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Serum and glucocorticoid-regulated kinase 1 (SGK1) is a Ser/Thr protein kinase involved in
regulating cell survival, growth, proliferation, and migration. Its elevated expression and
dysfunction are reported in breast, prostate, hepatocellular, lung adenoma, and renal
carcinomas. We have analyzed the SGK1 mutations to explore their impact at the
sequence and structure level by utilizing state-of-the-art computational approaches.
Several pathogenic and destabilizing mutations were identified based on their impact
on SGK1 and analyzed in detail. Three amino acid substitutions, K127M, T256A, and
Y298A, in the kinase domain of SGK1 were identified and incorporated structurally into
original coordinates of SGK1 to explore their time evolution impact using all-atom
molecular dynamic (MD) simulations for 200 ns. MD results indicate substantial
conformational alterations in SGK1, thus its functional loss, particularly upon T256A
mutation. This study provides meaningful insights into SGK1 dysfunction upon
mutation, leading to disease progression, including cancer, and neurodegeneration.

Keywords: serum/glucocorticoid regulated kinase 1, deleterious mutations, single amino acid substitutions,
molecular dynamics simulation, essential dynamics

INTRODUCTION

Cancer progression is the result of malfunction at multiple cellular levels, including abnormal gene
expression, metabolic conditions, abnormal signal transduction, epithelial to mesenchymal
transition, genetic, and epigenetic alterations (Sekido, 2010; Mahmood et al., 2017; Lu et al.,
2020). Alterations at genomic and proteomic levels cause significant changes to protein structure
and function, resulting in the onset and progression of many complex diseases, such as cancer and
neurodegeneration (Baak et al., 2003). Serum/glucocorticoid regulated kinase 1 (SGK1) is a member

Edited by:
Paolo Marcatili,

Technical University of Denmark,
Denmark

Reviewed by:
Edoardo Milanetti,

Sapienza University of Rome, Italy
Timir Tripathi,

North Eastern Hill University, India

*Correspondence:
Abdelbaset Mohamed Elasbali

aeelasbali@ju.edu.sa
Md. Imtaiyaz Hassan
mihassan@jmi.ac.in

Specialty section:
This article was submitted to

Biological Modeling and Simulation,
a section of the journal

Frontiers in Molecular Biosciences

Received: 24 September 2021
Accepted: 19 October 2021

Published: 03 November 2021

Citation:
AlAjmi MF, Khan S, Choudhury A,
Mohammad T, Noor S, Hussain A,

Lu W, Eapen MS, Chimankar V,
Hansbro PM, Sohal SS, Elasbali AM

and Hassan MI (2021) Impact of
Deleterious Mutations on Structure,

Function and Stability of Serum/
Glucocorticoid Regulated Kinase 1: A

Gene to Diseases Correlation.
Front. Mol. Biosci. 8:780284.

doi: 10.3389/fmolb.2021.780284

Frontiers in Molecular Biosciences | www.frontiersin.org November 2021 | Volume 8 | Article 7802841

ORIGINAL RESEARCH
published: 03 November 2021

doi: 10.3389/fmolb.2021.780284

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.780284&domain=pdf&date_stamp=2021-11-03
https://www.frontiersin.org/articles/10.3389/fmolb.2021.780284/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.780284/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.780284/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.780284/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.780284/full
http://creativecommons.org/licenses/by/4.0/
mailto:aeelasbali@ju.edu.sa
mailto:mihassan@jmi.ac.in
https://doi.org/10.3389/fmolb.2021.780284
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.780284


of the AGC family of Serine/Threonine protein kinases that
regulate the survivability and growth of cells (Lang et al.,
2010). It is involved in regulating cell cycle progression,
proliferation, differentiation and apoptosis, and is associated
with the onset and progression of various cancers in humans
(Sang et al., 2021). Its elevated expression and dysfunction are
linked with multiple pathological conditions, including
hypertension, ischemia, diabetic neuropathy, trauma, and
neurodegenerative diseases (Eapen et al., 2019). SGK1 is
acutely regulated at various levels, including gene transcription
and post-translationally by phosphorylation and ubiquitination.
It is expressed in several tissues, including the spleen, thymus,
bone marrow, breast, prostate, and oral epithelial (Eapen et al.,
2019).

SGK1 remains under strict transcriptional control even with
various external stimuli such as cell stress and hormones, such as
glucocorticoids and mineralocorticoids (O’Keeffe et al., 2013). It
is encoded by the SGK1 gene localized on chromosome 6 in the
region 6q23 consisting of 148,867 bases with 14 coding exons
(Waldegger et al., 1998). The protein comprises 431 amino acids
with a molecular mass of ∼49 kDa (Zhao et al., 2007). The active
site (proton acceptor) and ATP binding site of SGK1 are located
at Asp222 and Lys127, respectively, (Zhao et al., 2007). Most of
the SGK1 structure has a common kinase fold, but the structure
near its active site is unique compared to other kinases, and the
main difference is near the ATP binding site (Zhao et al., 2007).
This is crucial for its functional activity, and any structural
alteration at the ATP binding site can cause SGK1
dysfunction, which may lead to disease progression.

A single amino acid substitution or naturally occurring
mutations are associated with several complex diseases,
including cancers. Deleterious mutations at the genomic and/
or proteomic level have significant impacts on human health.
These mutations in SGK1, especially near its active site region,
especially at ATP binding site, cause significant structural
alterations and its dysfunction, which may promote disease
progression (Snyder et al., 2002; Boehmer et al., 2003; Henke
et al., 2004). There are numerous reports of several naturally
occurring mutations in SGK1, but their roles in pathogenesis at
the structural level have not been widely studied (Kobayashi
and Cohen, 1999; Snyder et al., 2002). Biophysics-based
computational methods are valuable in studying the impact of
mutations on protein structure and function, and there is intense
current interest in such studies (Amir et al., 2019a; Amir et al.,
2019b; Choudhury et al., 2021; Habib et al., 2021).

Several methods have been developed to identify deleterious or
disease-causing mutations within human protein sequences.
These methods predict the deleteriousness of an amino acid
substitution on the basis of physicochemical properties,
structure, and cross-species conservation analysis (Ng and
Henikoff, 2006; Chun and Fay, 2009). Identification of
deleterious mutations in an individual has the potential to
influence both the prevention and personalized interventions
in disease.

Here, we performed an in-depth analysis of genomic and
proteomic alterations in SGK1 using state-of-the-art
computational approaches (Choudhury et al., 2021; Habib

et al., 2021; Umair et al., 2021). We examined a range of
mutations and characterized their deleterious impact on the
structure and function of SGK1, which may contribute to
disease development and progression, such as cancer and
neurodegeneration.

MATERIALS AND METHODS

Retrieval of Data
The FASTA sequence of SGK1 was taken from the UniProt
(UniProt ID: O00141). A list of mutations was taken from the
dbSNP (Sherry et al., 2001) and Ensembl (Hubbard et al., 2002)
databases and an extensive literature survey. Data redundancy,
including duplicate variants, was removed during preprocessing.
The structural coordinates of human SGK1 were retrieved from
the RCSB Protein Data Bank (PDB), using the PDB identifier
2R5T (Berman et al., 2000).

Sequence-Based Prediction
PolyPhen2
PolyPhen-2 is a sequence-based mutation analysis tool, and it
takes the FASTA sequence as input (Ramensky et al., 2002).
Through conservative and physical properties, this tool calculates
the potentially deleterious effects of a mutation. It incorporates
multiple sequence alignments, a machine learning-based
classifier, and optimized for high-throughput NGS data
analysis. It provides the Position-Specific Independent Count
(PSIC) score for the mutant protein and estimates the score
difference with the native protein. If the PSIC score is higher than
0.09, then the amino acid substitution is considered deleterious.
PolyPhen-2 is accessible through http://genetics.bwh.harvard.
edu/pph2/(Adzhubei et al., 2010).

PROVEAN
PROVEAN estimates the impact of mutations on the protein’s
functionality based on the delta alignment score (Choi and Chan,
2015). For a deleterious mutation, the PROVEAN score is less
than −2.5, whereas for neutral non-synonymous mutations,
scores are greater than −2.5. The PROVEAN web server
comprises three tools, PROVEAN Protein, PROVEAN Protein
Batch, and PROVEAN Genome Variants. The PROVEAN
Protein Batch tool also returns the result of SIFT tool and can
process a large number of protein variants. The input for this
function takes amino acid substitutions and supports public
protein identifiers such as NCBI RefSeq, UniProt, and
Ensembl. PROVEAN is accessible through http://provean.
jcvi.org/.

SIFT
The SIFT tool considers sequence homology and physical
properties of amino acid residues to determine whether the
mutation is deleterious or not. It also depends on the
evolutionary conservation of amino acids in protein families.
The highly conserved amino acids tend to be intolerant to
substitutions, and most of the less conserved ones tolerate the
substitutions. (Kumar et al., 2009). The SIFT score for a non-
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tolerable mutation is less than or equal to 0.05 (Ng and Henikoff,
2003; Kumar et al., 2009). SIFT is accessible through http://sift.
jcvi.org/.

FATHMM
FATHMM is another web-based application for predicting the
functional impact of mutations on proteins (Shihab et al., 2013).
The coding variants can be analyzed for inherited diseases, such
as cancer and complex diseases. FATHMM comprises two
algorithms: weighted and unweighted, of which we used the
unweighted algorithm for predicting the ontology of inherited
diseases. The unweighted method searches conserved residues
through an approach based on fundamental amino acid
probabilities. The weighted method assigns pathogenicity
weights that correlate with disease-causing amino acids, with
sequence conservation found through searching Hidden Markov
models (HMMs). FATHMM is accessible through http://
hathmm.biocompute.org.uk.

Structure-Based Prediction
mCSM
mCSM is a web-based predictor that uses a graph-based approach
to predict the impact of missense mutations on protein stability
(Pires et al., 2014). The predictive models in mCSM are trained
with the atomic distance patterns of different amino acid residues.
mCSM covers a wide range of proteins for disease association of
mutations. The calculated mCSM score (ΔΔG) for a destabilizing
mutation is less than 0. mCSM is accessible through http://biosig.
unimelb.edu.au/mcsm/.

SDM
SDM is a webserver that calculates the change in protein stability
upon mutation. The protein stability change for a mutation is
calculated using PDB coordinate files and environment-specific
amino acid substitution tables (Overington et al., 1992;
Pandurangan et al., 2017). If the ΔΔG is higher than 0 for a
mutation, SDM predicts it as a destabilizing mutation. SDM is
accessible through http://marid.bioc.cam.ac.uk/sdm2.

MAESTROweb
MAESTROweb is a stability prediction tool that takes a multi-
agent approach to estimate the free energy difference between the
native and mutant protein. It accepts PDB coordinates as input
and uses a machine learning-based approach to calculate the
change in the Gibbs free energy value. If the MAESTRO score is
less than 0 for a mutation, then it predicts that the mutation is
destabilizing (Laimer et al., 2015). MAESTROweb is accessible
through https://pbwww.che.sbg.ac.at/maestro/web.

PremPS
PremPS evaluates the effects of mutations on protein stability by
estimating the quantitative change in unfolding Gibbs free energy
(Chen et al., 2020). Predictions are based on the protein structure.
The PremPS tool uses a random forest (RF) regression scoring
function. The tool was trained with experimental data of
unfolding Gibbs free energy changes (ΔΔG) for 5,296
mutations from 131 proteins. To improve the performance of

the tool and the datasets, reverse mutations are also incorporated.
For the forward mutations (ΔΔGwt→mut), three-dimensional
structures of native proteins were taken from the PDB. The
BuildModel module of FoldX is used for reverse mutations
(ΔΔGmut→wt). The PremPS energy function is based on 10
evolutionary and structure-based features which belong to six
categories. PremPS is accessible through https://lilab.jysw.suda.
edu.cn/research/PremPS/.

Disease Phenotype Prediction
SNPs and GO
SNPs and GO is an SVM-based webserver that identifies
pathogenic non-synonymous substitutions (Capriotti et al.,
2013). It uses gene ontology (GO) annotations to classify a
missense variant into a disease-related or neutral variant. It
requires amino acid sequence/SwissProt code, GO terms, and
amino acid substitutions as input. An SNPs and GO score of more
than 0.5 indicates a disease-causing mutation, and this tool also
gives the result of PANTHER and PhD-SNP. SNPs and GO is
accessible through https://snps.biofold.org/snps-and-go/snps-
and-go.html.

PON-P2
PON-P2 is a machine learning-based web tool for analyzing
mutations in human proteins (Niroula et al., 2015). It divides
the non-synonymous substitutions into pathogenic, neutral and
unknown classes. It can proficiently and rapidly analyze large-
scale variant datasets. For identifier submission, it takes mutation
and one of Ensembl or Entrez, UniProtKB identifiers. PON-P2
uses evolutionary sequence conservation and physical and
biochemical properties of a protein to calculate the potential
pathogenicity of mutations. GO annotations and functional
annotations are also used based on their availability. PON-P2
is accessible through http://structure.bmc.lu.se/PON-P2/.

PMut
PMut is one of the webservers for disease phenotype
identification. PMut consists of a network-based classifier, and
datasets are obtained from the manually created Swiss-Prot
database. Physiochemical properties and sequence conservation
are two of the main features of the tool. If the PMut score for a
mutation is greater than 0.5, the mutation is considered
pathogenic. The updated version also has the option to
generate new predictors for specific protein families. It also
has a database of the pre-estimated predictions (López-
Ferrando et al., 2017). PMut is accessible through http://mmb.
irbbarcelona.org/PMut.

Analysis of Conserved Residues
ConSurf is a webserver for determining the degree of
conservation of amino acids in a specific position using
multiple sequence alignment (Ashkenazy et al., 2016). The
evolutionary conservation of residues is critical to understand
the function and structure of a protein. The ConSurf score
extends from 1 to 9, where 1 signifies the least conserved
residue, and 9 is for highly conserved residues. ConSurf is
accessible through https://consurf.tau.ac.il/.
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Analysis of Aggregation Propensity
SODA is a web-based application used in studying the
aggregation, disorder, helix, and strand propensity that occur
due to single nucleotide polymorphisms. It is used to study
various mutations, including insertion, deletion, substitution,
and duplication in a protein molecule. The SODA score is
based on the difference in solubility between the native and
mutant protein (Paladin et al., 2017). SODA is accessible
through http://protein.bio.unipd.it/soda/. The bioinformatics
approach and various applications used are illustrated in
Figure 1.

MD Simulations
Systems Preparation and Simulation Protocol
The native structure of SGK1 downloaded from the PDB was
processed for deleting crystallographic water and adding missing
atoms. The mutant models were prepared by utilizing the
mutagenesis wizard of PyMOL (DeLano, 2002). All-atom MD
simulation and potential energyminimization were performed on
SGK1 and its mutants models using the Amber 18 software. The
Amber 18 forcefield FF14SB was applied during the simulation
protocol. Energy-minimized structures of all four systems (one
wild-type (WT) and three mutants) were taken as the starting
coordinates for the simulation. All four structures were solvated
in a cubic TIP3P water model. Periodic boundary conditions were
set so that the number of particles, pressure, and temperature are
constant during the simulation. The simulation setups were
neutralized by adding an appropriate number of counterions.
The temperature at 300 K was retained by employing the
Berendsen algorithm with a coupling time of 0.2. All atoms of
the protein systems were placed at a distance of 10 Å from the
edges of the cubic box. The minimized simulation setups were
then equilibrated for 1,000 ps at 300 K via the position-restrained
simulation approach for solvation. The equilibrium setups were
then subjected to final MD runs for 200 ns. The Particle mesh
Ewald (PME) method was employed for long-range Coulombic
interactions. The SHAKE algorithm was used to determine the

bond lengths between hydrogen atoms, with a time step of 2 fs
(Andersen, 1983).

Post-Dynamic Trajectory Analysis
The generated trajectories were analyzed using the conventional
utilities of the Amber 18 suite to obtain RMSD, RMSF, Rg, SASA,
intramolecular hydrogen bonding, secondary structure analysis,
distance cross-correlation matrix and principal component
analysis (PCA). The structural coordinates of all four systems
were collected for every 1 ps, and trajectory curves were
computed via the CPPTRAJ module (Roe and Cheatham,
2013) of Amber 18. The number of intramolecular hydrogen
bonds was defined based on a donor-hydrogen-acceptor angle
>90 nm and a donor-acceptor distance <3.9 nm. VMD
(Humphrey et al., 1996) was used for molecular visualization
of MD trajectories, and QtGrace was employed to generate plots
of MD results.

Dynamics of the Cross-Correlation Matrix
The dynamics of the cross-correlation matrix (DCCM) were
explored to determine coordinate aberrations and behaviors in
Cα atoms of SGK1 and its mutant models. The i and j cross-
correlation factors of Cα atoms can be calculated as:

Cij � <Δri.Δrj>
(<Δr2i > <Δr2j >)

1
2

(1)

where Δri,j is the movement of ith and jth atom average point and
angle braces indicated over the complete curves. Correlated
movements are denoted by Cij � 1; however, Cij � −1 is
supposed to be highly anti-correlated movements. The
divergence of atomic movements from 1 to −1 describes that i
and j movements are correlated and anti-correlated.

PCA
PCA is a valuable approach to explore conformational
movements in a protein (David and Jacobs, 2014). PCA
models atomic movements of protein conformation by
retaining dimensional reduction from simulated trajectories
(Naqvi et al., 2018; Amir et al., 2019b; Fatima et al., 2019;
Mohammad et al., 2019). We performed PCA through the
covariance matrix C, based on the atomic coordinates and
their corresponding eigenvalues (Papaleo et al., 2009). The
generation of positional covariance matrix C can be explained as:

Ci � < (qi − < qi > )(qj − < qj > )> (i, j � 1, 2, . . . , 3N) (2)

where qi and qj represent the Cartesian coordinates for the ith, jth

position of the Cα atom and N is the number of Cα atoms.

RESULTS

A set of 156 reported mutations were extracted from the dbSNP
and Ensembl databases. PubMed was also used to retrieve
mutations through a literature search. The identification of the
structural and functional impact of mutations on the SGK1

FIGURE 1 | Number of mutations reported in SGK1, extracted from the
dbSNP database.
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protein was performed step-by-step. All mutations were analyzed
through sequence-based and structure-based methods to define
deleterious mutations with high confidence. The sequence-based
approach included four web-based tools, PolyPhen2, PROVEAN,
SIFT and FATHMM, and the structure-based approach included
mCSM, SDM, MAESTROweb, and PremPS. These eight tools
separated deleterious/destabilizing mutations from stabilizing/
neutral mutations, along with those of unknown significance.
Further progression was made by analyzing the pathogenicity of
high confidence mutations obtained through the previous two
approaches. Pathogenicity of high confidence mutations was
predicted through SNPs and GO, PON-P2, and PMut web
servers. The distribution of different types of mutations in the
SGK1 is depicted in Figure 2.

Identification of Deleterious Mutations
The analysis includes multiple tools to generate more accurate
results by eliminating false Predictions. PolyPhen2, PROVEAN,
SIFT, and FATHMM were used as part of the sequence-based
approach. The SIFT web tool is based on the physical properties
of a protein and separates the mutations into tolerated and
intolerant substitutions. A higher tolerance score indicates a
lower impact of a mutation on the protein function and vice
versa (Ng and Henikoff, 2003).

PolyPhen-2 is another tool based on an iterative greedy
algorithm and classifies the mutations into three categories:
probably damaging (score >0.96), possibly damaging (score
>0.2 and <0.96), and benign (score <0.2). To improve
accuracy, two other tools PROVEAN and FATHMM tools
were used.

The substitutions which destabilize the structure of a protein
are generally involved in various diseases (Ng and Henikoff, 2001;
Petukh et al., 2015). The change in free energy during the
unfolding of a kinetically stable protein is described by the
ΔΔG value. Sometimes a single amino acid substitution in
proteins differentiates the free energy landscape between the
mutant and WT protein. This variance in the free energy
landscape is why a mutation affects the stability of a protein.
Thermodynamically, the energy difference between a folded and
unfolded protein can be considered as ΔG � Gu-Gf. The change
of protein stability (ΔΔG) and free energy landscape between
mutant (Gm) and WT (Gw) is considered as ΔΔG � Gm-Gw
(Bowker-Kinley et al., 1998). A more positive ΔΔG shows a
destabilizing mutation, whereas a negative ΔΔG indicates a
more stabilizing mutation (Quan et al., 2016). We used
various sequence-based predictors, i.e., PolyPhen2, PROVEAN,
SIFT, and FATHMM, predicted that out of the 156 mutations, 92
(58.97%), 106 (67.94%), 81 (51.92%), and 38 (24.34%) were
deleterious, respectively (Figure 3A), (Supplementary Table S1).

Structure-based predictors, i.e., mCSM, SDM,MAESTROweb,
and PremPS, combine machine learning-based and biophysics-
based approaches to determine the stability of mutants,
calculating their free energy. This analysis showed that 139
(89.1%), 85 (54.48%), 118 (75.64%), and 144 (92.3%)
mutations were destabilizing (Figure 3B; Supplementary
Table S2). Mutations predicted to be deleterious by at least
three different sequence-based and three different structure-
based tools were selected to increase confidence levels. Here,
134 mutations were selected and then analyzed for their
pathogenicity.

FIGURE 2 | Overview of representation of the computational approach used to identify the deleterious mutations in SGK1.
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Identification of Pathogenic Variations
The selected mutations were predicted for their pathogenicity
using the SNPs and GO, PON-P2, and PMut. From the 134
mutations, SNPs and GO, PON-P2, and PMut predicted 56, 40,
and 49 mutations as pathogenic, respectively, (Figure 4). From
these, only 20 mutations (P87R, K127M, R147W, L172W,
G181V, Y186C, R198P, L230P, T256A, T256D, T256E,
V278M, P296R, Y298A, I320N, D335V, R339W, G341A,
P371R, and P374L) were predicted as pathogenic from all the
prediction tools (Supplementary Table S3).

Analysis of Evolutionarily Conserved
Residues
The overall integrity of a protein structure mainly depends
on the conserved residues (Shakhnovich et al., 1996).
Analysis of amino acid residue conservation in a protein
structure is used to understand its importance and localized
evolution. The propensity of an amino acid residue to mutate is
subject to the degree of conservation (Ashkenazy et al., 2016).
The SGK1 structure was analyzed to obtain the degree of
conservation of each residue in the protein. The ConSurf
analysis shows that the amino acids forming the central

region of the SGK1 protein are highly conserved than those
at the N- and C-termini (Figure 5). This signifies that any
substitution in the central region of SGK1 will have more
tendency to instability and thus its dysfunction in many
diseases.

Analysis of Aggregation Propensity
The solubility of a protein highly impacts its functionality (Balch
et al., 2008; Ciryam et al., 2013). Diseases like Alzheimer’s (Thal
et al., 2015), amyloidosis (Knowles et al., 2014), and Parkinson’s
diseases (Knowles et al., 2014) are associated with protein
aggregation. SODA predicts that out of the 20, 8 mutations
decrease the solubility of the protein, whereas the other 12
increase the solubility of the SGK1 protein (Table 1). These
mutants have a high tendency to get aggregate, thus their
involvement in protein aggregation-associated disease
progression. Finally, based on the functional importance and
location of the mutations, three amino acid substitutions,
i.e., K127M, T256A, and Y298A, were selected and studied in
detail (Kobayashi and Cohen, 1999; Snyder et al., 2002; Boehmer
et al., 2003).

MD Simulations
Post-Dynamics Trajectory Analysis
MD simulations provide the platform for the comprehensive
analysis of the effect of mutations on protein structure. Based on
this, SGK1 mutations, i.e., K127M, T256A, and Y298A, were
investigated using 200 ns simulated trajectories. Global protein
stability and dynamics upon mutation were assessed through the
time evolution of RMSD values. We computed the RMSDs for all
four systems (SGK1 WT and its mutants) from the average
simulated structure and plotted them for analysis (Figure 6A).
All four systems achieved convergence after 60 ns of simulation.
We observed a significant structural deviation in the T256A
mutant compared with K127M, Y298A, and native SGK1. The
RMSD values for T256A had a deviation of ∼0.2 nm from native
SGK1 distributed throughout the simulation. The structures of
Y298A and K127M had lower RMSD values compared with
native SGK1. Although the mutants exhibited little deviation
except T256A in the RMSD from the native structure. However,
no substantial differences were observed in the structural snaps
except the loop and N-terminal helices of superimposed SGK1-
WT, K127M, T256A, and Y298A at every 50 ns during the
simulation (Supplementary Figure S1). We plotted the
dynamics of RMSD as the probability distribution function
(PDF), which also illustrated a significant shift of ∼5 Å in
T256A values with higher probability (Supplementary
Figure S2A).

To explore the structural flexibility of active SGK1 and its
mutants, we computed the RMSFs of each residue in the protein’s
backbone (Figure 6B). SGK1 showed random fluctuations
ranging from the N to the C termini, where the T256A
mutant showed the highest fluctuations in most residues.
Almost all residues in all systems exhibited a similar pattern
of fluctuation; however, major changes were observed in the
range of Q40-E120 amino acid residues. The mutant systems
showed higher fluctuation compared to the native structure. In

FIGURE 3 | Deleterious and neutral mutations in SGK1 predicted by (A)
sequence-based and (B) structure-based tools.
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FIGURE 4 | Pathogenic mutations in the SGK1 protein, identified using SNPs and GO, PON-P2, and PMut.

FIGURE 5 | Sequence Conservation analysis of the SGK1 protein using ConSurf web server.
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TABLE 1 | Aggregation propensity of SGK1 mutant proteins predicted through SODA.

Sequence Helix Strand Aggregation Disorder SODA Remark

Wild type 0.430 0.144 –4.596 0.084 N/A N/A
P87R –0.114 0.261 –1.542 0.311 –0.152 Less soluble
K127M –0.218 0.174 –33.564 –0.131 –33.926 Less soluble
R147W –3.366 2.907 –7.635 –0.009 –8.560 Less soluble
L172W 5.718 –4.082 –77.368 –0.05 –74.497 Less soluble
G181V –2.478 1.961 –1.198 –0.002 –2.202 Less soluble
Y186C 2.108 –1.510 –32.643 0.009 –31.684 Less soluble
R198P 0.048 -0.834 7.485 –0.044 6.452 More soluble
L230P –0.328 -0.405 4.512 0.013 2.851 More soluble
T256A 1.313 –0.680 0.973 –0.024 1.889 More soluble
T256D –0.074 –0.231 3.709 –0.028 3.356 More soluble
T256E 0.374 -0.186 0.886 -0.013 1.548 More soluble
V278M 0.318 -0.243 1.443 –0.014 1.193 More soluble
P296R 0.024 –0.021 4.544 –0.136 4.649 More soluble
Y298A –0.400 0.216 2.101 0.004 1.973 More soluble
I320N –0.040 -0.258 1.305 0.022 0.752 More soluble
D335V –0.252 0.123 –19.314 –0.283 –20.671 Less soluble
R339W 0.005 0.051 –3.193 –0.342 –4.114 Less soluble
G341A 1.228 –0.581 0.896 0.005 1.470 More soluble
P371R 0.912 –0.122 8.732 0.022 10.473 More soluble
P374L 0.894 –0.526 7.055 0.067 8.005 More soluble

FIGURE 6 | Structural dynamics of SGK1 WT (red), K127M (black), T256A (green), and Y298A (blue) mutants (A) RMSD, (B) RMSF, (C) Rg, and (D) SASA values
across Cα backbone in Å of WT, K127M, T256A, and Y298A mutants calculated after 200 ns of MD trajectories.
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the T256A mutant, notable changes in fluctuation were observed
for residues ∼50–80, whereas mutant K127M revealed several
significant higher fluctuations for residues ∼10–30, ∼60–70,
∼110–120, and ∼230–240. The major peaks in the RMSF

values of T256A were direct associated with the RMSD trend,
where it majorly deviated from its initial position.

Rg analysis exposes the structural compactness, stability, and
folding mechanism of a protein structure (Lobanov et al., 2008).
The folding mechanism and conformational behavior of the
SGK1 structure and its mutants were studied by examining
the time evolution of the Rg values. We computed the Rg
values of native SGK1, K127M, T256A, and Y298A systems
from the generated MD trajectories of 200 ns (Figure 6C).
The Rg of T256A and K127M exhibited the most deviation
compared to WT and Y298A, especially after 30 ns. The
Y298A structure also seems to be unfolded, showing several
random fluctuations in its Rg values. The K127M mutant
shows lower Rg thus higher compactness overall during the
simulations. The PDF analysis also suggested a higher increase
in the average Rg values of T256A than WT SGK1, K127M, and
Y298A suggested looseness of its conformational packing
(Supplementary Figure S2B).

The SASA of a protein molecule is the surface area in contact
with its surrounding solvent. The solvation power has a crucial
role in maintaining the overall structure and folding of a
protein. An inappropriate folded/unstable protein will not
perform the function it supposes to be. So, it becomes crucial
to study the folding behavior of the proteins upon mutations

FIGURE 7 | Intramolecular hydrogen bond analysis in SGK1 WT (red),
K127M (black), T256A (green), and Y298A (blue).

FIGURE 8 | Secondary structural contents of SGK1 WT; T256A; K127M; and Y298A mutants.
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while exploring their SASA and packing density. The solvation
power of a protein can be evaluated by explicit solvent models
implemented in conventional MD simulation approaches. The
time evolution of the SASA of native SGK1 and its mutant’s
structure was computed and plotted (Figure 6D). This shows
that T256A had higher SASA values than other systems, whereas
K127M displayed a somewhat lower SASA than the native
SGK1, agreeing with the Rg results. A clear shift in the
distribution of the T256A SASA values in the PDF plot
suggested a significant exposer of the buried residues of the

protein thus its conformational shift (Supplementary
Figure S2C).

Intramolecular Hydrogen Bond Analysis
Hydrogen bonds (H-bonds) are the most essential intramolecular
interactions within a protein molecule (Myers and Pace, 1996).
Since these interactions make major contributions to maintaining
the stability of the protein structure, exploring the function of
H-bonds offers crucial information about protein stability. Thus,
we studied the time evolution of the number of intramolecular
H-bonds in native and mutant SGK1 to understand structural
stability during the simulation (Figure 7). The hydrogen bonding
showed a little decrement in the number of intramolecular
H-bonds in mutants throughout the simulation, especially in
T256A.

Secondary Structure Analysis
The dynamics of secondary structure components in SGK1 and
its mutants were evaluated from the MD trajectories of 200 ns.
This further improves the understanding of the impact of

TABLE 2 | Percentage of amino acid residues participating in the secondary
structure of SGK1-WT, SGK1-T256A, SGK1-K127M, and SGK1-Y298A.

Protein system α-helix β-sheets 310-helix Turn Bend Other

SGK1-WT 25 24 4 10 13 21
SGK1-T256A 22 21 6 11 7 23
SGK1-K127M 28 25 7 16 11 24
SGK1-Y298A 27 26 4 12 9 20

FIGURE 9 | Dynamics cross-correlation matrices of SGK1-WT, K127M, T256A, and Y298A generated from 200 ns of MD trajectories.
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mutations on the secondary structure of SGK1 during the
simulations. The secondary structure components in SGK1,
i.e., α-helix, β-sheets and turns, were split into specific
residues for each time step. It was observed that the average
number of residues that participated in the formation of
secondary structure was somewhat decreased in T256A
(Figure 8). This reduction was related to increases in the
formation of turns and a slight decrease in α-helices and
β-sheets (Table 2).

Distance Cross-Correlation Matrix
Distance cross-correlation matrices were generated and evaluated
for the native SGK1 and K127M, T256A, and Y298A mutants to
determine correlated and anti-correlated movements in the
protein’s structure (Figure 9). It was observed that SGK1
scattered into some populations through positive and negative
correlations concerning residual movements. The movements in
native SGK1 were quite equal in both positive and negative
phases. In contrast, substantial variation was observed for
mutants, especially in K127M and T256A, with more negative
correlations. However, there was a slight positive correlation was
observed in the K127M, majorly between 50 and 100 amino acid
residues.

PCA
The structural dynamics of a protein’s structure can be
examined through its phase space performance. It has been
exploited to observe the collective motions and conformational
sampling of the proteins. PCA was performed using the essential
dynamics approach to explore the conformational sampling and
atomic motions of SGK1 and its mutants. PCA plots were
constructed with PCs based on the first two eigenvectors
(EVs) (Figure 10). The two-dimensional scatter plot reveals
the conformational activities employed by SGK1 and its
mutants (Figure 10A). At the same time, the PC1 motions in

SGK1 and its mutants were assessed (Figure 10B). The 2D
scatter plot (Figure 10A) indicates a prominent shift in the
collective movements of mutant systems.

DISCUSSION

This study employs a systematic computational approach based
on various biophysical algorithms to study the impact of
mutations on SGK1 structure and function for understanding
their association with multiple diseases, such as cancer and
neurodegeneration. Sequence and structure-based analyses
suggested that 134 mutations were deleterious out of a total of
156 mutations present in SGK1. Here, 20 mutations were found
to be pathogenic, predicted through the pathogenicity study.
Further, aggregation tendency analysis showed that only 8
mutations in SGK1 were less soluble and tended to form
aggregates. The ConSurf analysis showed that the amino acids
forming the middle segment of the SGK1 protein are highly
conserved than those at the N- and C-termini. Finally, based on
the functional importance (Kobayashi and Cohen, 1999; Snyder
et al., 2002; Boehmer et al., 2003) and location of the mutations,
three amino acid substitutions, i.e., K127M, T256A, and Y298A,
were selected and studied in detail. A detailed analysis of these
mutations was performed, with the help ofMD simulation studies
for 200 ns, followed by DCCM and PCA studies.

In MD simulations, the RMSD of T256A reflects a stability
change in the structure and indicates the deleterious impact of the
mutation on SGK1. A major deviation was also observed in the
K127M mutant intramolecularly at the 50 ns time step,
suggesting a significant impact of the mutation on the ATP
binding site. The RMSF analysis suggested that the residual
fluctuations in all the mutants deviated from the native
structure. These deviations in RMSFs reflect the impact of
deleterious mutations on the SGK1 structure. While evaluating

FIGURE 10 | Conformational projection of SGK1 and its mutants. (A) Principal component analysis (PCA) of SGK1 WT (red), K127M (black), T256A (green), and
Y298A (blue) mutants calculated after 200 ns of MD trajectories. (B) PC1 collective motions for the obtained predominant eigenvectors using PCA over the 200 ns MD
trajectories for SGK1 WT, K127M, T256A, and Y298A mutants of SGK1.
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the compactness of SGK1 and its mutants, the Rg showed reduced
stability of all three mutants during the course of simulations,
suggesting structural lethality in SGK1 resulting from the induced
mutations. The notable differences in SASA values of the mutants
revealed that relocation of amino acid residues from accessible
areas to buried regions, or vice versa, may take place and can
cause significant changes to protein stability. Together, these
explanations reveal that alterations in the SGK1 structure are
associated with the induced mutations.

The intramolecular hydrogen bond analysis showed that the
number of H-bonds in the mutants fluctuated compared with the
stable number of H-bonds in the native SGK1. This fluctuation in
H-bonds in the mutants indicates the impact of induced
mutations and their capability to obliterate H-bond formation
in SGK1. Secondary structure analysis showed that α-helices and
β-sheets were increased in SGK1 after K127M and Y298A
mutations, while a slight decrease was detected in the
percentage of bends. This residual reduction in α-helices and
β-strands of T256A suggests a loss in structure, thus its
dysfunction. In DCCM, the correlated and anti-correlated
movements in native SGK1 and Y298A appear to be more
similar compared to K127M and T256A, suggesting SGK1
altered activity in K127M and T256A mutants. PCA indicated
that K127M has highly positive correlated fluctuations on both
EVs, signifying its altered movements. Whereas with T256A and
Y298A mutants, noticeable positively correlated progress was
only observed on EV1. Overall, the PCA suggests that K127,
T256A, and Y298A mutations cause large instabilities in the
SGK1 structural movements during the simulation.

CONCLUSION

Single amino acid substitutions are among the most frequent
genetic variations associated with numerous diseases, including
cancer and neurodegeneration. Extensive analysis of amino acid
substitutions helps to understand disease mechanisms and find
effective treatments. Here, we have extensively analyzed the
effects of known mutations in SGK1 protein on its structure and
function. Sequence and structure-based analyses suggest that
out of 156 mutations present SGK1, 134 mutations were
deleterious and destabilizing. Here, 20 mutations were found
to be pathogenic, predicted through the pathogenicity study.
Further, aggregation tendency analysis showed that only 8
mutations in SGK1 were less soluble and tended to form
aggregates, resulting in protein dysfunction, thus might
involve in aggregation-associated disease progression. Finally,
based on the functional importance and location of the
mutations, three amino acid substitutions, i.e., K127M,
T256A, and Y298A, were selected and studied in detail. A
detailed analysis of these mutations was performed, with the
help of MD simulation studies for 200 ns, followed by PCA and
DCCM studies. MD simulations result suggested that the
pathogenic impact of these mutations may arise due to
structural modifications in SGK1. MD simulation analyses,
including RMSD, RMSF, Rg, SASA, DCCM, and PCA,

indicated that SGK1 undergoes substantial conformational
changes due to mutations, especially in the case of K127 and
T256A. This study provides a comprehensive understanding of
the mutations in SGK1 and their possible consequences for
disease progression.
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