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Acute leukemia is a common hematologic tumor with highly genetic

heterogeneity, and many factors are involved in the pathogenesis and drug-

resistance mechanism. Emerging evidence proves that E3 ubiquitin ligases

participate in the acute leukemic signaling pathways via regulating

substrates. This review summarized the E3 ligases which can affect the

leukemic signal. It is worth noting that the abnormal signal is often caused

by a deficiency or a mutation of the E3 ligases. In view of this phenomenon, we

envisioned perspectives associated with targeted agonists of E3 ligases and

proteolysis-targeting chimera technology. Moreover, we emphasized the

significance of research into the upstream factors regulating the expression

of E3 ubiquitin ligases. It is expected that the understanding of the mechanism

of leukemic signaling pathways with which that E3 ligases are involved will be

beneficial to accelerating the process of therapeutic strategy improvement for

acute leukemia.
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Introduction

Acute leukemia is a hematopoietic stem cell malignancy that is highly heterogeneous.

Most abnormally proliferating cells are primitive and naïve cells due to the stagnation of

leukocyte differentiation in the early stage. According to the type of cells involved, acute

leukemia can generally be divided into two major groups: acute myeloid leukemia (AML),

characterized by an uncontrolled clonal proliferation of abnormal myeloid stem/progenitor

cells, and acute lymphoblastic leukemia (ALL), characterized by abnormal proliferation and

aggregation of immature lymphocytes in the bone marrow and extramedullary tissue. The

common clinical manifestation of acute leukemia presented with anemia, hemorrhage, fever,

hepatomegaly, splenomegaly, or enlarged lymph nodes. Formal diagnosis has progressed to

dimensional of MICM. This means the combination of morphology, immunology,

cytogenetics, and molecular biology (Chang et al., 2021; Newell and Cook, 2021).

Leukemogenesis is the result of the interaction of various complex mechanisms, among

which chromosomal aberrations and gene mutations play an important role. Identifying the

molecular abnormalities contributes to formulating risk stratification and improving

treatment strategies. At present, some breakthroughs have been achieved, such as all-trans

retinoic acid targeted PML-RARα fusion gene and Imatinib targeted BCR-ABL fusion gene;

OPEN ACCESS

EDITED BY

Victor M. Bolanos-Garcia,
Oxford Brookes University,
United Kingdom

REVIEWED BY

Kevin Rouault-Pierre,
Queen Mary University of London,
United Kingdom
Hsiang Ying Sherry Lee,
Peking University, China

*CORRESPONDENCE

Lijun Zhang,
lzhang202003@163.com
Naijin Zhang,
njzhang@cmu.edu.com

SPECIALTY SECTION

This article was submitted to Cell
Physiology,
a section of the journal
Frontiers in Physiology

RECEIVED 27 July 2022
ACCEPTED 28 October 2022
PUBLISHED 11 November 2022

CITATION

Zhan Q, Zhang H, Wu B, Zhang N and
Zhang L (2022), E3 ubiquitin ligases in
the acute leukemic signaling pathways.
Front. Physiol. 13:1004330.
doi: 10.3389/fphys.2022.1004330

COPYRIGHT

© 2022 Zhan, Zhang, Wu, Zhang and
Zhang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Review
PUBLISHED 11 November 2022
DOI 10.3389/fphys.2022.1004330

https://www.frontiersin.org/articles/10.3389/fphys.2022.1004330/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.1004330/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.1004330&domain=pdf&date_stamp=2022-11-11
mailto:lzhang202003@163.com
mailto:njzhang@cmu.edu.com
https://doi.org/10.3389/fphys.2022.1004330
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.1004330


Chimeric Antigen Receptor T-Cell Immunotherapy (CAR-T)

targeted CD19; and Gemtuzumab ozogamicin targeted CD33-

positive AML (Baron and Wang, 2018; Zhu and Gao, 2019;

Levin et al., 2021; Yilmaz et al., 2021). Despite this, the

enhancement of overall survival in patients with leukemia

remains challenging, and a good knowledge of the acute

leukemic signal transduction involved would bring a significant

improvement in treatment regimens.

Protein translation modifications are one of the most important

regulatory mechanisms for intracellular proteins, enabling cells to

respond to changes in the internal and external environment

through rapid and reversible modifications to the structure,

function, and location of a specific protein. More than two

hundred protein translation modifications have been discovered,

including phosphorylation, methylation, acetylation, ubiquitination,

to name a few, which play an important role in cell growth,

metabolism, differentiation, apoptosis, and other processes

(Dunphy et al., 2021). Ubiquitination refers to the covalent

binding of ubiquitin to a target protein (Figure 1), a process that

involves the synergistic action of three ubiquitin enzymes:

E1 ubiquitin activating enzyme, E2 ubiquitin conjugating

enzyme, and E3 ubiquitin ligase (Nandi et al., 2006). Ubiquitin is

a 76-residue small protein in which the C-terminal cysteine is

activated by E1 ubiquitin activating enzyme and then transferred

onto the activate site of an E2 ubiquitin conjugating enzyme through

trans-thioesterification (Mansour, 2018; Wijk et al., 2019).

Subsequently, E2-ubiquitin intermediate is linked to the target

protein by E3 ubiquitin ligases-mediated isopeptide bond

formation between the C-terminal glycine of ubiquitin and the

substrate lysine residue. In this series of enzymatic cascade reactions,

E3 plays a unique role in recognizing target proteins and regulating

ubiquitination system activity. E3 ubiquitin ligases fall into three

main types: the really interesting new gene/U (UFD2)-box (RING/

U-box), the homologous to E6AP carboxyl-terminus (HECT), and

the RING-between-RING (RBR) families (Berndsen andWolberger,

2014; Wang et al., 2017). These E3 ligases can target a variety of

substrates, then trigger ubiquitination and proteasome degradation.

When this protein degradation process is out of balance due to

changes in the E3 ligases, a variety of diseases can be caused or

promoted, such as neurodegenerative disorders, cardiovascular

disease, and cancer.

With the development of proteolysis-targeting chimeras

(PROTAC), E3 ligases have become the key target. This

technique can remove unwanted or damaged proteins by

forming a stable target protein/PROTAC/E3 ternary complex

(Figure 2), solving the problem of undruggable cases to some

extent (Sakamoto et al., 2001; Moon and Lee, 2018). In addition

to PROTAC, there are targeted inhibitors of E3 ligases, targeted

agonists of E3 ligases, and molecular glues, thereby arousing our

interest in the mechanism of E3 ubiquitin ligases in the acute

leukemic signaling pathways. Combined with these techniques,

E3 ligases can be excellent regulatory targets affecting anti-

leukemia potential. In this review, we summarized E3 ligases

that their changes are involved in the abnormal activated

signaling pathway, ultimately promoting the occurrence or

progression of leukemia.

The structure and function of
E3 ligases involved

RING-type E3 ubiquitin ligases

RING family is the most common E3 ligases; the RING

domain of RING E3s harbors two zinc ions, providing Zn-

FIGURE 1
The process of ubiquitination.

FIGURE 2
The technique of proteolysis-targeting chimeras.
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coordination in a cross-braced configuration for domain folding

(Das et al., 2021). RING E3s exerted their E3 activity with a highly

diverse quaternary architecture and different modes of assembly:

monomer, homodimer, heterodimer, and compositions of

multiple subunits (also known as higher order oligomers)

(Buetow and Huang, 2016). Additionally, the U-box domain

is the same as the RING fold, but without zinc.

The tumor necrosis factor receptor-associated factor (TRAF)

family consists of five members: TRAFs 1, 2, 3, 5, and 6,

participating in cell proliferation, differentiation, survival,

apoptosis, immune and inflammatory responses. Among these

members, TRAF2 and TRAF6 have a typical TRAF structure,

including an N-terminal RING domain, four or five zinc finger

motifs that provide structural support for RING domain activity,

and a C-terminal domain that consists of a coiled coil domain

and a TRAFC domain (also known as the MATH domain)

(Table 1) (Lamothe et al., 2008; Arkee and Bishop, 2020).

Besides, the common functional domains of the Casitas B-cell

TABLE 1 The structure of E3 ubiquitin ligases discussed in this work.

Enzymes Family Structure and function

TRAF Lamothe et al., (2008); Arkee and Bishop,
(2020)

RING • N-terminal RING domain

• four or five zinc finger motifs that provide structural support for RING domain activity

• C-terminal domain that consists of a coiled coil domain and a TRAFC domain

CBL Meng et al., (1999); Zheng et al., (2000) RING • N-terminal tyrosine kinase binding domain consists of four helix bundles, an EF hand, and an Src
homology 2 (SH2) domain, which is responsible for recognition of the substrate

• a highly conserved helical linker

• C-terminal RING finger domain that can work together with the helical linker to form the structural
platform for binding to an E2 ubiquitin conjugating enzyme

TRIM Meng et al., (1999); Zheng et al., (2000) RING • N-terminal catalytic RING domain

• one or two B-boxes

• a coiled-coil domain

TRIAD1 Reijden et al., (1999); Marteijn et al.,
(2005)

RING • N-terminal is an acid domain

• a DRIL motif located between two RING fingers

• two C-terminals are the helical ring domain

MDM2 Rotin and Kumar, (2009) RING • N-terminal domain is responsible for recognizing and binding to substrates

• C-terminal domain catalysis the transfer of ubiquitin to substrates

SKP2 Bai et al., (1994); Nguyen and Busino,
(2020)

F-box • substrate receptor of Cullin-RING

• a class of proteins contain a sequence homologous to cyclin F and can catalyze the substrate by binding to
SKP1 and CUL1

FBW7 Hao et al., (2007); Tang et al., (2007) F-box • substrate receptor of Cullin-RING

• the D domain is mainly responsible for FBW7 dimerization, regulating substrate binding modes and
ubiquitylation

• F-box domain is an essential part for FBW7 combining to SKP1

• seven tandem WD40-repeat domains play a role in phosphorylated substrates recognition

ULF Chen et al., (2010a) HECT • N-terminal ARM domain is responsible for recognizing and binding to substrates

• a centrally located WWE motif

• C-terminal HECT domain catalyzes the transfer of ubiquitin to substrates

WWP1 Hu et al., (2021) HECT • N-terminal is a C2 domain

• four WW domains in its central part

• C-terminal is a catalytic HECT domain
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lymphoma (CBL) family (mainly c-Cbl and Cbl-b) include the

tyrosine kinase binding domain consisting of four helix bundles,

an EF hand, and an Src homology 2 (SH2) domain, which is

responsible for recognition of the substrate; a highly conserved

helical linker; and one RING finger domain that can work

together with the helical linker to form the structural platform

for binding to an E2 ubiquitin conjugating enzyme (Table 1)

(Meng et al., 1999; Zheng et al., 2000). Cbl-b is a larger protein

than c-Cbl and contains an additional 69 amino acids at the

C-terminus (Lyle et al., 2019). Specific substrates of CBL are

epidermal growth factor receptor (EGFR), platelet-derived

growth factor receptor (PDGFR), c-Kit, FLT3, ZAP70 and

SYK (Thien and Langdon, 2005; Mohapatra et al., 2013). In

addition, the tripartite motif containing (TRIM) proteins contain

a large family of RING type E3 ligases. There are three common

structural features of TRIMs, containing the N-terminal catalytic

RING domain, one or two B-boxes, and a coiled-coil domain

(Table 1) (Meroni and Diez-Roux, 2005). Functionally, it has

been identified that TRIM56 and TRIM65 can stimulate type I

interferon expression combined with nucleic acid-sensing

receptors, such as STING, RIG-I, and MDA5 (Tsuchida et al.,

2010; Versteeg et al., 2013; Kamanova et al., 2016). Furthermore,

TRIAD1 (Two RING fingers andDRIL) is a cysteine-rich domain

of around 200 amino acids, consisting of a DRIL motif located

between two RING fingers (Reijden et al., 1999). The N-terminal

is an acid domain while the C-terminal region contains a helical

ring domain (Table 1). TRIAD1 is a proapoptotic protein that

promotes p53 activation that plays a critical role in cell

differentiation and apoptosis and is ubiquitinated by Mouse

double minute 2 (MDM2) (Marteijn et al., 2005; Bae et al.,

2012). MDM2 is a p53-specific E3 ubiquitin ligase, acting to

limit the p53 growth-suppressive function in unstressed cells

(Moll and Petrenko, 2003). MDM2 N-terminal domain is

responsible for recognizing and binding to substrates; the

C-terminal domain catalysis the transfer of ubiquitin to

substrates (Table 1) (Rotin and Kumar, 2009).

MDM2 expression is up-regulated in numerous cancers,

resulting in a loss of p53-dependent activities, such as

apoptosis and cell-cycle arrest (Oliner et al., 2016).

F-box E3 ubiquitin ligases

F-box protein functions as the substrate receptor in Cullin-

RING E3 ubiquitin ligases (CRLs), which consists of three

categories: FBXWs, FBXLs, and FBXOs. Among the RING-

type E3 ligases, the Cullin is the largest family. CRLs belong

to RING-type E3s with a characterized Cullin-RING

heterodimeric complex, containing seven Cullin (CUL)

proteins, CUL1, CUL2, CUL3, CUL4A, CUL4B, CUL5, and

CUL7. The core structure of CRL consists of four parts: the

CUL scaffold, a substrate receptor, adaptor proteins that connect

the substrate receptor to CUL, and a RING finger protein binding

to E2 ubiquitin conjugating enzyme. The C-terminal domain of

CUL protein forms a core ligase complex in combination with a

RING finger protein, either RBX1 or RBX2, while the N-terminal

domain interchangeably assembles with CUL-specific substrate

receptors through adaptors. For instance, CRL1, also named

SKP1–CUL1–F-box (SCF), uses SKP1 as its adaptor, and

F-box as substrate receptor (Skowyra et al., 1997; Nakagawa

et al., 2020).

S-phase kinase-associated protein 2 (SKP2), which belongs to

F-box protein is a class of proteins containing a sequence

homologous to cyclin F and can catalyze the substrate by

binding to SKP1 and CUL1 (Bai et al., 1994; Jin et al., 2004;

Nguyen and Busino, 2020). The CRL1SKP2 consists of four

components: CUL1, SKP1, the F-box domain of SKP2

(F-boxSKP2), and RBX1 (Table 1). Functionally, SKP2 targets

various cyclin-dependent kinases inhibitors (CKI) for

degradation, such as p21Cip1, p27Kip1, and p57Kip2, controlling

cell cycle regulatory proteins (Frescas and Pagano, 2008).

Therefore, the dysfunction of SKP2 causes cell cycle entry or

arrest. F-box and WD-40 repeat domain-containing protein 7

(FBW7), a component of an SCF ubiquitin ligase complex,

belongs to the F-box protein family. The structure of FBW7 is

organized in three domains: the D domain, F-box domain, and

seven tandem WD40-repeat domains. The D domain is mainly

responsible for FBW7 dimerization, regulating substrate binding

and ubiquitylation; the F-box domain is essential for

FBW7 interaction with SKP1 whereas the WD40-repeat

domain plays a role in the recognition of phosphorylated

substrates (Table 1) (Hao et al., 2007; Tang et al., 2007). The

classical substrates of FBW7 include c-Myc (Yada et al., 2004)

and cyclin-E (Koepp et al., 2001), although other target proteins

have been identified such as neurogenic locus Notch homolog

protein 1 (Notch 1) (Fryer et al., 2004), NF-κB (Fukushima et al.,

2012), MCL-1 (Wertz et al., 2011), c-Jun (Wei et al., 2005),

granulocyte colony stimulating factor receptor (Lochab et al.,

2013), heat shock transcription factor 1 (Kourtis et al., 2015),

CCAAT/enhancer-binding protein-alpha (C/EBPα)
(Bengoechea-Alonso and Ericsson, 2010), and glucocorticoid

receptor α (Malyukova et al., 2013). Additionally, the

expression of FBW7 is regulated by a series of genes,

including p53 (Kimura et al., 2003), miR-223 (Mansour et al.,

2013), miR-25 (Xiang et al., 2015), miR-182 (Li et al., 2014), miR-

503 (Li et al., 2014), miR-92a (Zhou et al., 2015), RBP-J-

interaction, tubulin-associated (RITA) protein (Wang et al.,

2014), NF-κB1 (Huang et al., 2014).

Homologous to E6AP carboxyl-terminus-
type E3 ubiquitin ligase

Different from the scaffolding role (combining E2 closely

with substrates) of RING-type E3 ligases, HECT-type E3 ligases

play a catalytic role. For the HECT E3 ligase, it consists of an
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N-terminal substrate-binding domain and a C-terminal HECT

domain. The C-terminal HECT domain was first discovered in

human papillomavirus E6-associated protein (E6AP) 5,

containing almost 350 amino acids (Rotin and Kumar, 2009;

Singh and Sivaraman, 2020); there are two lobes in the conserved

HECT domain that are connected by a flexible hinge loop, with

the N-terminal lobe (N-lobe) binding to E2~ubiquitin and the

C-terminal lobe (C-lobe) having the catalytic cysteine residue

(Huang et al., 1999). Based on the different N-terminal domains,

HECT E3s can be divided into NEDD4 family, HERC family, and

HECTs with other protein-protein interaction domains (Singh

et al., 2021). Ubiquitin ligase for ARF (ULF) was identified in

nucleophosmin (NPM) protein complexes. It includes an

N-terminal ARM domain and a C-terminal HECT domain,

with a centrally located WWE motif (Table 1) (Chen et al.,

2010a). The main function of ULF is to mediate the

polyubiquitination and proteasomal degradation of alternative

reading frame (ARF) protein (Chen et al., 2010a). As amember of

the NEDD4 family, WW domain-containing E3 ubiquitin

protein ligase 1 (WWP1) composes a C2 domain in

N-terminal and a catalytic HECT domain in C-terminal, with

four WW domains in its central part (Hu et al., 2021).

Functionally, WWP1 interacts with a variety of substrates,

such as TβR1 (W1Komuro et al., 2004), Smad2 (Chen et al.,

2007), ErbB4/HER4 (Feng et al., 2009), RNF11 (Chen et al.,

2008), SPG20 (Edwards et al., 2009), RUNX2 (Shen et al., 2006),

p63 (Li et al., 2008), and p27 (Cao et al., 2011). These interactions

regulate numerous physiology processes, including TGF

signaling, osteoblast differentiation, differentiation and

apoptosis of cancer cells, senescence.

Effects of E3 ubiquitin ligases on
Notch signaling

FBW7 is deemed to be a p53-dependent tumor suppressor

(Kimura et al., 2003; Mao et al., 2004). In the incidence of T-ALL,

FBW7 deletion without other tumor-promoting factors is one of

the causes (Matsuoka et al., 2008). Evidence showed that 59%

FBW7 deletion mice developed T-ALL, along with Notch1 and

c-Myc proteins accumulated in leukemic cells while p53 protein

level was decreased. Notch1 is a transmembrane protein that

serves as a ligand-activated transcription factor. The Notch1/

c-Myc signaling pathway plays a pivotal role in T-ALL (Weng

et al., 2004; Weng et al., 2006). FBW7 mutations, which are

mainly located in codons that encode for arginine residues

R479Q, R505C, and R465H, have been identified in T-ALL,

accounting for 31% of all T-ALL cases (O’Neil et al., 2007;

Akhoondi et al., 2007). It is worth noting that spontaneously

developed leukemia was not seen in mice that carry Cre-

inducible FBW7 heterozygote mutants (King et al., 2013).

Notch1 mutation, as an important oncogenic factor in ALL, is

also associated with FBW7 mutation. Notch1 mutations mainly

occur in the PEST domain and the heterodimeric domain. The

reason for the name PEST is that this mutation truncates the

C-terminal domain of protein, among which the proline,

glutamine, serine, and threonine have a high frequency of

truncation and are known as PEST domains (Chiang et al.,

2016). Mechanistically, disruption or deletion of the PEST

domain can be found in 15% T-ALL and has a relationship

with FBW7 mutation, causing increased intracellular Notch1

(ICN1) protein stabilization; heterodimeric domain point

mutation can be found in 25% T-ALL and has a relationship

with PEST or FBW7 mutations, contributing to ligand-

independent activation of the receptor (Weng et al., 2004).

ICN1 splits from the cell membrane and migrates into the

nucleus. The extended half-life of ICN1 causes sustained

activation of Notch1 signaling pathway, ultimately leading to

blocking of apoptosis in normal cells and the abnormal

proliferation of non-functional T cells. Adult T cell leukemia/

lymphoma (ATL), an aggressive lymphoproliferative disease with

poor prognosis, is caused by the human T-cell leukemia virus

type 1 (HTLV-1). In HTLV-1-transformed ATL cells, FBW7 acts

as a tumor suppressor as well. According to the study of O’Neil

et al. (2007), the FBW7 mutation, which is located in the beta-

propeller domain adjacent to the pocket for substrate binding,

activates the Notch1 signaling pathway. To be more specific,

FBW7 mutants T416A and W406R retain the ability to interact

FIGURE 3
E3 ubiquitin ligases involved in JAK2, Notch, PI3K/AKT, and
downstream signaling pathways.
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TABLE 2 The regulation between E3 ligases and leukemic signaling pathways.

Enzymes Leukemic signaling pathways Function Disease or
cell type

TRAF6 PI3K-AKT Chan et al., (2012); Schnetzke et al., (2013a); Li et al.,
(2015)

• inhibiting AKT activation after stimulation of TLR-4 with
lipopolysaccharide

FLT3-ITD AML

• IRAK4/IRAK1 induces TRAF6 activation and then activates AKT
through K63 polyubiquitination, stabilizing MCL-1

primary T cells

NF-κB Lomaga et al., (1999); Verstrepen et al., (2008); Schnetzke
et al., (2013a)

• activation of NF-κB following stimulation of lipopolysaccharide-
mediated TLR-4 activation

—

• TRAF6 plays a pivotal role in TLR signal and is involved in the NF-
κB pathway

TRAF2 NF-κB Chung et al., (2007); Schnetzke et al., (2013b) • playing an important role in NF-κB activation by TNF-α
stimulation

—

• knock-down of TRAF2 makes cells more susceptible to TNF-α FLT3-ITD AML

SKP2 Notch/SKP2/p27Kip1 Zhang et al., (2000); Barata et al., (2001);
Dohda et al., (2007); Rodriguez et al., (2020)

• SKP2 genetic ablation can delay T-ALL progression in vivo T-ALL

• pharmacological blockade of SKP2 can inhibit the proliferation of
human T-ALL cells

• This arises because SKP2 can degrade the cyclin-dependent kinase
inhibitor p27Kip1, inducing T cell progression into the cell cycle and
coordinating cell proliferation and cell differentiation

FBW7 Notch1 Matsuoka et al., (2008); Weng et al., (2004); O’Neil et al.,
(2007); Akhoondi et al., (2007); Rajagopalan et al., (2004)

• FBW7 deletion mice develop T-ALL, along with Notch1 and
c-Myc proteins accumulated while p-53 protein level was
decreased

T-ALL

• FBW7 can induce the ubiquitination and degradation of ICN1

• Notch1 mutation is associated with FBW7 mutation, which
(R479Q, R505C, R465H) was detected in T-ALL

ATL

• FBW7 mutation (except T416A, W406R) activates the
Notch1 signaling pathways

• FBW7 mutation is associated with cyclin E hyperphosphorylation
and aneuploidy; aneuploidy is one of the characteristics of
acute ATL

GSK3β Schmidt et al., (2006); Wertz et al., (2011); Mishra et al.,
(2021)

• promoting degradation of glucocorticoid receptor α through a
GSK3β phosphorylated degron

—

• promoting degradation of MCL-1 in a GSK3-dependent manner AML

• FBW7 degrades PU.1 in a GSK3β phosphorylated manner

CBL Notch1 Zhu et al., (2020) • c-Cbl was supposed to facilitate the ubiquitination and
degradation of Notch1

T-ALL

• flavone induces ICN1 degradation through up-regulation of the
level of c-Cbl

Notch3 Checquolo et al., (2010) • Notch3 can be degraded in a c-Cbl-dependent manner

PI3K-AKT Rathinam et al., (2010); Taylor et al., (2015) • c-CblA/- mice developed aggressive AML under the existence
of MPD

AML

• c-Cbl mutant protein elevates FLT3 signaling resulting in
activation of AKT pathway

• PDK1 blocks CBL-b and then prevents PI3K degradation,
resulting in AKT activation

p53 Park et al., (2017) • FLT3-ITD AML cells could inactivate p53, resisting the effects of
FLT3 inhibitors

JAK2 Lv et al., (2017) • knock-down of CBL can prolong JAK2 activation

• CBL mutation can extend the half-life of JAK2

• CBL mutant AML cells are more sensitive to JAK2 inhibitor
ruxolitinib

(Continued on following page)
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and degrade ICN1, while the majority of FBW7mutants lose that

ability. In contrast to T416A and W406R mutants, the

FBW7 mutants D510E can normally interact with ICN1, but

lose its degradation ability, leading to the continued activation of

the Notch1 signaling pathway (Figure 3). Interestingly,

FBW7 D510E can target c-Myc, cyclin E, and MCL-1. The

reason why FBW7 D510E selectively degrades substrates

remains unknown. In addition, hyperphosphorylation of

cyclin E, which is related to the FBW7 mutation, is highly

correlated with polyploidy and aneuploidy (Table 2). The

latter is one of the characteristics of acute ATL (Rajagopalan

et al., 2004).

In T-ALL, ICN1 is the potential therapeutic target, an aspect

that is described in detail in the section covering FBW7.

However, although γ-secretase inhibitors (GSI) can prevent

the release of ICN1, they also lead to off-target effects. As for

c-Cbl (a member of the CBL family), such mutation is frequent in

myeloid leukemia but not in T-ALL, making it a possible drug

target. Recent studies have shown that flavone (2-phenyl-4H-1-

benzopyran-4-one), the core structure of flavonoids, can induce

ICN1 degradation through up-regulation of the level of c-Cbl,

inhibiting cell proliferation (Zhu et al., 2020). In addition to

Notch1, Notch3 was identified as another member of the Notch

family that plays a critical role in the development of T-ALL. In

the absence of pTα, Notch3 can be degraded in a c-Cbl-

dependent manner (Checquolo et al., 2010). Furthermore,

SKP2 was reported to play a crucial role in T-ALL. Recent

research advances demonstrated that SKP2 genetic ablation

can delay T-ALL progression in vivo, while the

pharmacological blockade of SKP2 can inhibit the

proliferation of human T-ALL cells (Rodriguez et al., 2020).

This arises because SKP2 can degrade the cyclin-dependent

kinase inhibitor p27Kip1, inducing T cell progression into the

cell cycle and coordinating cell proliferation and cell

differentiation. Moreover, it has been reported that Notch

activation promotes the role of SKP2 in T-ALL, forming a

Notch/SKP2/p27Kip1 forward feedback loop (Table 2) (Zhang

et al., 2000; Barata et al., 2001; Dohda et al., 2007; Rodriguez et al.,

2020).

Effects of E3 ubiquitin ligases on janus
kinase 2 signaling

Cytokine dependent Janus kinase 2 (JAK2) signaling is

crucial to hematopoietic stem/progenitor cells. Uncontrolled

activation of JAK2 signal triggers the occurrence of

hematological malignancy. A study assessed whether CBL

influence JAK2 protein levels showed that CBL knock-down

can prolong JAK2 activation (Lv et al., 2017). Similarly, an

elevated level and extended half-life of JAK2 was observed in

CBL mutant AML cells. However, independent studies have

shown that compared to CBL wild-type AML cells, CBL

mutant AML cells are more sensitive to quizartinib (a

FLT3 inhibitor) than ruxolitinib (a JAK2 inhibitor) (Lv et al.,

2017). As c-Cbl mutant protein can stimulate FLT3 signaling, we

envisioned the existence of a c-Cbl, JAK2, and FLT3 signaling

axis, regulating the development of AML (Figure 3) (Table 2)

(Rathinam et al., 2010; Taylor et al., 2015).

Effects of E3 ubiquitin ligases on
phosphatidylinositol 3-kinase/AKT
signaling

Phosphatidylinositol 3-kinase (PI3K)/Protein Kinase B

(PKB, also named AKT) is known to be associated with cell

metabolism, proliferation, differentiation, and apoptosis. The

TABLE 2 (Continued) The regulation between E3 ligases and leukemic signaling pathways.

Enzymes Leukemic signaling pathways Function Disease or
cell type

ULF &
MDM2

MDM2-p53 Weber et al., (1999); Llanos et al., (2001); Chen et al.,
(2010a)

• knock-down of ULF increases the level of ARF protein —

• ARF binds to and suppresses the activity of MDM2, contributing
to p53 activation

TRIM56 Wnt/β-catenin Yan et al., (2021) • NEAT1 can enhance the degradation of DVL2 by TRIM56, then
inactivating the Wnt signaling pathway

AML

TRIAD1 RTK Wang et al., (2018); Wang et al., (2020) • TRIAD1-substrate RTKs inhibitor terminated emergency
granulopoiesis, delayed leukemogenesis during emergency
granulopoiesis

MLL-AML

WWP1 Autophagy Sanarico et al., (2018) • WWP1 depletion can transform LC3-I to LC3-II accompanied by
the accumulation of ATG7

—

• the level of SQSTM1/p62 was decreased
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interaction between PI3K and AKT is related to two metabolites

and two coding genes: the small molecules PI (4,5) P2 and PI

(3,4,5) P3 and the proteins phosphatase and tensin homologue

(PTEN) and 3-phosphoinositide dependent protein kinase-1

(PDK1). In normal cells, PI (3,4,5) P3 is rapidly metabolized

and dephosphorylated by lipid phosphatases (such as PTEN) to

terminate the PI3K signal (Vara et al., 2004). Large deposits of

PI(3,4,5)P3 or the loss-of-function of PTEN are often found in

cancer cells, suggesting that abnormal regulatory genes play an

important role in cancer. In addition, an increasing number of

studies show that PI3K/AKT regulates the occurrence and

development of leukemia and drug resistance (Nepstad et al.,

2020; Yao et al., 2021).

Currently, the link between TRAF6 and AML is widely

studied. TRAF6 is considered to play an essential role in signal

transduction of the Toll-like-receptor (TLR) superfamily

(classified as immune receptors). TRAF6 inhibits the

activation of AKT after stimulation of TLR-4 with

lipopolysaccharide in FLT3-ITD AML cells (Schnetzke

et al., 2013a). Down-regulation of TRAF6 results in

enhanced constitutive AKT activation through

phosphorylating residues Thr308 and Ser473 in MV4-11

cells (FLT3-ITD AML cells). Interestingly, Chan et al.

(2012) suggested that the ubiquitination and activation of

AKT were affected by diverse growth factors utilizing distinct

E3 ligases. For example, the SKP2-SCF complex was required

for EGFR induced AKT activation; SKP2 underwent tyrosine

and serine/threonine phosphorylation after EGF stimulation.

TRAF6 not only acts in AML, but also in ALL. In primary

T cell, TRAF6 was activated through MyD88/IL-1 receptor-

associated kinase (IRAK) 4/IRAK 1 signaling, then catalyzing

K63 polyubiquitination (which is known to activate AKT

directly), and ultimately stabilizing antiapoptotic protein

MCL-1 (Figure 3) (Li et al., 2015). The study also showed

that inhibition of IRAK reduced the stability of MCL-1 and

enhanced the sensitivity to chemotherapy (Table 2) (Li et al.,

2015).

Deletion and loss-of-function mutation of c-Cbl can be

found mainly in myeloproliferative neoplasms (MPNs) but

also occured in other hematopoietic malignancies such as

AML (Dunbar et al., 2008). AML patients with CBL mutation

always need an intense chemotherapy regimen or accept

hemopoietic stem cell transplantation, showing highly

malignant characteristics (Makishima et al., 2009). Studies in

animal models have shown that single copy mutant c-CblA/−

mice developed aggressive myeloid leukemia with significantly

increased white blood cell counts. The stimulation of

FLT3 signaling caused by c-Cbl mutant protein results in the

constitutive activation of the AKT pathway (Figure 3) (Table 2),

suggesting that FLT3 kinase is a potential therapeutic target for

the treatment of c-Cbl mediated leukemia (Rathinam et al., 2010;

Taylor et al., 2015). In this regard, it is worth mentioning a recent

study showing that Cbl-b was implicated in FLT3 kinase

inhibitor-resistant AML. According to Park et al. (2017), the

mutant FLT3-ITD AML cells could inactivate p53, resisting the

effects of FLT3 inhibitors.

Effects of E3 ubiquitin ligases on NF-
κB signaling

NF-κB, a generic name of a family of transcription factors,

regulates a series of genes involved in cell survival, proliferation,

differentiation, and immune and inflammatory responses.

Mounting evidence shows that constitutive activation of NF-

κB is frequently associated with hematological malignancies. NF-

κB selective inhibitory drugs have been developed for targeting

tumor cells (Breccia and Alimena, 2010). At present, NF-κB
inhibitors such as bortezomib and carfilzomib are some of the

potent therapeutically useful drugs for multiple myeloma.

Activation of NF-κB signaling can be caused by stimulation of

lipopolysaccharide-mediated TLR-4 activation and tumor

necrosis factor-α (TNF-α) (Lomaga et al., 1999; Verstrepen

et al., 2008; Schnetzke et al., 2013a). Previous studies have

shown that TRAF6 is involved in the NF-κB signaling

pathway (Min et al., 2018). However, more studies are

warranted to ascertain whether TRAF6 activates NF-κB.
Besides TRAF6, TRAF2 is of great importance in NF-κB
activation by TNF-α stimulation (Chung et al., 2007). The

anti-apoptosis effect of NF-κB is part of the reason for TNF-α
mediated avoidance of programmed cell death (Ren et al., 2007).

In the heterozygous FLT3-ITD positive MOLM-13 cell line, cells

presented a higher susceptibility to TNF-α after TRAF2 knock-

down compared with control cells, and induction of apoptosis

and impaired proliferation after TNF-α exposure were observed

(Table 2) (Schnetzke et al., 2013b). This result proves the

potential antiapoptotic role of TRAF2.

Effects of E3 ubiquitin ligases on
phosphatidylinositol 3-kinase/AKT
downstream signaling

FBW7 promotes ubiquitylation and proteasomal degradation

of glucocorticoid receptor α through a conserved, GSK3β
phosphorylated degron (Malyukova et al., 2013).

Glucocorticoid is an essential part of ALL chemotherapy

regimens and glucocorticoid sensitivity can be restored

through overexpression of glucocorticoid receptor (Schmidt

et al., 2006). Malyukova et al. (2013) confirmed that

FBW7 inactivation leads to up-regulation of glucocorticoid

receptor and enhanced glucocorticoid sensitivity in

glucocorticoid-resistant cells. Additionally, FBW7 targets

MCL-1 for ubiquitination and degradation in a GSK3-

dependent manner (Wertz et al., 2011). FBW7 deletion can

up-regulate the expression of MCL-1 in T-ALL cell line,
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which is an anti-apoptotic protein of the BCL-2 family, causing

increased sensitivity to sorafenib (a tyrosine kinase inhibitor) but

decreased sensitivity to ABT-737 (a pan-inhibitor of the Bcl-2

family of anti-apoptotic proteins) (Yang-Yen, 2006; Inuzuka

et al., 2011). Furthermore, FBW7 mutation is partly the

reason for resistance to GSI, which is effective against T-ALL

cell lines harboring wild-type PTEN deletion on chromosome ten

(Weng et al., 2004; Hales et al., 2014). GSK3β, a multifunctional

serine/threonine kinase that is overexpressed and hyperactivated

in AML, is considered a tumor promoter in mixed lineage

leukemia (MLL) (Wang et al., 2008). Several studies showed

that GSK3β inhibition contributes to differentiation and

apoptosis of leukemic cells (Zhou et al., 2011; Gupta et al.,

2012; Gupta et al., 2016). Mechanically, in AML cell lines

THP1 and U937, both GSK3β inhibition and proteasome

inhibition can enhance the expression of Purine Rich Box-1

(PU.1), which is a central regulator of the differentiation of all

hematopoietic cell lineages (Dakic et al., 2005; Mishra et al.,

2021). Suppression of PU.1 leads to leukemic transformation of

myeloid cells, indicating that PU.1 plays a tumor suppressor role

in myeloid cells (Metcalf et al., 2006). Further experiments

indicated that PU.1 is phosphorylated by GSK3β and then

recognized by FBW7, resulting in ubiquitination and

degradation (Figure 3) (Table 2) (Mishra et al., 2021). Taken

together, these studies suggest that targeting the GSK3-FBW7

signaling axis provides a possibility of inhibiting AML growth

and induce myeloid differentiation.

As a tumor suppressor, ARF can work through p53 pathway

activation but also in a p53-independent form. For ARF-p53

axis, the activation of p53 involves multiple mechanisms. On

the one hand, a nucleolar form of ARF can bind to MDM2 to

sequester it in the nucleolus, and nucleoplasmic forms of ARF

can suppress the ubiquitin ligase activity of MDM2,

contributing to p53 activation and stabilization (Weber

et al., 1999; Llanos et al., 2001). MDM2, a RING-type

E3 ubiquitin ligase, is the main regulator of p53 (Vousden

and Prives, 2005). On the other hand, ARF can inhibit the

enzyme activity of ARF-BP1 (a HECT type E3 ligase), causing

p53 stabilization (Chen et al., 2005; Chen et al., 2006). The

ubiquitination and degradation of ARF are mediated by ULF,

which can directly interact with the C-terminus of NPM to

disrupt the protection role for ARF (Chen et al., 2010b). NPM1,

one of the most common genetic mutations in AML, can elevate

autophagy activity, which contributes to cell survival in

NPM1 mutated AML. NPM mutation is found in 35% of

AML cells, leading to cytoplasmic dislocation of

nucleophosmin (NPM-c) that cannot retain ARF in the

nucleoli (Quentmeier et al., 2005). In NPM-c AML cells,

ARF is unstable and can be degraded rapidly, whereas ULF

knock-down can stabilize ARF and activate the ARF-p53 axis

(Figure 3) (Table 2), making ULF an effective target in AML

cells (Chen et al., 2010b).

Effects of E3 ubiquitin ligases onWnt/
β-catenin signaling

Wnt/β-catenin signaling is critical for leukemic stem cell

maintenance, with dishevelled2 (DVL2) functioning as the core

component. DVL2 can disassemble the APC/Axin/CK1α/GSK3β
degradation complex under the binding between Wnt ligands

and Fzd receptors, leading to β-catenin stabilization; while

absence of Wnt ligands made β-catenin degrade in the

manner of ubiquitin-proteasome (Nusse and Clevers, 2017).

The degradation of β-catenin correlates with the leukemic

stem cell, contributing to the promotion of AML (Soares-

Lima et al., 2020). Yan et al. (2021) studied the mechanism of

nuclear paraspeckle assembly transcript 1 (NEAT1) (which

belongs to long non-coding RNAs) in leukemogenesis and

leukemic stem cell function, finding that loss of

NEAT1_1 promotes murine leukemogenesis. Besides, they

confirmed that NEAT1 can enhance the degradation of

DVL2 by TRIM56, then inactivating the Wnt signaling

pathway. Collectively, these finding indicate that E3 ubiquitin

ligase TRIM56 combined with DVL2 participate in the inhibition

of the Wnt signaling (Figure 4) (Table 2), in a process that is

mediated by NEAT1_1.

Effects of E3 ubiquitin ligases on RTK
signaling

Receptor tyrosine kinases (RTKs), which consists of about

twenty subfamilies, are implicated in regulating pathways for cell

growth, differentiation, adhesion, and cell death. The RTKs

commonly referred to as type III, which include c-Kit, CSF1R,

FLT3, and PDGFR, have a major impact on leukemogenesis and

transformation into AML (Carter et al., 2020). The genetic

characteristic of MLL is the chromosome 11q23 abnormality,

FIGURE 4
E3 ubiquitin ligases involved in Wnt/β-catenin and RTK
signaling pathways.
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and this type of leukemia is associated with adverse prognosis.

Emergency granulopoiesis is known to accelerate leukemogenesis

in MLL1-rearranged AML and this occurs in an RTK-dependent

manner (Wang et al., 2020). Moreover, it has been reported that

in MLL1-ELL AML mice, TRIAD1 expression is decreased,

contributing to sustained RTK signaling and failing to

terminate emergency granulopoiesis (Figure 4) (Wang et al.,

2018; Wang et al., 2020). Using TRIAD1-substrate RTKs

inhibitors can terminate emergency granulopoiesis, delay

leukemogenesis during emergency granulopoiesis, and

normalize innate immune responses when combined with

chemotherapy (Table 2) (Wang et al., 2020). In addition, as a

RTK inhibitor, nintedanib can reverse activation

(phosphorylation) of AKT in MLL1-ELL+ LIN− cells that are

associated with inhibited GSK3β phosphorylation and β-catenin
destabilization (Wang et al., 2020).

Effects of E3 ubiquitin ligase on
autophagy signaling

Autophagy is an intracellular evolutionarily conserved

catabolic degradation process, mediated by lysosome

sustains (Yu et al., 2018). The process of autophagy is

divided into four steps: initiation, nucleation, maturation,

and degradation (Feng et al., 2014). The first two steps

promote the formation of the autophagic vesicle membrane.

During the maturation step, protein conjugation events are

necessary for autophagosome formation, involving a series of

proteins from the autophagy related gene (ATG) family

(Figure 5) (Onorati et al., 2018). LC3-I is formed through

the cleavage of LC3 (ATG8) by ATG4. It can conjugate to

phosphatidylethanolamine of the autophagosome by

ATG3 and ATG7. The level of LC3-II (lipid form of LC3) is

proportional to the degree of autophagy (Onorati et al., 2018).

According to Sanarico et al. (2018), WWP1 depletion

transformed the cytosolic LC3-I to the lipid-bound LC3-II

form accompanied by the accumulation of autophagy-

associated protein ATG7. Meanwhile, the level of SQSTM1/

p62 was decreased, which is a cargo receptor that recruits cargo

destined for autophagic degradation to LC3-II on forming

autophagasomes (Figure 5) (Sanarico et al., 2018). Overall,

WWP1 depletion promotes the autophagic degradation of

oncogenic proteins, such as PML-RARα and FLT3-ITD,

inducing differentiation of AML cells.

Conclusion

In conclusion, a line of evidence has highlighted the role of

E3 ubiquitin ligases in the abnormal activation of leukemic

signaling pathways. An interesting observation is that the

absence of the E3 ligases is often the key to causing the

abnormal signal. For this situation, targeted agonists of

E3 ligases such as CC-90009 represent an advance in AML

treatment. CC-90009 can co-opt the CUL4-DDB1-CRBN-

RBX1 (CRL4CRBN) E3 ubiquitin ligase complex to target

G1 to S phase transition 1 (GSPT1) selectively for

ubiquitination and proteasomal degradation, inducing AML

apoptosis (Hansen et al., 2021). This provides a promising

approach to other agonists of E3 ligases. In this regard, it is

crucial to clarify what types of factors regulate the expression

of E3 ubiquitin ligases because the understanding of upstream

mechanisms is beneficial to developing new therapeutic

regimens. Additionally, PROTAC can remove unwanted or

damaged proteins without the need for a specific target.

Whether it is possible to link a normal E3 ligases to a

mutant E3 ligase so that the aberrant one can be

ubiquitination and proteasomal degradation?
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