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Background & aims: The overlapping features of biliary atresia (BA) and the other forms of neonatal cholestasis
(NC)with different causes (non-BA) has posed challenges for the diagnosis of BA. This study aimed at developing
new and better diagnostic models for BA.
Methods:Weretrospectively analyzeddata from1728newborn infantswith neonatal obstructive jaundice (NOJ).
New prediction models, including decision tree (DT), random forest (RF), and multivariate logistic regression-
based nomogram for BA were created and externally validated in an independent set of 508 infant patients.
Results: Fiver predictors, including gender, weight, direct bilirubin (DB), alkaline phosphatase (ALP), and gamma-
glutamyl transpeptidase (GGT) were significantly different between the BA and non-BA groups (P< .05), from
which DT, RF, and nomogram models were developed. The area under the receiver operating characteristic
(ROC) curve (AUC) value for the nomogram was 0.898, which was greater than that of a single biomarker in
the prediction of BA. Performance comparison of the three diagnostic models showed that the nomogram
displayed better discriminative ability (sensitivity, 85.7%; specificity, 80.3%; PPV, 0.969) at the optimal cut-off
value compared with DT and RF, which had relatively similar high sensitivity and PPV (0.941 and 0.947, respec-
tively), but low specificity in themodeling group. In sub-analysis of the discriminative capacity between the no-
mogram and GGT (<300 or ≥ 300), we found that the nomogram was superior to the GGT alone in the
preoperative diagnosis of BA.
Conclusions: The nomogram has demonstrated better performance for the prediction of BA, holding promise for
future clinical application.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in Context

Evidence Before This Study

Gamma-glutamyl transpeptidase (GGT) has been proposed as a
serum marker for differentiating biliary atresia (BA) from neonatal
hepatitis in the disease diagnosis. However, the reliability and
reproducibility of serum GGT activity alone were limited in an
accurate diagnosis of BA.Added Value of This Study

This study of a large cohort of Chinese infant patients has devel-
oped and validated a novel nomogram using GGT in combination
with other BA-related factors for better diagnosis of BA.Implica-
tions of All the Available Evidence

The results demonstrate that this nomogram is superior to the GGT
alone in the preoperative diagnosis of BA, and thus holds promise in
the clinical application to better predict BA in newborn infants.
1. Introduction

Biliary atresia (BA) is an uncommon, but serious disorder in
newborn infants, which is characterized by the obstruction of extra-
or intra-hepatic bile ducts [1–4]. If left undiagnosed and untreated, BA
can rapidly progress into biliary cirrhosis and hepatic failure, which
will require liver transplantation, and can even lead to death within
2–3 years after birth, in a proportion of BA patients [5–8]. Although
this disease rarely occurs among infants worldwide, the incidence of
BA is high in the Asia-Pacific region.

Currently in Eastern Asia, BA has an overall incidence of approxi-
mately 1.51 in 10,000 live births, which is markedly greater than that
in the United States [1–3]. In fact, in our hospital, which is one of the
largest pediatric hospitals in China, as many as 400 infant patients per
year are diagnosed with BA. A majority of these patients received the
Kasai operation and postoperative conventional treatment with
medications (e.g. antibiotics, hormones, ursodeoxycholic acid). In our
previous study, a two-year survival ratewas 53.7% in BApatients surviv-
ing with their native livers, while the remaining BA patients required
subsequent liver transplantations, but the two-year survival rates of
these patients were unavailable because of difficulty in patient tracking
[9]. The key to restoring the flow of the bile ducts and obtaining good
clinical outcomes is diagnosing and treating the disease early. However,
themisdiagnosis of BA can result in inappropriate treatment and unnec-
essary surgery [10–15]. In our previous study, we retrospectively
analyzed data obtained from 602 BA surgery cases, of which only 86%
were postoperatively confirmed with BA by pathological studies [16].
Therefore, it is critical to establish reliablemodels for the early detection
and diagnosis of BA. Unfortunately, the definitive diagnosis and confir-
mation of BA in suspected infants generally requires a liver biopsy and
intraoperative cholangiography (IOC) during the surgical procedure,
and these diagnostic methods have turned out to be invasive,
time-consuming, and costly [6, 17–20]. Obviously, there is an urgent
need for a reliable and better diagnostic approach to distinguish BA
from other form of neonatal cholestasis (NC) with different causes.

Serum activity of gamma-glutamyl transpeptidase (GGT), as a
non-invasive marker, has been extensively studied and proposed for
the diagnosis of BA [21–28]. In fact, GGT >300 U/L, or a daily increase
in its serum activity of 6 U/L for differentiating BA from neonatal hepa-
titis, had an accuracy of 85% and 88%, respectively [22]. El-Guindi and
colleagues reported that the serum activity of GGT at a cutoff value
(>286 U/L) had a sensitivity of 76.7% and specificity of 80% for the diag-
nosis of BA [29]. In our previous study, GGT activity in serum also
showed good performance ability in discriminating BA from other
causes in the Chinese population [21]. However, the reliability, accuracy,
and reproducibility of GGT activity alone was questionable. For
example, it has been demonstrated that healthy infants at birth have
higher levels GGT [23], and the normal range for levels of GGT may
vary dependent of age. Indeed, GGT corrected with age has shown
improvement in the accuracy of predicting BA. Until now, diagnostic
models using GGT in combination with other BA-related factors,
which are anticipated to offer a better approach for the diagnosis of
BA, have not been developed and evaluated for the diagnosis of BA.

In the present study, the demographic, clinical, and laboratory data
from a large-scale of infant patients with neonatal obstructive jaundice
(NOJ) were analyzed to examine the association between a number of
risk factors and BA. New prediction models, including decision tree
(DT), random forest (RF), and multivariate logistic regression-based
nomogram were developed and validated for the diagnosis of BA. The
results obtained through this study may offer a novel and better
algorithm for the diagnosis of BA and hold potential for clinical
application.

2. Patients and Methods

2.1. Human Subjects and Study Design

In this study, demographic, clinical, and laboratory test data of 1728
infant patients with NOJ between January 2012 and December 2017 at
the Children's Hospital of Fudan University were collected, reviewed,
and analyzed. Of these, 1512 patients with BA were assigned to the BA
group,while 216patients had other causes of NC, including 196patients
with neonatal hepatitis, 10 with alagille syndrome, and 8 with biliary
hypoplasia, who were allocated to the non-BA group. Intraoperative
cholangiography and subsequent histological examination of liver
biopsies were used for diagnostic confirmation of BA and non-BA. The
following inclusion criteria for BA patients were used with intent in
this study: (1) Pediatric patients were diagnosed as BA by intraopera-
tive cholangiography in combination with histological features of liver
biopsies, showing ductular proliferation, canalicular and cellular bile
stasis, portal or periportal inflammation, swelling and vacuolization of
biliary epithelial cells, edema and monocytic inflammatory cell infiltra-
tion of portal tracts, fibrosis with the presence of bile plugs in the portal
tract bile ducts, hepatocyte ballooning, and end-stage cirrhosis; (2) No
other severe systematic deformity was present, such as BA splenic
malformation syndrome. The inclusion criteria for pediatric patients
with cholestasis were cholestasis without BA, as confirmed by intraop-
erative cholangiography, and no other severe malformation in other
systems. Infants who had bile duct dysplasia and/or malformation of
other systems were excluded from the current study.

This study was reviewed and approved by the Institutional Review
Board (IRB) at the Children's Hospital of FudanUniversity,with awaiver
of requirement for informed consent due to the nature of this retrospec-
tive study. The studywas performed in compliancewith the Declaration
of Helsinki, and other relevant regulations.

2.2. Development and Validation of Decision Tree Model, Random Forest
Model, and Logistic Regression-based Nomogram for the Diagnosis of BA

Decision tree (DT) was conducted via R package rpart, and a DT plot
was drawn via rattle package. In brief, the root node asked, or the first
question: Was In(GGT) <4.8 in the patient? In generation of classifica-
tion trees, “no” indicated a branch to the right, while “yes” represented
a branch to the left. Terminal nodes were eventually for the prediction
of BA.

Random forest (RF), a tree-based ensemble consisting of tree-
structured classifiers, was built for the prediction via RF package with
500 regression trees. The importance of variables was shown in a figure,
using mean decrease accuracy and Gini.
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A diagnosis nomogram was constructed, based on multivariate
logistic regression analysis, using the rms package. The independent
variables included gender, weight, DB, ln(ALP), and ln(GGT). Decision
curve analysis (DCA) was performed to finalize the ranges of threshold
probabilities within which the nomograms were clinically valuable by
rmda package.

2.3. Statistical Analysis

Statistical analysis was performed using SAS 9.4 and R software.
Gender was described by n (%). Ln-transformation was conducted
for right-skewed distributed variables including ALP and GGT. Contin-
uous variables, which were not normally distributed, including
Table 1
Characteristics of the study subjects and univariate analysis.

Item Non-BA BA Total

Gender
* Male (%) 174 (80.56) 773 (51.12) 947 (
* Female (%) 42 (19.44) 739 (48.88) 781 (

Age (days)
* N (Missing) 216 (0) 1512 (0) 1728
* Mean ± SD 74.44 ± 24.28 73.73 ± 24.86 73.82
* Median 71.00 71.00 71.00
* Q1, Q3 58.00, 84.00 57.00, 86.00 57.00
* Min, Max 33.00, 175.00 3.00, 200.00 3.00,

Weight (kg)
* N (Missing) 193 (23) 1297 (215) 1490
* Mean ± SD 4.78 ± 1.17 5.22 ± 0.99 5.16 ±
* Median 5.00 5.00 5.00
* Q1, Q3 4.00, 5.50 4.50, 6.00 4.50,
* Min, Max 2.07, 10.00 2.00, 8.50 2.00,

TB (mmol/l)
* N (Missing) 216 (0) 1510 (2) 1726
* Mean ± SD 168.47 ± 54.97 170.23 ± 74.38 171.5
* Median 160 151.3 160.2
* Q1, Q3 130.80, 194.80 125.70, 198.30 134.2
* Min, Max 76.80, 387.90 74.90, 489.10 55.40

DB (mmol/l)
* N (Missing) 216 (0) 1510 (2) 1726
* Mean ± SD 121.96 ± 54.23 128.91 ± 40.99 128.0
* Median 109.65 122.30 121.6
* Q1, Q3 86.75, 140.30 101.90, 147.60 100.1
* Min, Max 11.70, 342.20 27.30, 337.20 11.70

ALT (U/L)
* N (Missing) 216 (0) 1504 (8) 1720
* Mean ± SD 129.03 ± 114.50 110.87 ± 99.68 113.1
* Median 99.00 91.00 91.50
* Q1, Q3 56.00, 157.00 60.00, 137.50 59.00
* Min, Max 8.00, 670.00 4.00, 2641.00 4.00,

AST (U/L)
* N (Missing) 213 (3) 1484 (28) 1697
* Mean ± SD 198.83 ± 173.15 168.06 ± 101.17 171.9
* Median 138.00 144.00 144.0
* Q1, Q3 89.00, 267.00 105.00, 200.50 103.0
* Min, Max 18.00, 1146.00 20.00, 1027.00 18.00

ln(ALP)
* N (Missing) 184 (32) 1395 (117) 1579
* Mean ± SD 6.44 ± 0.43 6.31 ± 0.41 6.32 ±
* Median 6.41 6.32 6.34
* Q1, Q3 6.17, 6.72 6.06, 6.57 6.07,
* Min, Max 5.57, 7.45 4.42, 7.60 4.42,

ln(GGT)
* N (Missing) 186 (30) 1354 (158) 1540
* Mean ± SD 5.21 ± 0.89 6.47 ± 0.83 6.32 ±
* Median 5.16 6.59 6.42
* Q1, Q3 4.61, 5.71 5.92, 7.10 5.69,
* Min, Max 2.30, 7.78 3.56, 8.59 2.30,
weight, DB, ln(AFP) and ln(GGT), were expressed as median and
quartiles (Q1, Q3). In univariate analysis, the Chi-squared test was
conducted for gender, while Wilcoxon tests were used and performed
for all continuous variables. ROC curves were constructed to calculate
the best cutoff point and area under curve (AUC) for DB, ln(ALP) and
ln(GTT) as single predictor separately using the training data. The
sensitivity, specificity, PPV, and NPV were used to show the predictive
properties using validation data. The performance of the nomogram
was measured by the C-index and calibration curve with 1000 Boot-
strap resample. In the present study, both internal and external
validations were conducted with training data and validation data
for all prediction models. Statistically significant difference was
defined as a P-value <.05.
Method Statistic P value

Chi-square test χ2=66.09 <0.0001
54.80)
45.20)

Rank-sum test Z = 0.35 0.7254
(0)
± 24.78

, 85.00
200.00

Rank-sum test Z =−5.38 <0.0001
(238)
1.03

6.00
10.00

Rank-sum test Z =−0.65 0.5142
(2)
7 ± 58.00
0
0, 195.50
, 533.20

Rank-sum test Z =−4.17 <0.0001
(2)
4 ± 42.91
0
0, 147.00
, 342.20

Rank-sum test Z = 0.66 0.5116
(8)
5 ± 101.80

, 140.00
2641.00

Rank-sum test Z =−0.29 0.7726
(31)
2 ± 113.14
0
0, 203.00
, 1146.00

Rank-sum test Z = 3.65 0.0003
(149)
0.41

6.59
7.60

Rank-sum test Z =−15.30 <0.0001
(188)
0.94

7.04
8.59
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3. Results

3.1. Demographic, Laboratory, and Clinical Characteristics of the Study
Subjects

A total of 1728 infant patients, spanning the period between January
2012 and December 2017, who met the eligibility criteria were retro-
spectively enrolled, of which 1512 (87.5%) patients were diagnosed as
BA, while 216 (12.5%) patients were confirmed to have cholestasis
with other cause or non-BA. The demographic, laboratory, and clinical
characteristics of the study subjects in the BA and non-BA groups
were summarized in Table 1. The mean age of the infant patients was
73.8 (SD, 24.8) days, with 73.7 (SD, 24.9) in the BA group and 74.4
(SD, 24.3) in the non-BA group. A majority of non-BA patients were
male (80.6%), while the gender distribution was nearly equal in the
BA group (51% male, 49% female). The detailed description of other
characteristics including weight, TB, DB, ALT, AST, ln(ALP) and ln
(GGT) were also listed in Table 1. As a result, gender, weight, DB, ln
(ALP), and ln(GGT) were identified to have significant differences
between the BA and non-BA groups (P< .05), whereas the two groups
did not show any differences in age, TB, ALT, and AST (P> .05).

Preoperative levels of total bilirubin, direct bilirubin, and GGT were
significantly higher in the BA group (P < .05), whereas the non-BA
group had higher alkaline phosphatase levels (ALP) (P< .05).

3.2. Univariate Logistic Regression Analysis of Variables Significantly
Associated with BA

To determine the independent variables associated with BA, univar-
iate logistic regression analysis was performed. Statitically significant
differences in the variables, including gender, weight, DB, ln(ALP), and
ln(GGT), were identified between the BA and non-BA groups (Table 1)
(P < .05). ln(GGT) showed a good independent prediction property
with an AUC >0.8. However, the AUC of DB and ln(ALP) were <0.6
(Table 2).

3.3. Establishment and Validation of the Decision Tree Model in Predicting
BA

The decision tree (DT) for prediction of BA included 5 study
variables: gender, weight, DB, ln(ALP), and ln(GGT), and were
constructed via R package rpart. In an establishment of the DT model,
the first question, also known as the root node, queried (1) was ln
(GGT) <4.8 in the patient? In classification trees, “no” represented a
branch to the right. If the answer was “no”, the second question
asked: (2) was ln (GGT) <5.7 in the patient? The infant patients who
Table 2
Prediction properties of internal and external validation.

Method Internal validation

AUC Cutoff SEN SPE

Decision Tree* / / 0.980 0.554
Random Forest* / / 0.974 0.605
DB 0.567 93.7 0.837 0.318

76.9 0.950 0.146
ln(ALP) 0.572 6.3 0.656 0.468

7.0 0.950 0.121
ln(GGT) 0.845 5.8 0.786 0.796

4.9 0.950 0.408
GGT < 300 (U/l) 0.000 1.000
GGT≥300 (U/l) 0.960 0.200
Logistic Regression*§ 0.898 0.85 0.857 0.803

0.65 0.950 0.599
GGT < 300 (U/l) 0.448 0.957
GGT≥300 (U/l) 0.951 0.350

Abbreviations: AUC, area under receiver operating characteristic (ROC) curve; SEN, sensitivity;
Note: *Based on the combination of gender, weight, DB, ln(ALP) and ln(GGT).§The external val
did not meet the criteria were classified as BA (terminal node 7). For
those patients who met the criteria, the tree further queried: (3) was
the gender of the patient male? If the answer was “no”, the patients
were classified as BA (terminal node 13). For those male patients, the
next question asked: (4) was the weight of the patient <3.8? If “yes”,
the patients were classified as BA (terminal node 24). For those who
did not met the criteria, the fifth question was: (5) was DB < 74 in the
patient? The patients who did not fulfill the criteria were classified as
BA (terminal node 50). If “no”, the next question queried: (6) was the
weight of the patient <5.2? If “no”, the patients were classified as BA
(terminal node 103). For those who did not met the criteria, the subse-
quent questionwas: (7) was DB ≥ 134 in the patient? The patients were
classified as BA with different probabilities (terminal nodes 204 and
205).

For the patients with ln (GGT) <4.8 in the question 1 (root node) in
the left branch, the first question queried: (1) was the gender of the
patient male? If the answer was “yes”, the second question asked:
(2) was the weight of the patient <6.2? the patients were classified as
BA with different probabilities (terminal nodes 8 and 9). If the answer
was “no” in question 1, the next question asked: (3) was ln (GGT)
<4.2 in the patient? The patients were classified as BA with different
probabilities (terminal nodes 10 and 11). As shown in Table 2 and
Fig. 1, the DT revealed that the probability of BA was 0.96 when ln
(GGT) was >5.7, whereas the probability of non-BA was 0.93 when ln
(GGT) was <5.7 with male gender and weight <3.8.

3.4. Establishment and Validation of the Random ForestModel in Predicting
BA

A random forest (RF) classification algorithm was created using RF
package with a 500 regression tree for the prediction of BA. As with
other models, all variables were included and time lags with more
than five steps were trained. The importance of each variable was
subsequently measured by calculating how much reduction each
variable offers when they were added to the RF model. As shown in
Fig. 2, ln(GTT) was the most important variable and was most closely
related to BA, which was followed by gender, weight, DB, and ln (ALP)
by mean decrease accuracy, and by DB, ln(ALP), weight, and gender
by mean decrease Gini.

3.5. Establishment and Validation of the Logistic Regression-based Nomo-
gram in Predicting BA

A nomogram to predict BA was developed on the basis of multivar-
iate logistic regression analysis using the five factors whichwere identi-
fied to be statistically different between the BA and non-BA groups,
External validation

PPV NPV SEN SPE PPV NPV

0.941 0.791 0.910 0.405 0.784 0.653
0.947 0.760 0.917 0.446 0.798 0.692
0.900 0.212 0.646 0.537 0.769 0.389
0.890 0.286 0.878 0.372 0.769 0.563
0.900 0.157 0.514 0.545 0.729 0.320
0.887 0.249 0.997 0 0.703 0
0.966 0.338 0.885 0.124 0.706 0.313
0.921 0.528 0.997 0 0.703 0
/ 0.344 0.000 1.000 / 0.508
0.965 0.178 0.945 0.033 0.867 0.083
0.969 0.434 0.712 0.760 0.876 0.526
0.945 0.622 0.837 0.570 0.823 0.595
0.952 0.477 0.284 0.890 0.714 0.563
0.971 0.237 0.900 0.367 0.905 0.355

SPE, specificity; PPV, positive prediction value; NPV, negative prediction value.
idation was based on the cutoff value.



Fig. 1. Decision tree for the prediction of BA using gender, weight, DB, ln(ALP), and ln(GGT). The DT included five variables: gender, weight, DB, ln(ALP), and ln(GGT), and were built via
R package rpart. In the formation of DTmodel, the root nodequeried:was ln (GGT)<4.8 in thepatient? In classification trees, “no” represented a branch to the right, while “yes” indicated a
branch to the left. A total of 11 terminal nodes were generated for the DT model.
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including gender, weight, DB, ln(ALP), and ln(GGT). The relationship
between these factors and BA was assessed using the multivariate
logistic regression analysis and the resulting data were presented in
Table 3. The odds ratios for BA were calculated for these factors. We
identified that gender, weight, DB, ln (ALP), and ln(GGT) were signifi-
cantly associated with BA, and thus were used as predictors to build
Fig. 2. Random forest for evaluation of the importance of the study variables in the prediction of
for the prediction of BA using the five variables (gender, weight, DB, ln(ALP), and ln(GGT)), i
subsequently evaluated in RF.
the nomogram prediction model for BA (Fig. 3A). As shown in Fig. 3A,
there were 8 rows in the nomogram, with the rows ranging from 2 to
6 representing the included variables. The points of the five variables
were added up to the total points, which were displayed in the row 7
and corresponded to the risk probability in the prediction of BA in the
row 8, and the nomogram showed the risk of BA as a percentage. The
BA. RF classification algorithm using RF packagewith 500 regression tree was constructed
n time lags with more than five steps were trained. The importance of each variable was

Image of Fig. 1
Image of Fig. 2


Table 3
The logistic regression analysis to construct the nomogram for the prediction of BA.

Parameter β Wald χ2 OR 95% CI P value

Intercept −12.0165 35.0449 / / / <0.0001
Gender 1.8558 52.6817 6.397 3.876 10.559 <0.0001
Weight 0.6704 38.4313 1.955 1.582 2.417 <0.0001
DB 0.0081 12.2552 1.008 1.004 1.013 0.0005
ln(ALP) −0.5294 4.0630 0.589 0.352 0.985 0.0438
ln(GGT) 1.8263 147.9369 6.211 4.627 8.336 <0.0001

Abbreviation: OR, odds ratio; CI, confidential interval.
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area under ROC curve (AUC) value of 0.898 for the nomogram was
obtained, which was greater than the AUC values of 0.848 for ln(GGT),
0.572 for ln(ALP), and 0.567 for DB in the prediction of BA (Fig. 3B,
Table 3).

The calibration blots with 1000 Bootstrap resample were illustrated
in Fig. 3C, showing that the nomogram-predicted probabilities of BA
were similar to the actual probabilities of BA, indicating that the predic-
tionwas in good agreement with the actual observation, in terms of the
probability of BA (Fig. 3C). These findings also suggested that the
Fig. 3.Multivariate logistic regression-based Nomogram to predict the probability of BA. Nomo
DB, ln(ALP), and ln(GGT). (A) The construction of the nomogram using gender, weight, DB, ln(
under ROC curve (AUC) valuewas 0.898 for the formulatednomogram for the diagnosis of BA. (
BAwere similar to the actual probabilities of BA. (D) Decision curve analysis (DCA) of the predic
net benefit of 9.4% at 80% of threshold probability.
discrimination ability of the nomogram for prediction of BA could be
generalizable to the other populations and may be clinically applicable.

Furthermore, decision curve analysis (DCA) was applied to render
clinical validity to the nomogram and ln(GGT) for diagnosis of BA. The
results corroborated good clinical applicability of the nomogram and
ln(GGT) in predicting BA, because the ranges of threshold probabilities
were wide and practical (Fig. 3D). The specific standardized net benefit
of the nomogram and ln(GGT) under different threshold probabilities
were presented in Suppl. Table 1. DCA displayed a net benefit of 9.4%
at 80% of the threshold probability, which was superior to ln(GGT)
and 30.2% superior to the baseline model (Fig. 3D, Suppl. Table 1).

3.6. Performance Comparison of the Three Models for the Diagnosis of BA

After having successfully constructed the DT, RF, and nomogram for
the diagnosis of BA, we made performance comparison of the three
models. The nomogram demonstrated greater discriminative ability
with the sensitivity of 85.7%, specificity of 80.3%, and PPV of 0.969 at
the optimal cut-off value in contrast to the other two algorithms DT
and RF, which displayed relatively similar high values of sensitivity
gram for prediction of BA was created using the following five predictors: gender, weight,
ALP) and ln(GGT) as predictors. (B) Receive operating characteristic (ROC) plots. The area
C) The calibration curve for the predictionmodel. The nomogram-predicted probabilities of
tion nomogram for BA, showingwide and practical ranges of threshold probabilitieswith a

Image of Fig. 3
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and PPV (0.941 for DT and 0.947 for RF), but low specificity in the
modeling group. In this regard, the nomogram has more potential
than the DT and RF in the clinical application. Moreover, the validation
of the multivariate logistic regression-based nomogram showed high
stability and reproducibility. It was of note that the three models
displayed similarly high values of PPV (0.941 for DT, 0.947 for RF, and
0.95 for nomogram at the cut-off value set at 0.65), and therefore DT,
RF and nomogram were able to identify patients with BA. Meanwhile,
we noticed that the NPV values of the three models were not high,
suggesting that the threemodelswere not very helpful for the excluding
diagnosis of BA.

We also compared the discriminative capacity between the nomo-
gram and each risk predictor alone, particularly GGT. When the study
subjects were stratified by GGT into two subgroups (GGT < 300 U/L
and ≥ 300 U/L), the diagnosis sensitivity and specificity were 0 and 1
for GGT < 300 U/L, 0.960 and 0.200 for GGT ≥ 300 U/L, whereas those
for the nomogram were 0.448 and 0.957 in the subgroup (GGT < 300
U/L), and 0.951 and 0.350 in the subgroup (GGT ≥ 300 U/L). In addition,
the nomogram displayed the consistence of the performance between
themodeling and validation sets in the nomogram. However, the sensi-
tivity, specificity, and PPV values (0.786, 0.795, and 0.966) for GGT alone
in themodeling groupwere notwell reproduced in the validation group
(0.885, 0.124, and 0.706, respectively). Therefore, the nomogram was
superior to the GGT alone in the diagnosis of BA.

In summary, the discriminative capacities of the nomogram
outperformed the DT and RF, as well as GGT alone, in the diagnosis of
BA. Moreover, the specificity of the nomogram to identify the patients
with BA was among the highest of all the three models developed.
Due to the above reasons, we believe that the nomogram was the
most appropriate to predict BA among infant patients with NOJ.

4. Discussion

The accurate diagnosis of BA using the existing diagnostic
approaches is challenging primarily due to the overlapping features
between BA and the other forms of NC with different causes, also
referred to as non-BA. Aside from that reason, the current diagnostic
methods are costly, time-consuming, and highly invasive. As a serum
biomarker, GGT has been used for the diagnosis of BA in newborn
infants who have been suspected of suffering from neonatal cholesta-
sis [21–24, 26, 27]. However, the reliability and reproducibility of GGT
alone needs to be improved. The development of new diagnostic
models using GGT, in combination with other BA-associated risk
factors, has a potentially better capacity for distinguishing BA from
non-BA, and therefore could be clinically significant. The present
study, based on a large sample size of 1728 cases, has the following
main novel findings: (1) levels of DB, ALP, and GGT were significantly
higher in BA patients; (2) the AUC value for the multivariate logistic
regression-based nomogram was greater than that for ln(GGT), ln
(ALP), or DB alone in the prediction of BA; (3) the discriminatory abil-
ity was significantly improved when GGT was combined with addi-
tional risk predictors, including weight, gender, DB, and ALP; and
(4) our results support that the nomogram established in this study
had better performance, and therefore holds promise for clinical appli-
cation for BA diagnosis.

Early detection and accurate diagnosis of BA has been critical for
timely intervention with implementation of the Kasai operation to
restore bile flow and slowdown the progression of this disease in
newborn infants [13, 18, 19, 30]. The current preoperative approaches
for the diagnosis of BA primarily include several medical imaging
techniques, such as ultrasound imaging of the liver, cross-sectional
magnetic resonance imaging (MRI), and cholangiopancreatography
(MRCP). The duodenal tube test (DTT) and liver biopsy [6, 19, 29, 30]
are two other preoperative screening techniques. The existing diagnos-
tic methods appear to have a number of limitations, either being costly,
time consuming, technically difficult, or highly invasive.
Recent progresses have been made in the development of nonin-
vasive serum biomarkers for diagnosing BA, of which GGT has been
extensively investigated and verified. Multiple studies, including
ours, have demonstrated that the GGT levels are higher in patients
with BA than in non-BA controls, and the reliability of GGT was age-
dependent [21, 23, 24]. We recently demonstrated that GGT levels
were significantly greater in younger infants with BA (age < 30
days) than the older patients [21]. In the same study, the diagnostic
value of GGT levels was highest among infant patients aged 61–90
days with a sensitivity of 82.8% and specificity of 81.6% in the discrim-
ination of BA from non-BA cases [21]. Until now, limited studies have
been performed on GGT levels coupled with additional risk factors. To
date, few studies have been carried out to establish a diagnostic model
using both non-invasive markers and other risk factors. In the present
study, we identified a number of risk factors which were significantly
different between BA and non-BA patients, including weight, age, DB,
ALP, and GGT. Higher expression of GGT was detected in the BA pa-
tients as compared to non-BA patients. When all five risk factors
were considered in the development of the multivariate logistic
regression-based nomogram, the discrimination ability and
diagnostic value were improved. Furthermore, the nomogram
established in this study has turned out to be feasible and accurate
for the diagnosis of BA, and thereby has potential for clinical
application.

It has been reported that GGT >300 U/L or a daily increase of 6 U/L
can be used to differentiate BA from neonatal hepatitis with an accuracy
of 85% and 88%, respectively [21]. However, a portion of infant patients
eventually diagnosed as BA by intraoperative cholangiography had GGT
<300 U/L, which has posed a special challenge for the preoperative
differential diagnosis of BA. In this regard, the present established
nomogram, exhibiting better value in the preoperative diagnosis of BA
among infantswith GGT < 300 U/L, could improve the clinical diagnosis
rate of BA and reduce the false positive rate, which apparently merits
attention.

While the present study has offered useful information about the
value of the nomogram from the diagnosis of BA, it has a number of
limitations that must be acknowledged. First, the nomogram was
established based on a single-center cohort study. However, our center
is the largest treatment center for BA nationwide. Secondly, the study
was conducted retrospectively, and selection bias might exist. Thirdly,
this nomogram is only based on regular clinical characteristics and
liver function, while other biomarkers were not assessed. Forthly, this
nomogram may not confirm the precise diagnosis for early detection
in the atypical course. Lastly, the sensitivity and specificity of the nomo-
gram may be further improved in the future.

Most recently, we investigated circulating microRNAs (miRNAs)
using serum miRNA microarray analysis and identified miR-4429 and
miR-4689 as potential biomarkers for the diagnosis of BA [31]. In our
previous study, we found that AUC of miR-4429 was 0.789 with
sensitivity of 83.3% and specificity of 80.0%, while the AUC of
miR-4689 was 0.722 with sensitivity of 66.7% and specificity of 80.0%
for the prediction of BA, suggesting that circulating miR-4429 and
miR-4689 may play a role in the diagnosis of BA [31]. Our studies have
shown that GGT, combined with other factors in the nomogram, signif-
icantly improved the discriminatory ability in the diagnosis of BA. It is
worthwhile carrying out further studies to find better and more
effective serum marker combinations, such as miRNA-4429 and
miR-4689 [31], for the early diagnosis of BA among the patients with
NOJ. Zahm et al. revealed that the AUC value of miR-200b/429 was
>0.80, suggesting promising diagnostic performance for BA [32].
Wang and colleagues reviewed 38 independent studies investigating
the early differential diagnostic methods of BA in patients with infantile
cholestasis, and reported that the sensitivities and specificities varied,
ranging from 77% to 93% and 84% to 97%, respectively [33]. However,
there are no commercially available standard kits for examination of
the above small molecular markers.
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Todate, there are still feweffectivemarkers that havebeen evaluated
in clinical practice, except for GGT. Most recently, Kim and colleagues
established aMRI-basedDTmodel for the diagnosis of BA among infants
with jaundice and reported high performance with sensitivity of 97.3%,
specificity of 94.8%, and accuracy of 96.2% [34]. The present nomogram,
whichwas generated based upon serummarkers, particularly GGT, had
relatively lower sensitivity (85.7%) and specificity (80.3%). However, in-
fants are usually uncooperative and therefore need procedural pediatric
sedation or a general anesthetic (GA) to undergo MRI examination. In
addition, laboratory tests are less costly thanMRI. Thus, the combination
of the nomogram with MRI-based DT for the diagnosis of BA in infants
may need further investigation. Additionally, the integration of features
from US and MRI findings may be used to establish a more effective
model for diagnosing BA, and such a study is underway in our center.

Taken together, our study has successfully established novel models,
including DT, RF, and multivariate logistic regression-based nomogram,
to prioritize patients and to diagnose BA among patients suffering from
NOJ. Of these, the multivariate logistic regression-based nomogram has
demonstrated better performance for the prediction of BA and holds
promise for clinical application in the diagnosis of BA.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.07.025.

Funding Sources

This study received financial support from Shanghai Hospital Devel-
opment Center (SHDC12014106), Shanghai Key Disciplines
(no.2017ZZ02022), the National Natural Science Foundation of China
(no. 81370472, no. 81770519, no. 81771633, no. 81401243 and no.
81500394), Shanghai Rising-Star Program (A type) (no.
15QA1400800), the Science Foundation of Shanghai Excellent Youth
Scholars (no. 2017YQ042), and the Science Foundation of Shanghai
(no. 16411952200, no. 16140902300 and no. 17411960600).

Author Contributions

Shan Zheng and Yijie Zheng conceived and designed the study. Rui
Dong, Jingying Jiang and Shouhua Zhang analysis the data and wrote
the paper. Zhen Shen, Gong Chen and Yanlei Huang reviewed and
edited the manuscript. All authors read and approved the manuscript.

Conflict of Interest

Yijie Zheng is an employee of Abbott Diagnostics.

References

[1] Mack, C.L., 2015]. What causes biliary atresia? Unique aspects of the neonatal im-
mune system provide clues to disease pathogenesis. Cell Mol Gastroenterol Hepatol
1 (3), 267–274.

[2] Mack, C.L., Feldman, A.G., Sokol, R.J., 2012]. Clues to the etiology of bile duct injury in
biliary atresia. Semin Liver Dis 32 (4), 307–316.

[3] Chiu, C.Y., Chen, P.H., Chan, C.F., Chang, M.H., Wu, T.C., Taiwan Infant Stool Color
Card Study G, 2013]. Biliary atresia in preterm infants in Taiwan: a nationwide sur-
vey. J Pediatr 163 (1), 100–103 [e101].

[4] Alagille, D., 1984]. Extrahepatic biliary atresia. Hepatology 4 (1 Suppl), 7S–10S.
[5] Bassett, M.D., Murray, K.F., 2008]. Biliary atresia: recent progress. J Clin

Gastroenterol 42 (6), 720–729.
[6] Chardot, C., 2006]. Biliary atresia. Orphanet J Rare Dis 1, 28.
[7] Sokol, R.J., Shepherd, R.W., Superina, R., Bezerra, J.A., Robuck, P., Hoofnagle, J.H.,

2007]. Screening and outcomes in biliary atresia: summary of a National Institutes
of Health workshop. Hepatology 46 (2), 566–581.

[8] Feldman, A.G., Mack, C.L., 2015]. Biliary atresia: clinical lessons learned. J Pediatr
Gastroenterol Nutr 61 (2), 167–175.

[9] Dong, R., Song, Z., Chen, G., Zheng, S., Xiao, X.M., 2013]. Improved outcome of
biliary atresia with postoperative high-dose steroid. Gastroenterol Res Pract
2013, 902431.

[10] Lai, H.S., Chen, W.J., Chen, C.C., Hung, W.T., Chang, M.H., 2006]. Long-term prognosis
and factors affecting biliary atresia from experience over a 25 year period. Chang
Gung Med J 29 (3), 234–239.

[11] de Vries, W., Homan-Van der Veen, J., Hulscher, J.B., et al., 2011]. Twenty-year
transplant-free survival rate among patients with biliary atresia. Clin Gastroenterol
Hepatol 9 (12), 1086–1091.

[12] Shinkai, M., Ohhama, Y., Take, H., et al., 2009]. Long-term outcome of children with
biliary atresia who were not transplanted after the Kasai operation: >20-year expe-
rience at a children's hospital. J Pediatr Gastroenterol Nutr 48 (4), 443–450.

[13] Chen, G., Zheng, S., Sun, S., et al., 2012]. Early surgical outcomes and pathological
scoring values of older infants (≥90 d old) with biliary atresia. J Pediatr Surg 47
(12), 2184–2188.

[14] Sira, M.M., Taha, M., Sira, A.M., 2014]. Commonmisdiagnoses of biliary atresia. Eur J
Gastroenterol Hepatol 26 (11), 1300–1305.

[15] Serinet, M.O., Broue, P., Jacquemin, E., et al., 2006]. Management of patients with bil-
iary atresia in France: results of a decentralized policy 1986-2002. Hepatology 44
(1), 75–84.

[16] Sun, S., Chen, G., Zheng, S., et al., 2013]. Analysis of clinical parameters that contrib-
ute to the misdiagnosis of biliary atresia. J Pediatr Surg 48 (7), 1490–1494.

[17] Boskovic, A., Kitic, I., Prokic, D., Stankovic, I., Grujic, B., 2014]. Predictive value of he-
patic ultrasound, liver biopsy, and duodenal tube test in the diagnosis of extrahe-
patic biliary atresia in Serbian infants. Turk J Gastroenterol 25 (2), 170–174.

[18] Chardot, C., Serinet, M.O., 2006]. Prognosis of biliary atresia: what can be further im-
proved? J Pediatr 148 (4), 432–435.

[19] Chardot, C., Carton, M., Spire-Bendelac, N., Le Pommelet, C., Golmard, J.L., Auvert, B.,
1999]. Prognosis of biliary atresia in the era of liver transplantation: French national
study from 1986 to 1996. Hepatology 30 (3), 606–611.

[20] Jiang, L.P., Chen, Y.C., Ding, L., et al., 2013]. The diagnostic value of high-frequency
ultrasonography in biliary atresia. Hepatobiliary Pancreat Dis Int 12 (4), 415–422.

[21] Chen, X., Dong, R., Shen, Z., Yan, W., Zheng, S., 2016]. Value of gamma-glutamyl
transpeptidase for diagnosis of biliary atresia by correlation with age. J Pediatr
Gastroenterol Nutr 63 (3), 370–373.

[22] Liu, C.S., Chin, T.W., Wei, C.F., 1998]. Value of gamma-glutamyl transpeptidase for
early diagnosis of biliary atresia. Zhonghua Yi Xue Za Zhi (Taipei) 61 (12), 716–720.

[23] Cabrera-Abreu, J.C., Green, A., 2002]. Gamma-glutamyltransferase: value of its mea-
surement in paediatrics. Ann Clin Biochem 39 (Pt 1), 22–25.

[24] Rendon-Macias, M.E., Villasis-Keever, M.A., Castaneda-Mucino, G., Sandoval-Mex,
A.M., 2008]. Improvement in accuracy of gamma-glutamyl transferase for differen-
tial diagnosis of biliary atresia by correlation with age. Turk J Pediatr 50 (3),
253–259.

[25] Tang, K.S., Huang, L.T., Huang, Y.H., et al., 2007]. Gamma-glutamyl transferase in the
diagnosis of biliary atresia. Acta Paediatr Taiwan 48 (4), 196–200.

[26] Maggiore, G., Bernard, O., Hadchouel, M., Lemonnier, A., Alagille, D., 1991]. Diagnos-
tic value of serum gamma-glutamyl transpeptidase activity in liver diseases in chil-
dren. J Pediatr Gastroenterol Nutr 12 (1), 21–26.

[27] Wang, H., Malone, J.P., Gilmore, P.E., et al., 2010]. Serum markers may distinguish
biliary atresia from other forms of neonatal cholestasis. J Pediatr Gastroenterol
Nutr 50 (4), 411–416.

[28] Ceriotti, F., 2017]. Quality specifications for the extra-analytical phase of labora-
tory testing: reference intervals and decision limits. Clin Biochem 50 (10−11),
595–598.

[29] El-Guindi, M.A., Sira, M.M., Sira, A.M., et al., 2014]. Design and validation of a diag-
nostic score for biliary atresia. J Hepatol 61 (1), 116–123.

[30] Zagory, J.A., Nguyen, M.V., Wang, K.S., 2015]. Recent advances in the pathogenesis
and management of biliary atresia. Curr Opin Pediatr 27 (3), 389–394.

[31] Dong, R., Shen, Z., Zheng, C., Chen, G., Zheng, S., 2016]. Serum microRNA microarray
analysis identifies miR-4429 and miR-4689 are potential diagnostic biomarkers for
biliary atresia. Sci Rep 6, 21084.

[32] Zahm, A.M., Hand, N.J., Boateng, L.A., Friedman, J.R., 2012]. Circulating microRNA is a
biomarker of biliary atresia. J Pediatr Gastroenterol Nutr 55 (4), 366–369.

[33] Wang, L., Yang, Y., Chen, Y., Zhan, J., 2018]. Early differential diagnosis methods of
biliary atresia: a meta-analysis. Pediatr Surg Int 34 (4), 1–18.

[34] Kim, Y.H., Kim, M.J., Shin, H.J., et al., 2018]. MRI-based decision tree model for diag-
nosis of biliary atresia. Eur Radiol 28 (8), 1–10.

https://doi.org/10.1016/j.ebiom.2018.07.025
https://doi.org/10.1016/j.ebiom.2018.07.025
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0005
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0005
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0005
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0010
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0010
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0015
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0015
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0020
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0025
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0025
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0030
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0035
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0035
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0040
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0040
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0045
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0045
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0045
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0050
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0050
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0050
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0055
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0055
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0055
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0060
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0060
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0060
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0065
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0065
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0065
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0070
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0070
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0075
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0075
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0075
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0080
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0080
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0085
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0085
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0085
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0090
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0090
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0095
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0095
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0100
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0100
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0105
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0105
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0105
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0110
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0110
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0115
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0115
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0120
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0120
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0120
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0125
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0125
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0130
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0130
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0130
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0135
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0135
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0135
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0140
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0140
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0140
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0145
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0145
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0150
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0150
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0155
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0155
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0155
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0160
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0160
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0165
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0165
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0170
http://refhub.elsevier.com/S2352-3964(18)30268-8/rf0170

	Development and Validation of Novel Diagnostic Models for Biliary Atresia in a Large Cohort of Chinese Patients
	1. Introduction
	2. Patients and Methods
	2.1. Human Subjects and Study Design
	2.2. Development and Validation of Decision Tree Model, Random Forest Model, and Logistic Regression-based Nomogram for the...
	2.3. Statistical Analysis

	3. Results
	3.1. Demographic, Laboratory, and Clinical Characteristics of the Study Subjects
	3.2. Univariate Logistic Regression Analysis of Variables Significantly Associated with BA
	3.3. Establishment and Validation of the Decision Tree Model in Predicting BA
	3.4. Establishment and Validation of the Random Forest Model in Predicting BA
	3.5. Establishment and Validation of the Logistic Regression-based Nomogram in Predicting BA
	3.6. Performance Comparison of the Three Models for the Diagnosis of BA

	4. Discussion
	Funding Sources
	Author Contributions
	Conflict of Interest
	References


