properties of over 59,000 proteins. 

We collected high-resolution and low-resolution protein dynamics data to pre-train SeqDance (Table 1). High-
resolution dynamics data includes experimental data and all-atom molecular dynamics (MD) simulation 
trajectories from ATLAS29, GPCRmd30, and PED31 (Table 1). ATLAS contains all-atom MD structure ensembles 
for over 1,500 representative non-membrane proteins, each simulated for 100 nanoseconds with three replicates. 
GPCRmd includes more than 500 MD simulations of G-protein-coupled receptors, with most proteins simulated 
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for 500 nanoseconds in three replicates. PED provides ensembles of disordered proteins from both experiments 
and MD simulations, from which we filtered 382 ensembles. Since high-resolution dynamics data is limited, we 
augmented SeqDance pre-training with low-resolution dynamics data, including coarse-grained MD trajectories 
and normal mode analysis (NMA). We processed coarse-grained structure ensembles of 28,058 human disordered 
regions from IDRome24 and converted them to all-atom trajectories32 (see Methods for details). We also conducted 
NMA27, 28, 33 for over 28,600 representative structures in the PDB, covering single proteins, antibodies, and protein 
complexes34 (Table 1). 

 
Figure 1: Information flow in protein study, representative protein language models, and SeqDance pre-training.  

A. Illustration of the "sequence - structure ensemble - function - evolution" paradigm. Sequences are the basic elements of 
proteins that fold into structural ensembles to perform specific functions. Functionally important regions exhibit conserved patterns 
across species. B. Representative protein language models (pLMs) and their information sources. ESM1, ESM2 and other pLMs 
trained in unsupervised manners memorize co-evolution information and conserved motifs during pre-training, thus implicitly 
relying on evolution data. ProSE was trained to predict masked residues, pairwise contact in static structures, and structure 
similarity. METL was trained to predict 55 biophysical terms calculated from static structures. SeqDance was trained on protein 
dynamic features from molecular dynamics (MD) simulations, experimental data, as well as normal mode analysis (NMA) of static 
structures. C. Diagram of the SeqDance pre-training process. SeqDance is a transformer encoder that takes a protein sequence 
as input and predicts residue-level and pairwise dynamic features extracted from over 30,400 MD trajectories and 28,600 NMA. 
For a protein of length L, the residue embedding dimension is L×480. A linear layer is added to this embedding to predict residue-
level features. Pairwise embeddings derived from residue embeddings are concatenated with attention maps to predict pairwise 
features. After pre-training, the residue embeddings can be applied to study biological questions; users can also fine-tune all 
parameters for downstream tasks. 
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Table 1: the protein dynamic datasets used to pre-train SeqDance 
 

 Source Description Number Method 

High resolution 

ATLAS Ordered structures in PDB (no 
membrane proteins) 1,516 All-atom MD, 3*100 ns 

PED Disordered regions 382 Experiment and others 

GPCRmd Membrane proteins 509 All-atom MD, 3*500 ns 

Low resolution 
IDRome Disordered regions 28,058 Coarse-grained MD, convert 

to all atom 

Proteinflow Ordered structures in PDB 28,631 Normal mode analysis 

 

We extracted residue-level and pairwise dynamic features that describe the distribution of features in structure 
ensembles (Figure 1B, Supplementary Table 1, A detailed explanation can be found in the Discussion). Residue-
level features include root mean square fluctuation (RMSF), surface area, eight-class secondary structures, and 
dihedral angles (phi, psi, chi1) which describe the rotation angles around bonds in the protein backbone and side 
chains. Pairwise features include the correlation of Cα movements and frequencies of hydrogen bonds, salt bridges, 
Pi-cation, Pi-stacking, T-stacking, hydrophobic interactions, and van der Waals interactions. For NMA data, we 
categorized normal modes of each structure into three frequency-based clusters. For each cluster, we calculated 
residue fluctuation and pairwise correlation maps (see Methods for details, Supplementary Table 1).  

SeqDance is a transformer encoder model with 12 layers and 20 heads per layer, with 35 million parameters in 
total. SeqDance takes protein sequences as input and predicts residue-level and pairwise dynamic features (Figure 
1B). For residue-level feature prediction, we added a linear layer to the last layer’s residue embeddings. For 
pairwise feature prediction, we transformed the residue embeddings into pairwise embeddings, concatenated them 
with SeqDance's attention maps, and applied a linear layer to the concatenated matrix (A detailed explanation can 
be found in the Discussion). We randomly sampled approximately 95% of the protein dynamics data to pre-train 
SeqDance. We adjusted the weights for different data sources and features in the loss function (see Methods for 
details). 

After pre-training, we observed a strong correlation between the weights for predicting co-movement in MD and 
NMA (Supplementary Figure 1). Specifically, the Pearson correlation between that for MD and low-frequency 
normal modes was 0.75, suggesting that NMA closely mimics dynamic movements captured by MD simulations. 
This finding supports the use of NMA to augment SeqDance pre-training. 

Next, we evaluated whether SeqDance had effectively learned protein dynamic properties. Specifically, we 
examined if SeqDance's self-attention mechanisms captured dynamic interactions and residue co-movement, and 
whether SeqDance embeddings encoded information about protein conformational properties. 

 

SeqDance’s attention captures local dynamic residue interactions and co-movement. 

Transformer model employs the self-attention mechanism35 to update the representation for each word by 
aggregating information from other words, with attention values representing the relationship between words (in 
this context, amino acid residues). Given that SeqDance's attention maps were utilized to predict dynamic 
interactions and residue co-movement, we investigated whether SeqDance's attention effectively capture these 
properties. 

To analyze pairwise feature-related attention, we first selected the top 10 attention heads with the highest weights 
for predicting interactions out of 240 total attention heads (Supplementary Figure 1A). We then compared their 
averaged attention values with pairwise features across 620 held-out proteins from ATLAS, GPCRmd, PED, and 
IDRome. Interacting pairs were classified as either static interactions (observed in the first frame of the structural 
ensemble) or dynamic interactions (observed in subsequent frames). A subset of non-interacting control pairs was 
also sampled with the same distance distribution to account for the distance dependence of attention values. As 
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shown in Figure 2A, SeqDance assigned significantly higher attention values to both static and dynamic 
interactions compared to non-interacting pairs (pairwise t-test P-values: 1.3e-52 for static interactions, 1.4e-22 for 
dynamic interactions). Moreover, we observed a significant positive correlation between attention values and 
interaction frequency (Figure 2B). For residue co-movement, we conducted the same analysis and found a 
significant positive relationship between attention values and pairwise movement correlations in held-out proteins, 
with a median Spearman correlation of 0.75 (Figure 2C). The same analysis on held-out NMA data also revealed 
significant positive correlations between attention values and co-movements from low- and medium-frequency 
normal modes (Supplementary Figure 2). These results underscore SeqDance's ability to capture biologically 
meaningful dynamic interactions and co-movements across different datasets. 

Figure 2. SeqDance’s attention mechanism captures local dynamic residue interactions and co-movement. 
A. Comparison of SeqDance’s attention values assigned to static interactions (present in the first frame of the structure ensemble), 
dynamic interactions (formed in subsequent frames), and a subset of non-interacting control pairs that matched to the distance 
distribution of interacting pairs. Each dot represents one of 620 held-out proteins. The legend on the right shows the numbers of 
proteins in three clusters with different sequence identities to training sequences. P-values on the x and y axes were calculated 
using pairwise t-tests. B-C. Distributions of Spearman correlation between SeqDance’s interaction-related attentions and 
interaction frequency (sum of nine types of interactions) (B), and between SeqDance’s co-movement related attentions and 
pairwise movement correlations (C), of three clusters of held-out proteins described above. P-values were calculated using a 
one-sample t-test with the null hypothesis that the mean value is zero. D-K. Visualization of pairwise features and related attention 
maps for a structured protein (PDB ID 4KOQ) and a disordered region (Q9BT43_112_218), including the interaction frequency 
(sum of nine types of interactions) map (D, H), the averaged attention map of the top 10 heads with the highest weights for 
interaction prediction (E, I), the residue movement correlation map (F, J), and the averaged attention map of the top 10 heads 
with the highest weights for co-movement prediction (G, K). 

 

To assess SeqDance’s ability to capture pairwise relationships beyond homologous sequences, we categorized 
620 held-out proteins based on their similarity to training sequences: 99 proteins had at least 50% sequence 
identity (with at least 80% coverage) to at least one training sequence, 67 proteins had at least 20% sequence 
identity (with at least 60% coverage), and 454 proteins were dissimilar to any training sequence. As shown in 
Figure 2A-C, the observed trends persisted for dissimilar held-out proteins. Additionally, we visualized two 
dissimilar held-out proteins: a structured protein (PDB ID: 4KOQ) from the ATLAS dataset (Figures 2D-G), and 
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a disordered region (Q9BT43_112_218) from the IDRome dataset (Figures 2H-K). In both cases, we observed 
consistent patterns between interaction-related attention and interaction maps, as well as between co-movement-
related attention and residue movement correlations. Overall, these findings indicate that SeqDance can capture 
biologically meaningful relationships beyond homologous sequences. 

 

SeqDance learns global protein conformation properties in the pre-training process. 

Next, we investigated whether SeqDance embeddings encode additional protein conformational properties not 
included in the pre-training tasks. Since these dynamic features cannot be directly extracted from the embeddings, 
we applied supervised learning by using the mean-pooled embeddings for linear regression on protein 
conformational properties. 

We first evaluated the models on structural ensembles of 18,415 Intrinsically disordered regions (IDRs) from 
coarse-grained MD simulations36 (see Methods for data filtering). These simulations employed a distinct IDR 
dataset and force field compared to IDRome. For evaluation, we used the average values of end-to-end distance, 
asphericity, and radius of gyration (𝑅!) within the ensembles. End-to-end distance reflects flexibility and motion 
range, asphericity quantifies deviation from a spherical shape, and 𝑅! measures the distribution of atoms around 
the protein’s center of mass, indicating its compactness. To account for protein length, we used normalized values. 
The training and test sets were split using a 20% sequence identity cutoff to prevent information leakage. As 
shown in Figure 3A-C, SeqDance outperformed METL, ProSE, and ESM2 in predicting normalized end-to-end 
distance, asphericity, and 𝑅!  of IDRs, with performance improving as training progressed. To further assess 
SeqDance's performance on proteins without homologs in the pre-training dataset, we removed IDRs with over 
20% sequence identity (with at least 60% coverage) to any SeqDance training sequence. SeqDance maintained its 
performance on these dissimilar IDRs (Supplementary Figure 3), demonstrating its generalization capability. 

For ordered proteins, obtaining conformational properties from structure ensembles is more challenging. 
Therefore, we used normalized 𝑅! values (see Methods for details) of over 11,000 static monomer structures in 
the PDB from the paper37. Since SeqDance was trained on NMA of nearly all representative PDB structures34, we 
did not exclude sequences with homologs in the SeqDance pre-training dataset. Using the same evaluation method 
as for disordered regions, we found that SeqDance outperformed METL, ProSE, and ESM2 in predicting 
normalized 𝑅! of ordered proteins, with performance improving as training progressed (Figure 3D). 

Overall, these results demonstrate that SeqDance learns both local and global dynamic properties for ordered 
proteins and IDRs in the pre-training process. We hypothesized that the dynamic features encoded in SeqDance 
embeddings are informative for understanding protein behavior and function. Thus, we further applied SeqDance 
to specific biological questions. 

Figure 3. SeqDance embeddings encode global protein conformational properties. 

Performance comparison of embeddings from SeqDance, METL, ProSE, and ESM2 in predicting the normalized end-to-end 
distance of disordered proteins (A, two ESM2 models overlapped), asphericity of disordered proteins (B), normalized radius of 
gyration (𝑅!) of disordered proteins (C) and ordered proteins (D). The training and test split was 6:4 with a 20% sequence identity 
cutoff. The results presented are the averages of ten repeats. The x-axis represents the number of pre-training steps for 
SeqDance, “Final” on the x-axis represents the evaluation of released weights of the other methods, and 200k steps for SeqDance. 
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Figure 4. SeqDance enhances the understanding of protein fitness landscapes. 
A. Comparison of SeqDance, GearNet, ESM2, and ESM_IF1 embeddings in predicting mutation effects on protein folding stability. 
The training and test sets were divided randomly, and four-fold cross-validation was employed to determine Spearman correlation 
and mean squared error. The plots show the means and standard deviations of evaluation metrics across ten independent repeats. 
B. Performance comparison on individual proteins. Each dot represents the mean Spearman correlation for each protein in 
random split across ten repeats. The Pearson correlations were used to quantify the relationship between the performances of 
two methods across diverse proteins. The histograms illustrate the distribution of Spearman correlations for individual proteins 
for different methods. 

 

SeqDance enhances understanding of protein fitness landscapes. 

We first applied SeqDance to predict protein fitness landscapes38, which are essential for interpreting disease 
mutations and guiding protein engineering. Mutation effects are determined by the residue context and the 
differences between wild-type and mutant amino acids39. Previous methods have leveraged sequence and 
structural contexts to study mutation effects6, 39-44, based on the hypothesis that mutations affecting linear motifs 
or 3D structures can alter protein behaviors. It is important to recognize that while evolution-based representations 
are effective at predicting mutation effects, they reflect the consequence, not the cause, of mutation effects. 
Previous studies have emphasized the role of protein dynamics as a causal context in understanding mutation 
effects45-49. For instance, mutations in residues that co-move with the catalytic core can disrupt its dynamics, 
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thereby affecting enzyme activity. We hypothesized that SeqDance can help predicting protein fitness by 
providing additional protein dynamic-based representations. 

We used mutations on 20,955 residues from 412 proteins in a protein folding stability dataset38 (including both 
designed and PDB proteins, see Methods for details). SeqDance was compared with several published methods 
for predicting stability-related residue context (mean ddGs of all mutations on each residue), including GearNet50, 
a static structure-based pre-trained model that provides structural context; ESM27 that offers implicit evolution-
based representations; and ESM_IF151, an inverse folding algorithm that provides evolution-based representations 
conditioned on structures. The training and test sets were divided either randomly or by protein. Our analysis 
revealed that, when evaluated individually, SeqDance’s dynamic-based representations consistently outperformed 
GearNet's static structure-based representations, suggesting that static structures alone miss important information; 
ESM2 achieved the best overall performance, consistent with the fact that evolution-based representation is most 
effective in predicting mutation effects39 (Figure 4A, Supplementary Figure 4A). Although both ESM2 (35M) 
and ESM2 (650M) performed better than SeqDance individually, the combination of SeqDance and ESM2 (650M) 
outperformed the combination of two ESM2 models (Supplementary Figure 4B, SeqDance and ESM2 (35M) 
have the same embedding dimensions). Moreover, integrating SeqDance embeddings significantly improved the 
performance of all methods. Combining the results in Figure 4A and Supplementary Figure 4A, for GearNet, 
Spearman correlation increased by 13%, and mean squared error (MSE) decreased by 72%; for ESM_IF1, 
Spearman correlation rose by 12% and MSE dropped by 29%; for ESM2 (35M), Spearman correlation improved 
by 1.7% and MSE decreased by 13%; and for ESM2 (650M), Spearman correlation increased by 3.2% and MSE 
decreased by 14% (Figure 4A). Overall, these results indicate that SeqDance provides additional information that 
complements exiting methods. 

We further analyzed SeqDance's performance on individual proteins (see Methods for details). First, we observed 
that SeqDance's performance was relatively orthogonal to both ESM2 and ESM_IF1 while it had a slightly higher 
correlation to GearNet, reflecting some overlap in structural context information (Figure 4B). In contrast, the 
performances of two ESM2 models, as well as between ESM2 and ESM_IF1, were highly correlated, due to their 
shared reliance on evolution-based information. Second, SeqDance performed particularly well on designed 
proteins (Supplementary Figure 5A) and showed comparable performance on PDB proteins, regardless of whether 
they had homologs in the pre-training set. (Supplementary Figure 5B), highlighting its generalizability across 
different protein types.  

 

Finetuning SeqDance for protein disorder region-related tasks. 

Intrinsically disordered regions (IDRs) are flexible protein segments essential for signal transduction, transcription 
regulation, and phase separation25. Since IDRs are less conserved than ordered regions, evolution-based predictors 
typically perform well in IDR prediction, while sequence-only predictors often underperform52. Given that 
SeqDance captures the local and global dynamics of IDRs, we evaluated its potential for IDR-related tasks. 

Using the Critical Assessment of Intrinsic Disorder (CAID2) benchmark52, which includes four tasks—the NOX 
IDR (missing residues in PDB), the PDB IDR (disordered residues in PDB), binding regions undergoing disorder-
to-order transitions, and linker regions—we fine-tuned SeqDance on the training data of methods evaluated in 
CAID2 to prevent data leakage (see Methods for details). SeqDance achieved the best performance in predicting 
disorder-to-order transition binding regions and ranked among the top-performing sequence-only predictors for 
NOX IDR (Figure 5, Supplementary Figure 6). These results highlight that SeqDance learns valuable dynamic 
properties of IDRs, offering competitive performance as a sequence-only predictor for IDR-related tasks. 
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Figure 5. Fine-tuning SeqDance for predicting intrinsically disordered regions (IDRs) related tasks. 

Performance comparison for predicting the binding regions (A) and NOX IDRs (missing residues in PDB structures) (B) in Critical 
Assessment of Intrinsic Disorder (CAID2). Performance is evaluated using the area under the Receiver Operating Characteristic 
curve (auROC) and the area under the Precision-Recall curve (auPRC). The auROC and auPRC for other methods were obtained 
from the CAID2 website. Methods evaluated in CAID2 are classified into four categories: sequence-only methods using features 
from single sequences; conservation profile-based methods; protein language model (pLM)-based methods; and methods with 
unknown inputs. 

 

SeqDance augmented structure and sequence features in predicting phase-separating proteins. 

Phase separation is a crucial cellular process in which biomolecules assemble into membrane-less organelles to 
regulate cellular organization, metabolism, and stress responses53. Phase-separating proteins (PSPs) are driven by 
dynamic interactions between IDRs and/or interacting surface patches on ordered regions. Previous methods, such 
as PhaSePred-8feat54 (sequence-based) and SSUP55 (static structure-based), have been used to predict PSPs. We 
hypothesized that the dynamic properties learned by SeqDance could improve PSP prediction.  

Using the datasets of PSPs with IDR (IDR-PSPs) and without IDR (noIDR-PSPs) established by Hou et al.55, we 
found that SeqDance embeddings significantly enhanced the performance of both PhaSePred and SSUP in 
predicting IDR-PSP and noIDR-PSP. The improvement was particularly notable for static structure-based SSUP: 
for IDR-PSP, SeqDance embeddings increased the area under the receiver operating characteristic curve (auROC) 
by 9.6% (from 0.729 to 0.799) and the area under the precision-recall curve (auPRC) by 36.1% (from 0.244 to 
0.332). For noIDR-PSP, SeqDance embeddings improved SSUP's auROC by 14.5% (from 0.712 to 0.815) and 
the auPRC by 89.0% (from 0.073 to 0.138). 
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Figure 6. SeqDance augmented structure and sequence-based features in predicting phase-separating proteins. 
A-D. Performances for predicting intrinsically disordered phase-separating proteins (IDR-PSPs) and non-intrinsically disordered 
phase-separating proteins (noIDR-PSPs) using PhaSePred or SSUP as input, either alone or combined with SeqDance 
embeddings. The results presented are the averages of ten independent repeats. 

 

Discussion 

In this work, we started from the information flow in protein study (Figure 1A) and developed SeqDance, a novel 
protein language model (pLM) pre-trained on dynamic properties derived from molecular dynamics (MD) 
simulations and normal mode analysis (NMA). SeqDance captures both local dynamic interactions, co-movement, 
and global conformational features, complementing traditional evolution- and static structure-based methods. Our 
results demonstrate that SeqDance improves predictions in several biological questions, including protein fitness 
landscapes, intrinsically disordered regions (IDRs), and phase-separating proteins (PSPs). 

In the pre-training process, we did not directly train SeqDance on full structure ensembles due to the immense 
size of the dataset (over 50 million frames) and the complexity of modeling entire ensembles. In fact, we are still 
unable to predict a static structure from a single sequence without relying on conservation profiles, let alone 
predict entire structure ensembles. To address this, we used simplified dynamic feature descriptors such as the 
mean, standard deviation, and interval distribution of ensemble-derived properties. Prior study has demonstrated 
that mean values from structure ensembles provide significantly more information than static structural values56. 
This strategy enables SeqDance to learn from simplified but informative representations of protein dynamics, 
without the overwhelming computational demand of full ensemble modeling. 

During SeqDance pre-training, we employed attention maps and pairwise embeddings to predict dynamic 
interactions and residue co-movements (Supplementary Figure 1). Although using attention maps increases 
memory usage, it does not slow down training speed. The use of attention maps in predicting these features helped 
constrain SeqDance to focus on interacting and co-moving residue pairs, reducing random or irrelevant attention. 
This approach is crucial for learning biophysically meaningful representations and improves the model's ability 
to extrapolate to unseen proteins. Besides, using attention maps and pairwise embeddings as input can capture the 
distinct characteristics of pairwise features: the mean value of interaction feature depends on sequence length, as 
the maximum number of interactions a residue can form is fixed, while the mean value of correlation feature is 
length-independent. By combining length-dependent attention values (which sum to one after SoftMax operation 
in attention calculation) with length-independent pairwise embeddings, the model can effectively capture both 
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pairwise features. In Supplementary Figure 2, we observed a negative correlation between attention values and 
co-movements derived from high-frequency normal modes. We attribute this to the smaller absolute values of 
high-frequency features, which contribute less to the training loss, thus underrepresented in the pre-training 
process. 

SeqDance embedding effectively captures global conformational properties of both ordered and disordered 
proteins, which are essential for understanding protein shape and flexibility. In comparison, METL23 
underperformed in predicting the radius of gyration (𝑅!) for ordered proteins (Figure 3A), despite having 𝑅! 
prediction as a pre-training task. This may be due to an overabundance of pre-training tasks and limited training 
set diversity. ProSE4 performed well in predicting the conformational properties of ordered regions but struggled 
with disordered regions, likely because its pre-training focused on contact prediction in ordered PDB structures. 
SeqDance, on the other hand, was pre-trained on dynamic properties of both ordered and disordered proteins, 
providing a comprehensive representation of protein dynamics. Evolution-based representations from ESM27 also 
performed well, as conformational properties are conserved among homologs36. 

SeqDance enhances understanding of protein fitness landscapes by providing dynamic context information that 
complements traditional evolution-based and static structure-based representations. SeqDance embedding 
significantly improved GearNet's ability to predict protein fitness, this suggests that static structures alone miss 
important information, consistent with the fact that static structure-based predictors often underperform in 
mutation-related tasks40. Combining representations from static and dynamic structure ensembles could be 
especially valuable for studying novel or rapidly evolving proteins where evolutionary profiles are limited or 
misleading. Further studies are needed to validate these findings across diverse experimental and clinical mutation 
datasets. 

Furthermore, SeqDance yielded promising results in tasks related to IDRs and PSPs. SeqDance excelled in 
predicting disorder-to-order binding regions, likely because these regions exhibit specific dynamic patterns in the 
MD simulation that SeqDance captures in pre-training. In PSP prediction, SeqDance improved performance by 
integrating dynamic features with existing structure- and sequence-based features. The greater enhancement seen 
with SSUP55 compared to PhaSePred54 may be due to PhaSePred already utilizing biophysical features, such as 
predicted pi-interactions and physicochemical properties, which have overlap with information encoded in 
SeqDance embeddings. 

We envision several directions to further improve SeqDance. First, expanding protein dynamic data: while high-
resolution dynamic data is scarce compared to the vast number of sequenced proteins, lower-resolution data, like 
coarse-grained MD simulations and NMA, have proven valuable. More dynamic data from these faster methods 
could be generated to further pre-train SeqDance. Second, incorporating more detailed features that can describe 
higher-order relationships and time dependence. Third, scaling up model size: as seen in deep learning field, larger 
models with more parameters could capture more complex relationships. 

In conclusion, SeqDance represents a significant advancement in the field of protein representation. By learning 
representations of protein dynamics, we gain valuable insights into protein behaviors that were previously reliant 
on extensive MD simulations. This capability has the potential to reduce our dependence on computationally 
expensive MD simulations, offering a more efficient approach to study protein behaviors and functions.  

 

Data and code availability 

All the training data and evaluation data are publicly available. Codes used in model training and analysis can be 
found at GitHub: https://github.com/ShenLab/SeqDance, we also provide the pre-trained weight at 
https://zenodo.org/records/13909695. 
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Methods 

Molecular dynamic data collection and processing 

The ATLAS29 database (v1) contains 1,516 molecular dynamics (MD) simulations, each conducted using the 
CHARMM36m force field for 100 ns with three replicates. Trajectory files comprising 10,000 frames were 
downloaded. The Protein Ensemble Database31 (PED) provides conformational ensembles for intrinsically 
disordered proteins, primarily derived from experiments, with some from simulations or predictions. All available 
ensembles were retrieved, and sequences shorter than 16 residues were excluded. GPCRmd30 is a community-
driven database of MD simulations of G-protein-coupled receptors (GPCRs), with most proteins simulated for 
500 ns in three replicates. IDRome24 contains conformational ensembles of human disordered regions generated 
via the coarse-grained residue-level CALVADOS model. All coarse-grained trajectories were downloaded and 
converted to all-atom trajectories using cg2all32. All data was obtained in January 2024. For each trajectory, the 
first 20% of frames were discarded (except for IDRome, where the first 10 frames were excluded as described in 
the original paper24). All frames were aligned to the first frame based on Cα atoms using MDTraj57, and trajectories 
of the same protein were merged. 

 

Feature extraction from MD trajectories 
GetContacts (https://getcontacts.github.io) was used to extract nine types of interactions from MD trajectories: 
backbone-to-backbone hydrogen bonds, side-chain-to-backbone hydrogen bonds, side-chain-to-side-chain 
hydrogen bonds, salt bridges, Pi-cation, Pi-stacking, T-stacking, hydrophobic interactions, and van der Waals 
interactions. Default definitions of these interactions were used as described in 
https://getcontacts.github.io/interactions.html. For each residue pair, nine interaction frequencies were calculated, 
resulting in a matrix with the size of L×L×9 for a protein of length L. 

MDTraj57 was used to extract residue-level features. Root mean square fluctuations (RMSF) were calculated using 
mdtraj.rmsf; Eight-class secondary structure was determined using mdtraj.compute_dssp; Surface area per residue 
was computed using the Shrake-Rupley algorithm (mdtraj.shrake_rupley(mode='residue')), and the mean and 
standard deviation of surface areas were recorded; For dihedral angles, mdtraj.compute_phi, mdtraj.compute_psi, 
and mdtraj.compute_chi1 were employed to extract the phi, psi, and chi1 angles, respectively. Dihedral angles 
across all frames were partitioned into 12 bins (30° intervals), and the percentage of frames falling into each bin 
was calculated for each residue. Collectively, this yielded a residue-level feature matrix of size L×(1+8+2+3×12) 
for a protein of length L, the dimension corresponds to RMSF (1), secondary structure (8), surface area (2), and 
dihedral angle distributions (3×12), respectively. 

For the calculation of pairwise residue movement correlations, we first computed the covariance matrix for the x, 
y, and z coordinates of all Cα atoms: 

𝐶"# =
1

𝑝 − 1'(𝑋$ − 𝑋* +
%

$&'

(𝑋$ − 𝑋* +
( (1) 

Where 𝑝 is the number of trajectory frames, 𝑋$ represents the positions (x, y, z) of all Cα atoms in frame	𝑖, and 𝑋0 
is the mean position of the Cα atoms over all frames. The matrix 𝐶"# has a dimension of 3L×3L where L is the 
number of Cα atoms (protein length). 

To reduce this 3D covariance matrix to residue level, the trace over the spatial dimensions is taken: 
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𝐶# = 𝑇𝑟),+,,(𝐶"#) (2) 

Here, 𝐶# is the reduced covariance matrix, and the diagonal of 𝐶# corresponds to the squared fluctuation of L 
residues. The correlation matrix 𝑅# is then computed by normalizing the covariance matrix: 

𝜎$ = 6𝐶#,$$ (3) 

𝑅#,$- =
𝐶#,$-
𝜎$𝜎-

(4) 

where 𝐶#,$-  is the covariance between residues i and j, 𝜎$  and 𝜎-  are their respective standard deviations. This 
correlation matrix describes the linear relationship between the displacements of residue pairs, independent of 
their absolute motion magnitude. 

 

Normal mode analysis 

For normal mode analysis (NMA), PDB structures in ProteinFlow34 were used. Structures containing sequence 
gaps or exceeding 5,000 residues were excluded. Terminal missing residues were removed. For the 
20230102_stable dataset, MMseqs258 clustering at 90% sequence identity yielded 26,670 representative structures. 
For the 20231221_sabdab dataset, MMseqs2 clustering at 100% identity resulted in 2,097 structures. Structures 
of complexes were also used, ‘X’ was added between chains for MMseqs2 clustering. 

NMA was conducted using the Gaussian Network Model (GNM)27 and the Anisotropic Network Model (ANM)28, 
both implemented in ProDy33. These models represent macromolecules as elastic node-and-spring networks, 
where Cα atoms serve as nodes, and springs connect residues within a defined cutoff distance. A distance-
dependent spring force constant was applied as in ProDy website 
(http://www.bahargroup.org/prody/tutorials/enm_analysis/gamma.html): for Cα atoms 10-15 Å apart, a unit force 
constant was used; for atoms 4-10 Å apart, a force constant twice as strong was used; and for atoms within 4 Å 
(i.e., connected residue pairs), a force constant 10 times stronger was employed. GNM, which models isotropic 
motion, was used to compute residue-level features, while ANM, which captures anisotropic motion, was 
employed to calculate pairwise features. 

After building the elastic network (Kirchhoff matrix for GNM or Hessian matrix for ANM), normal modes were 
computed by eigenvalue decomposition. Eigenvalues (𝜆.) and eigenvectors (𝑣.) were used to describe the 
collective motions of residues in mode m. The individual contribution of each mode is the proportion of the inverse 
eigenvalue to all modes: 

1/𝜆.
∑ 1/𝜆/0
/&1

(5) 

Where M is the number of total modes (L-1 for GNM and 3L-6 for ANM, L is protein length). Modes of GNM 
and ANM were first ranked by contribution, then partitioned into three ranges separately. The ranges were selected 
such that the first set of modes accounts for ~33% of the dynamics, the second set for ~33–66%, and the final set 
for ~66–100%. This ensures that the slow, intermediate, and fast modes are separated. 

For each set of modes, the mean-square fluctuation (MSF) of each residue was calculated from GNM modes as: 

MSF$ =>
𝑣.$2

𝜆.
.

(6) 

Where 𝑣.$ is the eigenvector component corresponding to mode m and residue i, and 𝜆. is the corresponding 
eigenvalue. This calculation was repeated for three mode ranges. 

The residue covariance matrix was calculated using ANM modes. Firstly, the covariance matrix with the size of 
3L×3L was first computed as: 

𝐶"# = 𝐕Λ31𝐕( (7) 
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Where V is the matrix of eigenvectors and Λ31 is the inverse diagonal matrix of eigenvalues. To reduce the 3D 
covariance matrix to the residue-level, we used the same method as described in the calculation of pairwise residue 
movement correlations (equation 2-4). Readers can also read the paper59 for the calculation of pairwise correlation 
in NMA. 

 

SeqDance model architecture 

SeqDance is a transformer encoder based on the ESM27 architecture of 35 million parameters, using the same 
sequence tokenizer. All parameters were randomly initialized as described in the paper7. ESM2 weights were not 
used to avoid incorporating conservation information implicitly. The model consists of 12 layers with 20 attention 
heads each and employs rotational positional embeddings. The final embedding dimension is 480. A linear layer 
is added to predict residue-level features from the final residue embedding. For pairwise feature prediction, we 
compute pairwise embeddings from residue embeddings as: 

𝑃$- = 𝑊1𝐸$ +𝑊2𝐸- (8) 

where 𝐸$  and 𝐸-  represent the final residue embeddings of residues i and j, and 𝑊1  and 𝑊2  are learnable 
transformation matrices. The pairwise embeddings 𝑃$-, along with attention values from 240 attention heads, are 
passed through a linear layer to predict pairwise features.  

 

Pre-training procedure 

The model was implemented and trained using PyTorch60 (version 2.2.0). SeqDance was pre-trained on over 95% 
of all data, and randomly selected 600 proteinflow34 PDB structures, 500 IDRome trajectories, 75 ATLAS 
trajectories, 25 GPCRmd trajectories, and 20 PED ensembles were held out for evaluation. The batch size was set 
to 72, and parameters were updated every 10 batches: one batch from high-resolution data, four batches from 
IDRome, four batches from the 20230102_stable dataset, and one batch from the 20231221_sabdab dataset. 
Different weights were assigned to training data from different sources in the loss function, after adjustments to 
the batch numbers, considering the different resolutions and relative confidences: 0.5 for high-resolution data, 0.2 
for IDRome, and 0.2 for NMA data. Due to limited computational resources, we did not experiment with adjusting 
the batch size or the weights assigned to different data sources. 

The model was optimized using the AdamW optimizer, with a peak learning rate of 1×10⁻⁴, an epsilon value of 
1×10⁻⁸, and betas of (0.9, 0.98). A weight decay of 0.01 was applied, and the learning rate followed a schedule 
with 5,000 warm-up steps, followed by a linear decay to 1×10⁻⁵. A dropout rate of 0.1 was applied, and the 
maximum input sequence length was set to 512. For sequences longer than this, random peptides of 512 residues 
were selected in each epoch. Training lasted for a total of 200,000 updates, for ten days, using six Nvidia A6000 
GPUs. 

 

Loss function 

Mean squared error (MSE) was used as the loss function for SeqDance pre-training. For secondary structure and 
dihedral angles, where the values for each feature sum to one, the predicted values were first passed through a 
softmax function to ensure they sum to one before calculating the MSE. The loss for pairwise interaction 
frequency was calculated as: 

𝐿$4567895$:4 =
1
2IMSE

(𝑝 − 𝑓|𝑓 = 0) +MSE(𝑝 − 𝑓1/"P𝑓 > 0+R (9) 

Where 𝑝 is the prediction from SeqDance and 𝑓 is the interaction frequency. As most interaction frequencies are 
zero, we balanced the MSEs for interacting and non-interacting pairs. Additionally, some interacting pairs exhibit 
interaction frequencies close to zero, which are biologically meaningful but are treated similarly to zero in the 
MSE. To address this, we applied the transformation 𝑓1/3 to scale up low-frequency interactions. 

SeqDance was pre-trained on multiple tasks of varying scales. To balance the losses across these tasks, we first 
used a baseline model that predicts the mean value for each feature of each protein to calculate the training set 
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losses. These baseline losses were then employed to adjust the weights for each task. Since pairwise features are 
more abundant than residue-level features, we set the pairwise-to-residue loss ratio at 4:1. The loss weights for 
solvent accessible surface area (SASA), root mean square fluctuation (RMSF), secondary structure, and dihedral 
angles were set to be equal. Additionally, the cumulative loss for nine interaction features was balanced against 
the pairwise correlation loss, maintaining a 4:1 ratio. Due to limited computational resources, we did not 
experiment further with adjusting these ratios. 

 

Evaluation of attention map 

For the evaluation of attention maps, we selected the top 10 attention heads based on their weights from the 
pairwise feature prediction layer (Supplementary Figure 1A). To compute the sequence identity of the held-out 
sequences compared to the training set, we used MMseqs2 for iterative best-hit identification. The following 
command was applied: mmseqs search qDB tDB rDB tmp --start-sens 1 --sens-steps 3 -s 7 -a 1. The coverage of 
the training sequences was calculated based on the held-out proteins. 

 

Evaluation of Conformational Properties for IDRs and Ordered Structures 

We analyzed normalized conformational properties from MD trajectories of over 40,000 IDR sequences36. IDRs 
with a normalized 𝑅! value below 1 were excluded, as they were considered too compact to be truly disordered. 
Additionally, only IDRs ranging from 32 to 320 residues in length were included, resulting in 18,415 IDRs for 
downstream analysis. MMseqs2 search was used to identify homologous sequences in SeqDance's training set as 
in the evaluation of attention map. IDRs with over 20% sequence identity (at least 60% coverage) to any SeqDance 
training sequence were removed to further assess SeqDance's performance on dissimilar sequences. 

𝑅! values for PDB structures were downloaded from the paper37, and normalized as described in the paper37: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑅! =
𝑅!
𝐿'.=

(10) 

Where L is the sequence length. 

For both IDRs and ordered structures, MMseqs2 easy-cluster was used to cluster sequences for supervised 
learning with parameters: --min-seq-id 0.2 -c 0.6 --cov-mode 0. Sequences from 60% of randomly selected clusters 
were used as the training set, and the remaining sequences formed the test set. To ensure a fair comparison, we 
used the first 200 principal components of the embedding from each method. Linear regression 
(sklearn.linear_model.LinearRegression with default parameters) was applied to predict conformational 
properties. This process was repeated five times, and the mean values of the evaluation metrics were reported to 
assess the model's performance. 

 

Evaluation of protein folding stability dataset 

For the evaluation of the protein folding stability dataset38, single-point replacement mutations from the dataset 
“Tsuboyama2023_Dataset2_Dataset3_20230416.csv” were utilized. Residues with at least 10 mutations that have 
“ddG_ML” values were used, resulting in a final dataset of 20,955 residues from 412 proteins. The mean value 
across all mutations was calculated for each residue for evaluation. AlphaFold-predicted structures were 
downloaded and used as input for both ESM_IF151 and GearNet (pre-trained weight in mc_gearnet_edge.pth was 
used)50 models.  

A multi-layer perceptron (MLP) with two layers was employed to predict the average mutation effect, utilizing 
the MLPRegressor from scikit-learn with parameters set to hidden_layer_sizes=(10,) and max_iter=1000. Four-
fold cross-validation was conducted to evaluate model performance, with the validation repeated ten times. The 
predicted values from all ten repeats in random split were saved to calculate the performance for each protein. It 
should be noted that the performance of individual proteins was not solely based on training and testing within 
that protein, the training process also included other proteins.  
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Evaluation of intrinsically disordered regions and phase separation proteins 

For the tasks involving intrinsically disordered regions (IDRs), the datasets provided by CAID252 were used for 
evaluation. For the PDB, NOX, and linker prediction tasks, SeqDance was fine-tuned and validated on DisProt 
(version: DisProt_2023_12)61. We removed DisProt entries where the protein appeared in the CAID2 test set or 
could not be matched to the UniProt sequence. For the binder task, SeqDance was fine-tuned and validated on the 
training sequences from two methods (MoRFchibi62 and DeepDISOBind63) that were also evaluated in CAID2. 
For fine-tuning, we applied a balanced cross-entropy loss function. The peak learning rate was set to 1×10⁻⁴, with 
a warm-up phase of 1,000 steps and a dropout rate of 0.3. Model weights were saved every 100 steps, and the best 
model based on validation set performance was used for evaluation. 

For the tasks of predicting phase-separating proteins (PSPs), the dataset from the paper55 was used, and separate 
models were trained and tested for noIDR-PSP and IDR-PSP categories. Two-fold random negative protein 
samples were used. The XGBoost Python package (https://xgboost.readthedocs.io/) was used for training the 
models. The following parameters were applied: the objective function was set to binary logistic classification 
(objective: binary:logistic), the maximum tree depth was set to 3 (max_depth: 3), the learning rate was 0.3 (eta: 
0.3), and the evaluation metric was the area under the curve (AUC) (eval_metric: auc). The models were trained 
for 100 boosting rounds (num_round: 100).  
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Supplementary Table 1: residue-level and pairwise dynamic features 
 

Method Feature Dimension Description Package 

NMA Correlation map L×L×3 
Slowest N modes accounting for 33%, 66%, 
and 100% of overall dynamics in ANM (for 

correlation map) or GNM (for residue 
fluctuation) 

ProDy 

Residue fluctuation L×3 

MD 

Correlation map L×L×1 Correlation of Cα movement mdtraj 

Interaction map L×L×9 

hydrogen bonds (side-chain-to-side-chain, 
backbone-to-backbone, backbone-to-side-
chain), salt bridges, hydrophobic contacts, 
π-cation contacts, π-stacking contacts, T-

stacking contacts, Van der Waals 

GetContacts 

Residue fluctuation L×1 Root mean squared fluctuation (RMSF) mdtraj 
Surface Area L×2 Mean and standard deviation mdtraj 

Secondary Structure L×8 Percentage of eight DSSP assignments mdtraj 
Dihedral angles: phi, 

psi, chi1 L×3×12 Percentages in 12 angle ranges mdtraj 

NMA: normal mode analysis 
MD: molecular dynamics 
L: protein length 
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Supplementary Figure 1. Analysis of SeqDance's pairwise feature prediction head. 

A. The weight of the pairwise feature prediction linear layer. For a protein of length L, the pairwise features’ 
dimension is L×L×13, comprising nine types of interactions, one movement correlation from molecular dynamics 
(MD) data and three movement correlations from normal mode analysis (NMA) data. The input for the pairwise 
feature prediction head consists of pairwise embeddings (dimension L×L×78) derived from residue embeddings 
and attention maps (dimension L×L×240). Given the different absolute values of pairwise embedding and 
attention map, we plotted them separately. 

B. Pearson correlation between weights of prediction heads of different features, representing the row-wise 
correlation of the data shown in panel A. 
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Supplementary Figure 2. Correlation between attention values and pairwise movement correlation in 
normal modes of three frequency ranges.  

Held-out proteins were clustered into three clusters based on the sequence identity to training sequences. P-values 
were calculated using a one-sample t-test with the null hypothesis that the mean value is zero.  
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Supplementary Figure 3. SeqDance embeddings encode global conformational properties of disordered 
regions. 

Performance comparison of embeddings from SeqDance, METL, ProSE, and ESM2 in predicting the normalized 
end-to-end distance (two ESM2 models overlapped), asphericity, normalized radius of gyration of disordered 
proteins. The training and test split was 6:4 with a 20% sequence identity cutoff. The results presented are the 
averages of ten repeats. Disordered proteins with over 20% sequence identity (with at least 60% coverage) to any 
SeqDance training sequences were removed from the analysis. The x-axis represents the number of pre-training 
steps for SeqDance, "Final" on the x-axis represents the evaluation of released codes of the other methods, and 
200k steps for SeqDance. 
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Supplementary Figure 4. SeqDance’s overall performance on the protein stability dataset. 

A. Comparison of SeqDance, GearNet, ESM2, and ESM_IF1 embeddings in predicting mutation effects on 
protein folding stability. The training and test sets were divided by protein, and four-fold cross-validation was 
employed to determine Spearman correlation and mean squared error. The plots show the means and standard 
deviations of evaluation metrics across ten independent repeats. 

B. Comparison of the combination of SeqDance and ESM2 (650M) and the combination of ESM2 (35M) and 
ESM2 (650M) in predicting mutation effects. The training and test sets were divided either randomly or by protein, 
and four-fold cross-validation was employed to determine Spearman correlation and mean squared error (MSE). 
The violin plots show the distribution of evaluation metrics across ten independent repeats. 
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Supplementary Figure 5. SeqDance performance on individual proteins. 

A. Performance comparison between designed proteins and PDB proteins across different methods. 

B. Comparison of SeqDance’s performance on PDB proteins categorized by sequence similarity to the pre-training 
dataset. Among the PDB proteins, 117 have at least 50% sequence identity (with at least 80% coverage) to at least 
one SeqDance training sequence, 14 have at least 20% sequence identity (with at least 60% coverage), and 50 are 
unrelated. The orange horizontal line represents a Spearman correlation of 0.5. 
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Supplementary Figure 6. Fine-tuning SeqDance for predicting intrinsically disordered regions (IDRs) 
related tasks. 

Performance comparison for predicting PDB IDRs (disordered residues in PDB structures) (A) and linker regions 
(B) in Critical Assessment of Intrinsic Disorder (CAID2). Performance is evaluated using the area under the 
Receiver Operating Characteristic curve (auROC) and the area under the Precision-Recall curve (auPRC). The 
auROC and auPRC for other methods were obtained from the CAID2 website. Methods evaluated in CAID2 are 
classified into four categories: sequence-only methods using features from single sequences; conservation profile-
based methods; protein language model (pLM)-based methods; and methods with unknown inputs. 
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