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Abstract: The integration of cloud-fog-edge computing in Software-Defined Vehicular Ad hoc Net-
works (SDN-VANETs) brings a new paradigm that provides the needed resources for supporting
a myriad of emerging applications. While an abundance of resources may offer many benefits, it
also causes management problems. In this work, we propose an intelligent approach to flexibly and
efficiently manage resources in these networks. The proposed approach makes use of an integrated
fuzzy logic system that determines the most appropriate resources that vehicles should use when
set under various circumstances. These circumstances cover the quality of the network created
between the vehicles, its size and longevity, the number of available resources, and the require-
ments of applications. We evaluated the proposed approach by computer simulations. The results
demonstrate the feasibility of the proposed approach in coordinating and managing the available
SDN-VANETs resources.

Keywords: VANETs; IoV; SDN; fuzzy logic; cloud computing; fog computing; edge computing;
resource management; predicted contact duration

1. Introduction

According to World Health Organization, around 1.3 million people die every year
because of road traffic crashes [1]. The key risk factors come from human error (speeding,
wrong decisions, etc.), irresponsible behavior (drinking, distracted driving, fatigue, etc.),
unsafe road infrastructure, and bad weather conditions (e.g., inadequate visibility and
slippery roads) [2–4]. Vehicular Ad hoc Networks (VANETs) have emerged as a solution to
alleviate all these factors by means of different applications [5–7]. For example, implement-
ing an accident prevention system in VANETs that considers velocity, weather condition,
risk location, nearby vehicles density, and driver fatigue can reduce the number of road
crashes and consequently the number of deaths [8]. Other applications, on the other hand,
can improve traffic management and the driving experience [9–11].

Nevertheless, safety and traffic management are correlated to each other in many
ways. For instance, traffic congestion leads to a higher risk for car crashes, as drivers are
prone to drive faster in order to compensate for the delay caused by traffic [12]. There exist
many vehicular navigation systems, with Google Maps being the most popular, which
recommend alternative routes to vehicles to avoid traffic congestion. Such navigation
systems compute different alternative routes in terms of shortest driving distance, shortest
driving time and lowest driving cost (in case of toll roads) [13]. However, taking into
account merely these parameters does not actually achieve the goals of traffic management
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systems as navigation systems only serve each vehicle individually, thus offering better
services only for their drivers. VANETs, on the other hand, accomplish substantially bigger
goals. They benefit all road users, without any exception, mostly by depending only
on content awareness and inter-vehicle communications. Context-awareness is expected
to play a key role in VANETs, not only by ameliorating traffic management, but also
other important metrics such as the driving experience, the safety of road users, and the
environmental impact [14]. The inter-vehicle communication in VANETs enables a broader
horizon of awareness for the state of other vehicles in the network and the condition of
the surrounding environment. Such data include information about traffic lights, weather
conditions, public safety information, and so on. Furthermore, the response time in VANETs
is dramatically reduced as vehicles would be notified in real time, almost immediately after
some situation occurs [15–17].

In terms of networking, VANETs can be defined as networks of vehicles spontaneously
created, able to connect vehicles with other vehicles in the network and with the infras-
tructure via Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication
links [18]. They are a subclass of Mobile Ad hoc Networks (MANETs), and as such are based
on inter-vehicle communication and do not rely on central coordination [19]. The vehicles
behave as sensor nodes and relay the messages via one-hop or multi-hop communications.
The infrastructure includes Road Side Units (RSUs), road signs, Electronic Toll Collection
(ETC), and so on. For example, RSUs are deployed along the roads and are used to increase
robustness, connectivity, and coverage by acting as static sensors and relay nodes [20].

The evolution of the 5th Generation of Cellular Networks (5G) marks a huge leap
in the advance of VANETs. 5G base stations (5G-NR gNodeB) can serve as a gateway to
the Internet and therefore enable big data storage, processing, and analyzing in the cloud
infrastructure [20]. Due to the integration of Artificial Intelligence (AI), cloud platforms
will be able to take better decisions to enhance the driving experience. Vehicles will be able
to exchange information with many more entities, such as pedestrians, infrastructure, and
networks, via Vehicle-to-Everything (V2X) communications [21]. With all these entities
connected through vehicles and with many others being designed for the Internet of
Things (IoT), the term ad hoc was considered obsolete by many researchers as it does not
comprehensively cover the wide range of technologies involved within/connecting these
entities [22–25]. The concept of the Internet of Vehicles (IoV) has emerged as a broader
concept to better represent the new era of vehicular networks [26]. However, since IoV is
somewhat equivalent with the novel VANET architectures, which are very different from
traditional VANETs, in this work we consider these two concepts interchangeable.

Even though the IoV will open many possibilities for a plethora of applications, there
are still many challenges that are yet to be addressed [7,10,27,28]. Of the utmost importance
is, for example, the management of the abundant information and resources available in
these networks. Even a single vehicle generates huge amounts of data and considering the
fact that the number of vehicles keeps increasing, managing these networks becomes more
difficult. In addition, many new applications that require more and more resources come
along continually, leading to increased complexity in network management.

In this work, we deal with the resource management problem for which we propose
an intelligent architecture based on Fuzzy Logic (FL) and Software Defined Networking
(SDN) approaches that can efficiently manage cloud-fog-edge storage, computing, and
networking resources in VANETs. By using FL, the proposed approach can manage the
resources in real-time while dealing with imprecision and uncertainty. The contributions of
the work are summarized as follows:

• The paper presents an integrated system, called Integrated Fuzzy-based System for
Coordination and Management of Resources (IFS-CMR), which, different from existing
approaches, makes a decision following a bottom-up approach in a cloud-fog-edge
architecture.
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• IFS-CMR considers the condition of the network created between vehicles, such as the
Quality of Service (QoS) in the network and the unused amount of resources, together
with the application requirements, to select the best resources for a particular situation.

• IFS-CMR is composed of three subsystems, namely Fuzzy-based System for Assess-
ment of QoS (FS-AQoS), Fuzzy-based System for Assessment of Neighbor Vehicle
Processing Capability (FS-ANVPC), and Fuzzy-based System for Cloud-Fog-Edge
Layer Selection (FS-CFELS), each having a key role in the proposed approach.

• The feasibility of the proposed architecture in coordinating and managing the available
VANETs resources is demonstrated by the results of extensive simulations.

The rest of this paper is organized as follows. Section 2 provides a background
overview of the emerging technologies integrated within VANETs which enable the full
implementation of our proposed system, as well as a short review of several research papers
relevant to this work. The proposed approach and the details of its implementation are
presented in Section 3. Section 4 discusses the evaluation results. The last section, Section 5,
gives some concluding remarks and ideas for future work.

2. Background Overview

In this section, we discuss different technologies, paradigms, and approaches that
enable emerging applications of vehicular networks. We give an overview of the advantages
that IoT, cloud-fog-edge computing, and SDN bring in VANETs, together with some of
their challenges and solutions. Lastly, we review several related research works.

2.1. Internet of Things

IoT is the network of everyday objects that connect over the Internet with other devices
or with other networks, for the purpose of monitoring and controlling these objects, among
others. The IoT devices are embedded with sensors and a communication unit, which
enable gathering and sharing information with each other in order to achieve a common
goal. Vehicles can also connect to the Internet through cellular wireless technologies and
interact with other networks of IoT. The integration of connected vehicles with IoT brings
many advantages, as vehicular networks can use the information made available from
other integrated components. For example, drivers will get real-time information about
traffic, weather conditions, or the condition of a remote road. Therefore, better safety and
traffic management can be achieved even in terrains where inter-vehicle communication
is impossible or the IoV infrastructure is lacking. On the other hand, other networks can
exploit the information coming from vehicular networks, too. Despite the attractive features,
IoT faces scalability problems as the number of connected IoT devices increases dynamically.

2.2. Cloud, Fog, and Edge Computing

Cloud computing offers storage and computation facilities that are placed remotely,
at an extended distance from vehicles, typically in cloud data centers. They offer unlimited
storage and computational capability that can be accessed from anywhere. Therefore,
vehicles can send and retrieve huge amounts of data at any time and place, without being
concerned about their limited storage capability. However, when it comes to time-sensitive
applications, the distant cloud is not able to fulfill the latency requirements.

Due to the dynamic nature of vehicles, it is necessary to deliver the applications with
minimal delay and ensure uninterrupted service. To address these issues, a computing
paradigm that takes place closer to the vehicles is needed. Fog computing is physically
located somewhere between the edge layer and cloud layer and bridges the gap between
the two. It ensures abundant storage, computational and network resources, real-time
communication, high bandwidth, high mobility support, and context awareness [29–31].
Moreover, because of the proximity to the vehicles, fog computing is a good solution for
services that require high QoS.

On the other side, smart vehicles have a considerable amount of storage and computing
capabilities, and therefore can be considered a form of edge computing. While some
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resources are reserved for the operating system, other available resources can be used for
delivering VANET applications and processing data obtained from sensors. Processing and
analyzing data at the edge will avoid the massive traffic flow in the core network, which
occupies much of the already limited network resources.

2.3. Software Defined Networking

SDN is recently adopted in VANETs to deal with network management issues because
it is an approach that has a better view of the network, and therefore offers higher flexibility,
more scalability, and better programmability. SDN is a mechanism that takes advantage of
the decoupling between the control plane and data plane, allowing for complex network
management. For such dynamic networks like VANETs, with an abundance of vehicles
that cause frequent topology changes and the presence of heterogeneous nodes, SDN can
make better decisions for coordination and management of resources, since it considers the
requirements of the entire network and avoids interference with other networks. In addition,
greater control is achieved by comprehensively knowing the requirements of the VANET
applications and by exploiting the available resources of the network [32]. The network
adapts to the dynamic changes of the network and also supports the emergency situations
by prioritizing the application requirements in terms of bandwidth, propagation, delay,
and processing resources.

2.4. Vehicular Ad Hoc Networks

Given that vehicular networks are a subset of wireless networks, some challenges
are common to other existing wireless networks, including limited transmission ranges,
the limited number of communication channels, and interference. However, there are
many other challenges that come from the unique characteristics of vehicular environments.
Large and dynamic topologies, variable capacity wireless links, bandwidth and hard delay
constraints, and short contact durations are some of the characteristics of these networks.
These challenges are caused by the high mobility and high speed of vehicles, and frequent
changes in density happening even in the same area. For example, the vehicle density is
higher on main streets than on secondary ones and it changes sharply over time (the same
streets are busier during peak hours as opposed to night hours or other parts of the day).

In addition, as the number of smart vehicles and sensors incorporated in vehicles keeps
increasing, a huge amount of data will be generated in VANETs. Conventional VANETs,
which are based on vehicle-to-vehicle communication and depend only on self-contained
resource capabilities, lack the needed resources for dealing with such massive amounts
of data. Moreover, the lack of a centralized management entity makes it hard for such
dynamic networks to have an equitable share of resources and therefore results in collision
of transmitted packets and less efficient use of channel resources [20]. With the integration
of cloud-fog-edge computing and the SDN approach within VANETs, prospective solutions
in managing the aforementioned problems can be achieved. The main components of this
architecture together with the content flow are illustrated in Figure 1.

The vehicles are equipped with limited computing and storage resources and after
collecting information from the data gathering module, the vehicles can perform real-time
data analysis for non-complex data. In this way, the information is processed locally
and there is no delay in case immediate action is needed. However, the limitations of
edge computing make it necessary for VANETs to rely upon fog and cloud computing.
Fog computing in VANETs is the extension of the cloud paradigm brought in proximity
of the vehicles, which offers predictable latency and seamless resource management by
supporting mobility and geo-distribution [33].
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Figure 1. Infrastructure and content distribution in the cloud-fog-edge SDN-VANETs.

The computation of complex data, which are beyond the capability of edge and fog
layer and are not time-sensitive, can be sent to the cloud layer for further advanced analysis
that takes a long time and requires abundant storage. They are also used as a repository for
control policies, software updates, and so on. The integration of SDN in VANETs handles
the issues of such large-scale, heterogeneous, and dynamic networks by providing a robust
mechanism for data traffic control and resource management of all the components of this
novel architecture of VANETs. The implementation of cloud-fog-edge and SDN in VANETs
will enhance VANETs services and will pave the way for future applications.

2.5. Related Works

Several researchers have considered bringing computing and storage capabilities closer
to the edge of vehicular networks. In [34], the authors emphasize the importance of Multi-
Access Edge Computing (MEC) as a crucial paradigm in IoV for supporting heterogeneous
devices and emerging 5G services. In [35], the authors discuss how to provide vehicular
networks with cloud computing services and introduce a new paradigm of the virtual
cloud computing architecture based on a Macro-Micro-Cloud novel approach that allows
hierarchically integrating available resources from vehicles into the edge computing system,
with the aim of managing data, reducing communication complexity, and improving QoS.

A resource management scheme based on FL is proposed by Miao et al. [36] to manage
resources (text, audio, and video) in VANETs, under a fog computing platform. The fuzzy
logic system determines the survival time of the resources of a local server based on a
data set of request time and download time for each resource, which is recorded by a
V2I communication model. In this way, the system keeps updated information about the
availability of resources in real-time. The simulation results show that the proposed model
manages the resources effectively and satisfies the needs of clients with resource sharing
in the case of dynamic topology, intermittent connectivity, or limited storage capability of
local servers. In [37], the authors deal with the problem of maintaining the QoS during
service migration from one node to another by targeting resource management strategies
at fog nodes. The authors introduce two schemes that prioritize selected services. The first
scheme reserves fog resources based on traffic load, while the second scheme frees fog
resources allocated for low-priority and reallocates them for high-priority services. Both
schemes show an increase in one-hop access probability, especially for high-priority services.
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Khan et al. [38] give another perspective for resource allocation strategies in VANETs. The
authors propose a Hybrid-Fuzzy Logic guided Genetic Algorithm (H-FLGA) approach for
the SDN controller, to solve a multi-objective resource optimization problem for 5G driven
VANETs. The hybrid system is based on the service requirements of customers and good
results are achieved in terms of capacity, delay, traffic load, energy optimization, cost, and
so on.

Mendiboure et al. [39] analyze the main features of edge computing and classify
the appropriate technology for different vehicular applications by comparing the network
capacities with the applications’ requirements. To fully support the various applications and
services, the network architectures must satisfy specific QoS requirements while exploiting
the available resources. In [40], the authors introduce a fuzzy-based system to estimate QoS
for different broadcasting protocols in VANETs. The broadcasting protocols are suitable
for delivering infotainment and road condition information to all vehicles in the network
without exception. However, they cause problems such as broadcast storms. The authors
compare the results of several QoS parameters such as delay, reachability, packet delivery
ratio, and overhead value. Even though these are important parameters to estimate the
network performance, different VANET applications have different requirements, which
means the network performance changes in regard to the application requirements.

In previous works, we have considered the resource management problem in vehicular
networks and have proposed different intelligent approaches to the problem. In [41], we
have proposed a simple fuzzy-based system that provides vehicles with a recommendation
on the storage resources they can use based on factors such as data size and time sensitivity.
The storage resources consist of those of the nearest vehicle, fog server, and cloud data center.
In [42], we improved our cloud-fog-edge layered architecture by leveraging the SDN and
the global overview of the network that this approach enables; thus, providing the system
with more resources, without restricting it to only one adjacent vehicle or fog server. The
effect of the number of neighboring vehicles comprising the edge layer was observed in [43].
The results showed that the system tends to choose the edge layer when more vehicles are
nearby. Different from these works, in this paper, we present a more complete approach
to the resource management problem, by taking into consideration more parameters that
better represent the characteristics of each layer and the application requirements.

3. Proposed Architecture

This section presents the architecture of our proposed approach for coordination and
management of VANETs resources. The information acquired by many vehicles, not only
by an individual vehicle, increases the accuracy; thus, better decisions and predictions
can be made. However, there is a major problem in gathering, processing, and analyzing
the enormous amount of data generated while keeping the network cost at a minimum.
Managing the resources of the network while providing the application’s requirements
is yet another challenge. Our proposed approach addresses these issues. The proposed
approach considers a layered cloud-fog-edge SDN architecture that is coordinated by
a fuzzy system implemented in the SDN Controller (SDNC) and SDN modules. This
architecture is illustrated in Figure 2.

SDNC manages the resources of the edge, fog, and cloud layer and determines the
appropriate layer for data storage and computing, based on the output of the fuzzy system.
The edge layer includes the resources of all On-Board Units (OBUs) of the smart vehicles
that are able to communicate with each other. The vehicles act not only as a relay node,
but they also process and analyze the data by themselves and at the same time share
their available resources with some vehicle that has a shortage of resources (hereinafter
will be referred to as the vehicle). The fog layer consists of the RSUs, RSU Controllers
(RSUCs), Base Stations (BSs), and fog servers, which are ideally only a few hops away from
the vehicles. It offers more resource capabilities, compared to the edge layer, while still
providing computing in real-time. Whereas the cloud layer offers abundant storage and
computing facilities, located far away at the cloud data centers.
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We consider this architecture from a bottom-up approach, which implies that the
edge layer is the first layer considered, based on the available connections and service
requirements. If the application requirements are not fulfilled or there are no or only
very few available connections, then the fog layer is the layer taken into consideration.
For instance, safety applications are suitable for either edge layer or fog layer, as both
these layers support real-time processing and high QoS. The cloud layer is used to process
applications that are delay tolerant and require long-term analytics. Through this approach,
all network resources are utilized effectively and massive traffic flow in the core network
is avoided.

IFS-CMR is implemented in the SDNC and the vehicles which are equipped with an
SDN module. In case a vehicle does not have an SDN module, it sends the information to
SDNC which computes the needed information and sends back its decision.

In the next subsections, we give details of the composition of the proposed approach
and describe the input and output parameters of each subsystem. In addition, we present
the data gathering and communication module which is integrated into the vehicles and
explain the FL Controllers (FLCs) of the system.

3.1. Data Gathering and Communication Module

The vehicles are equipped with various sensors (lidar, radar, ultrasonic, camera, etc.)
which are placed internally and externally to acquire information about the vehicle itself (its
speed, direction, steering wheel movements, tire slip, distance between the lane and other
nearby vehicles, and so forth) and the condition of roads (congested roads, inadequate
traffic signs, potholes, ice patches, or other hazards); a wireless transceiver device which
supports different wireless technologies that enable communications with other entities; a
GPS device that provides precise information about location; and an OBU which controls
the communication of vehicle with other entities and offers computing, storage, and
networking facilities [44]. We have included all these components in the data gathering and
communication module, as shown in Figure 3 (also referred to separately as data gathering
module and communication module in Figure 1).
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Once the data is sensed and processed, the vehicles then share with one another im-
portant information through beacon messages. They broadcast these beacons periodically
to other vehicles via V2V communication links to increase cooperative awareness between
them. The beacon messages are critical for our approach as well. Once the vehicles receive
them, they extract the information they need, which for IFS-CMR is about their neighbors’
geographic position, speed, direction, transmission power, available storage, available
computing power, etc. Then, IFS-CMR makes the necessary calculations to update the
current condition of all the input parameters.

3.2. IFS-CMR Parameters

The parameters of IFS-CMR are described in detail in the following.
Link Latency (LL): Latency is a strong requirement in VANETs. Many applications,

especially those related to safety, must run in real-time and the network must provide a
very low latency despite the rapid and high topology changes. Therefore, the time it takes
the first bit to get from the sender to the destination is crucial in providing high QoS.

Radio Interference (RI): Radio Interference indicates the unwanted signals that come
from transmissions of adjacent vehicles and disrupt the reception of information. These
signals can cause problems from low data speed transmissions to even complete loss
of information.

Effective Reliability (ER): We define effective reliability as the capacity of the network
to successfully deliver messages to its destination. There are many factors that influence
ER that include the bandwidth of transmission medium, number of collisions, and buffer
size, among others.

Update Information for Vehicle Position (UIVP): It is necessary for vehicles to have
the coordinates of other surrounding vehicles in order to detect dangerous situations or to
monitor traffic. However, too many packets occupy more bandwidth, whereas few packets
cannot accurately discover the position of neighboring vehicles.

Quality of Service (QoS): Each application has different requirements in terms of
latency, bandwidth, throughput, and so on. Safety applications, for example, require real-
time communications over reliable links. The latency constraints for such applications are
in the range of a few milliseconds [45,46]. However, satisfying QoS requirements at all
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times is not a straightforward task given the highly dynamic topology and interference on
these networks.

Available Computing Power (ACP): Recent VANET applications require significant
computational resources and real-time processing. The intelligent vehicles in the new
generation of VANETs are capable of handling some of these applications. Vehicles use
their computing power to run their own applications, but they can also allocate some of it
for other vehicles to help them in case they need additional computing power to complete
certain tasks. When vehicles are willing to share their resources, they let their neighbors
know by sending them information about the amount they want to share. In other words,
they decide the number of physical processor cores and the amount of memory that other
vehicles can use.

Predicted Contact Duration (PCD): In a V2V communication, the duration of the
communication session is important since it determines the amount of data to be exchanged
and the services that can be performed. A vehicle in need of additional resources (the vehicle)
will have to set up virtual machines on the neighbors that are willing to lend their resources;
therefore, the contact duration becomes even more important since much more time is
needed to accomplish these tasks than just performing a data exchange. Since the vehicles
change their direction or speed, we can only make a prediction of their contact duration
based on the value of the parameters at the time when the beacon message was transmitted
(for more accuracy, the PCD is updated each time a new beacon message from that neighbor
is received). To calculate the PCD between the vehicle and a neighbor vehicle i (see Figure 4
for illustration), we first calculate the relative speed between these two vehicles using the
law of cosines, as given in Equation (1).

RSVi =
√

V2 + V2
i − 2VVi cos θi (1)

where V is the speed of the vehicle, Vi is the speed of neighbor i, and θi is the angle between
their directions. Then, we use the law of cosines once again to calculate the PCD, as given
in Equation (2).

(RSVi · PCD)2 + D2
0 − 2|RSVi| · PCD · D0 cos(γi + βi) = CR2 (2)

where D0 denotes the initial distance between the two vehicles, CR is the communication
range, γi is the angle between the direction of the vehicle and D0 imaginary line; whereas βi
is calculated with the Equation (3), which is derived from the law of sines.

βi =


arcsin(Vi sin θi

|RSVi |
), for Vi ≤

√
V2 + RSV2

i

180°− arcsin(Vi sin θi
|RSVi |

), for Vi >
√

V2 + RSV2
i , θ ≥ 0

−180°− arcsin(Vi sin θi
|RSVi |

), for Vi >
√

V2 + RSV2
i , θ < 0

(3)

We posit that when two vehicles are getting farther from each other from different
directions, their directions form a positive angle, whereas when the vehicles are getting
closer, θ is negative.

Available Storage (AS): Since vehicles generate and receive enormous amounts of data,
their storage might be insufficient despite their large storage resources. If the vehicle needs
to use also the storage of the neighbors, that should be large enough to allow the vehicle to
run the virtual machine. This storage is used also to store data after completing specific
tasks of all the tasks these neighbors are asked to accomplish.
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Figure 4. Graphical representation of vehicles moving at different velocities and directions.

Neighbor i Processing Capability (NiPC): Describes the capability of a vehicle to help
another vehicle that lacks the appropriate resources to accomplish certain tasks. The values
of this parameter range between 0 and 1, with the value 0 implying that the neighbor
cannot help at all and 1 that the neighbor is in the best condition to help out the vehicle.

Average Processing Capability per Neighbor Vehicle (APCpNV): This parameter is
the average of the Processing Capability (PC) of all neighboring vehicles within the vehicle’s
communication range. It is an important parameter that represents the capability of the
edge layer, and it is calculated as the sum of the PC of each neighbor vehicle divided by the
number of neighboring vehicles.

Number of Neighboring Vehicles (NNV): This parameter changes continuously due
to the vehicles moving out of the vehicle’s communication range and the ones that appear.
Vehicles traveling at the opposite direction lead to even more frequent changes. Since
the bigger the angle between the directions, the bigger the distance created between the
vehicles, we consider only the neighbors whose directions with the direction of the vehicle
create angles that are smaller than 90°. Vehicles traveling in directions that create bigger
angles move out of the communication range very quickly, making it impossible for the
vehicle to use their resources.

Time Sensitivity (TS): Different applications have different requirements in terms of
latency. For instance, safety applications require a strict latency to be guaranteed, ideally
<1 ms, whereas comfort and entertainment applications can tolerate latencies up to some
seconds and are considered delay-tolerant [45,46]. System updates and the data collected
for long-term analytics can tolerate even longer latencies, thus for such applications, the
latency is not considered a requirement at all.

Data Complexity (DC): There are many factors that dictate the data complexity, and the
volume is only one of them. Even a single application might use data that differ in type and
structure, not to mention that they may come from many disparate sources (e.g., sensors,
cameras, radar, lidar). Besides, there are different kinds of applications that include not
only VANET applications, as in the Big Data era vehicles can also be used to compute
data non-related to VANETs. However, not all the data need considerable processing as
some of them are in the form of small messages that are used to inform the vehicles for
particular situations.

Layer Selection Decision (LSD): The output parameter values, which are always
between 0 and 1, denote three decisions—the interval [0, 0.3] indicates that the vehicle can
use the edge layer resources, the values in the interval (0.3, 0.7) specify that the layer to
be used is the fog layer, whereas the values in [0.7, 1] specify the cloud layer as the most
appropriate layer to run their applications.

3.3. Description of IFS-CMR Subsystems

The input parameters of each subsystem of IFS-CMR do not correlate to one another,
leading to an NP-hard problem. Problems with three or more uncorrelated parameters are



Sensors 2022, 22, 878 11 of 20

classified as NP-hard because finding a mathematical model that can calculate an output
in polynomial-time is practically impossible. Heuristic or meta-heuristic approaches are
proven to provide adequate solutions for these kinds of problems, but each method has
a limited scope to which it can be applied. For instance, genetic algorithms give good
solutions for optimization and allocation problems. Neural networks can be applied to
recognition problems and rule learning. FL, on the other hand, can be used to provide a
solution for decision-making and control problems in real-time, especially when the system
contends with high levels of imprecision and uncertainty [47–52].

Making real-time decisions while dealing with imprecision and uncertainty is the
advantage of IFS-CMR. The characteristics of the network created between vehicles change
continually and rapidly; therefore, the resources must be managed in real-time. Moreover,
because of the rapid changes, the decision is reached in presence of much imprecision.

IFS-CMR is comprised of three integrated subsystems (FS-AQoS, FS-ANVPC, and
FS-CFELS), each controlled by its respective FLC. Each subsystem has a key role in the
system. They have their own input parameters and their output serves the subsystem that
follows. The structure of IFS-CMR is shown in Figure 3. The way we have built IFS-CMR
has allowed us to continually improve it by discovering the implementation flaws (contrary
to many AI systems, which behave as black boxes that do not provide any feedback how
they reach their decision, and consequently are difficult to improve).

The term sets for the parameters of each subsystem are shown in Tables 1–3. The pa-
rameters are fuzzified using the membership functions shown in Figures 5–7. The number
of terms for each parameter and the characteristics of each membership function are deter-
mined through the experience gained by running many simulations. From our experience,
using less than three linguistic terms for an input parameter has the risk of inefficient con-
trol and making poor decisions, whereas using more leads to redundancies and increased
complexity. The same holds true for the overlap of membership functions. Less overlap
results in poor decisions, more overlap brings redundancies. Regarding the shape, we use
triangular and trapezoidal membership functions as they are the most suitable ones for
real-time operation.

Table 1. Parameters and term sets for FS-AQoS.

Parameters Term Sets

Link Latency (LL) Low (Lo), Medium (Me), High (Hi)

Radio Interference (RI) Permissible (Pe), Acceptable (Ac), Harmful (Ha)

Effective Reliability (ER) Not Effective (Nef), Medium Effective (Mef),
Effective (Ef)

Update Info. for Vehicle Position (UIVP) Few (Fw), Moderate (Mo), Many (Ma)

Quality of Service (QoS)
Extremely Low (El), Very Low (Vl), Low (Lw),
Moderate (Md),

High (Hg), Very High (Vh), Extremely High (Eh)

Table 2. Parameters and term sets for FS-ANVPC.

Parameters Term Sets

Available Computing Power (ACP) Small (Sm), Medium (Me), Large (La)

Available Storage (AS) Small (S), Medium (M), Big (B)

Predicted Contact Duration (PCD) Short (Sh), Medium (Md), Long (Lo)

Quality of Service (QoS) Low (Lw), Moderate (Mo), High (Hi)

Neighbor i Processing Capability (NiPC)
Extremely Low PC (ELPC), Very Low PC (VLPC),

Low PC (LPC), Moderate PC (MPC), High PC (HPC),

Very High PC (VHPC), Extremely High PC (EHPC)
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Table 3. Parameters and term sets for FS-CFELS.

Parameters Term Sets

Data Complexity (DC) Low (Lo), Moderate (Mo), High (Hi)

Time Sensitivity (TS) Low (Lw), Middle (Md), High (Hg)

Number of Neighboring Vehicles (NNV) Sparse(Sp), Medium Density (Me), Dense (De)

Avg. PC per Neighbor Vehicle (APCpNV) Low (L), Moderate (M), High (H)

Layer Selection Decision (LSD) Decision Level 1 (DL1), DL2, DL3, DL4, DL5, DL6,
DL7
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Figure 5. Membership functions of FS-AQoS. (a) Link Latency, (b) Radio Interference, (c) Effective
Reliability, (d) Update Info. for Vehicle Position, and (e) Quality of Service.
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Figure 6. Membership functions of FS-ANVPC. (a) Available Computing Power, (b) Available Storage,
(c) Predicted Contact Duration, (d) Quality of Service, and (e) Neighbor i Processing Capability.
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Figure 7. Membership functions of FS-CFELS. (a) Data Complexity, (b) Time Sensitivity, (c) Number
of Neighboring Vehicles, (d) Avg. PC per Neighbor Vehicle, and (e) Layer Selection Decision.

In Tables 4–6, we show the Fuzzy Rule Base (FRB) of FS-AQoS, FS-ANVPC, and
FS-CFELS, respectively. The FRB forms a fuzzy set of dimensions | T(x1) | × | T(x2) |
× · · · × | T(xn) |, where | T(xi) | is the number of terms on T(xi) and n is the number
of input parameters. Therefore, since each subsystem has four input parameters with
three linguistic terms, each FRB consists of 81 rules. The control rules have the form: IF
“conditions” THEN “control action”. For instance, for FS-AQoS, for Rule 20: “IF LL is Lo,
RI is Ha, ER is Nef and UIVP is Mo, THEN QoS is Md”.

Table 4. FRB of FS-AQoS.

No LL RI ER UIVP QoS No LL RI ER UIVP QoS No LL RI ER UIVP QoS

1 Lo Pe Nef Fw Hg 28 Me Pe Nef Fw Vl 55 Hi Pe Nef Fw El
2 Lo Pe Nef Mo Eh 29 Me Pe Nef Mo Lw 56 Hi Pe Nef Mo Vl
3 Lo Pe Nef Ma Hg 30 Me Pe Nef Ma Vl 57 Hi Pe Nef Ma El
4 Lo Pe Mef Fw Vh 31 Me Pe Mef Fw Lw 58 Hi Pe Mef Fw El
5 Lo Pe Mef Mo Eh 32 Me Pe Mef Mo Md 59 Hi Pe Mef Mo Lw
6 Lo Pe Mef Ma Vh 33 Me Pe Mef Ma Lw 60 Hi Pe Mef Ma El
7 Lo Pe Ef Fw Eh 34 Me Pe Ef Fw Md 61 Hi Pe Ef Fw Vl
8 Lo Pe Ef Mo Eh 35 Me Pe Ef Mo Hg 62 Hi Pe Ef Mo Md
9 Lo Pe Ef Ma Eh 36 Me Pe Ef Ma Md 63 Hi Pe Ef Ma Vl
10 Lo Ac Nef Fw Md 37 Me Ac Nef Fw El 64 Hi Ac Nef Fw El
11 Lo Ac Nef Mo Hg 38 Me Ac Nef Mo Lw 65 Hi Ac Nef Mo El
12 Lo Ac Nef Ma Md 39 Me Ac Nef Ma El 66 Hi Ac Nef Ma El
13 Lo Ac Mef Fw Hg 40 Me Ac Mef Fw Vl 67 Hi Ac Mef Fw El
14 Lo Ac Mef Mo Eh 41 Me Ac Mef Mo Md 68 Hi Ac Mef Mo Vl
15 Lo Ac Mef Ma Hg 42 Me Ac Mef Ma Vl 69 Hi Ac Mef Ma El
16 Lo Ac Ef Fw Vh 43 Me Ac Ef Fw Lw 70 Hi Ac Ef Fw El
17 Lo Ac Ef Mo Eh 44 Me Ac Ef Mo Hg 71 Hi Ac Ef Mo Lw
18 Lo Ac Ef Ma Vh 45 Me Ac Ef Ma Lw 72 Hi Ac Ef Ma El
19 Lo Ha Nef Fw Lw 46 Me Ha Nef Fw El 73 Hi Ha Nef Fw El
20 Lo Ha Nef Mo Md 47 Me Ha Nef Mo Vl 74 Hi Ha Nef Mo El
21 Lo Ha Nef Ma Lw 48 Me Ha Nef Ma El 75 Hi Ha Nef Ma El
22 Lo Ha Mef Fw Md 49 Me Ha Mef Fw Vl 76 Hi Ha Mef Fw El
23 Lo Ha Mef Mo Hg 50 Me Ha Mef Mo Lw 77 Hi Ha Mef Mo El
24 Lo Ha Mef Ma Md 51 Me Ha Mef Ma Vl 78 Hi Ha Mef Ma El
25 Lo Ha Ef Fw Hg 52 Me Ha Ef Fw Lw 79 Hi Ha Ef Fw El
26 Lo Ha Ef Mo Vh 53 Me Ha Ef Mo Md 80 Hi Ha Ef Mo El
27 Lo Ha Ef MaH Hg 54 Me Ha Ef Ma Lw 81 Hi Ha Ef Ma El
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Table 5. FRB of FS-ANVPC.

No ACP AS PCD QoS NiPC No ACP AS PCD QoS NiPC No ACP AS PCD QoS NiPC

1 Sm S Sh Lw ELPC 28 Me S Sh Lw ELPC 55 La S Sh Lw ELPC
2 Sm S Sh Mo ELPC 29 Me S Sh Mo ELPC 56 La S Sh Mo VLPC
3 Sm S Sh Hi ELPC 30 Me S Sh Hi VLPC 57 La S Sh Hi LPC
4 Sm S Md Lw ELPC 31 Me S Md Lw VLPC 58 La S Md Lw VLPC
5 Sm S Md Mo ELPC 32 Me S Md Mo VLPC 59 La S Md Mo LPC
6 Sm S Md Hi VLPC 33 Me S Md Hi LPC 60 La S Md Hi MPC
7 Sm S Lo Lw ELPC 34 Me S Lo Lw VLPC 61 La S Lo Lw LPC
8 Sm S Lo Mo ELPC 35 Me S Lo Mo LPC 62 La S Lo Mo MPC
9 Sm S Lo Hi LPC 36 Me S Lo Hi MPC 63 La S Lo Hi VHPC

10 Sm M Sh Lw ELPC 37 Me M Sh Lw ELPC 64 La M Sh Lw VLPC
11 Sm M Sh Mo ELPC 38 Me M Sh Mo ELPC 65 La M Sh Mo LPC
12 Sm M Sh Hi ELPC 39 Me M Sh Hi LPC 66 La M Sh Hi HPC
13 Sm M Md Lw ELPC 40 Me M Md Lw VLPC 67 La M Md Lw LPC
14 Sm M Md Mo ELPC 41 Me M Md Mo VLPC 68 La M Md Mo MPC
15 Sm M Md Hi VLPC 42 Me M Md Hi MPC 69 La M Md Hi VHPC
16 Sm M Lo Lw ELPC 43 Me M Lo Lw LPC 70 La M Lo Lw MPC
17 Sm M Lo Mo VLPC 44 Me M Lo Mo MPC 71 La M Lo Mo VHPC
18 Sm M Lo Hi LPC 45 Me M Lo Hi HPC 72 La M Lo Hi EHPC
19 Sm B Sh Lw ELPC 46 Me B Sh Lw ELPC 73 La B Sh Lw LPC
20 Sm B Sh Mo ELPC 47 Me B Sh Mo VLPC 74 La B Sh Mo MPC
21 Sm B Sh Hi ELPC 48 Me B Sh Hi LPC 75 La B Sh Hi HPC
22 Sm B Md Lw ELPC 49 Me B Md Lw VLPC 76 La B Md Lw MPC
23 Sm B Md Mo VLPC 50 Me B Md Mo LPC 77 La B Md Mo VHPC
24 Sm B Md Hi LPC 51 Me B Md Hi MPC 78 La B Md Hi VHPC
25 Sm B Lo Lw VLPC 52 Me B Lo Lw LPC 79 La B Lo Lw HPC
26 Sm B Lo Mo LPC 53 Me B Lo Mo HPC 80 La B Lo Mo EHPC
27 Sm B Lo Hi MPC 54 Me B Lo Hi HPC 81 La B Lo Hi EHPC

Table 6. FRB of FS-CFELS.

No DC TS NNV APCpNV LSD No DC TS NNV APCpNV LSD No DC TS NNV APCpNV LSD

1 Lo Lw Sp L DL6 28 Mo Lw Sp L DL7 55 Hi Lw Sp L DL7
2 Lo Lw Sp M DL4 29 Mo Lw Sp M DL6 56 Hi Lw Sp M DL7
3 Lo Lw Sp H DL3 30 Mo Lw Sp H DL4 57 Hi Lw Sp H DL6
4 Lo Lw Me L DL6 31 Mo Lw Me L DL7 58 Hi Lw Me L DL7
5 Lo Lw Me M DL3 32 Mo Lw Me M DL5 59 Hi Lw Me M DL6
6 Lo Lw Me H DL2 33 Mo Lw Me H DL3 60 Hi Lw Me H DL5
7 Lo Lw De L DL6 34 Mo Lw De L DL6 61 Hi Lw De L DL7
8 Lo Lw De M DL2 35 Mo Lw De M DL4 62 Hi Lw De M DL5
9 Lo Lw De H DL1 36 Mo Lw De H DL2 63 Hi Lw De H DL4
10 Lo Md Sp L DL5 37 Mo Md Sp L DL7 64 Hi Md Sp L DL7
11 Lo Md Sp M DL3 38 Mo Md Sp M DL5 65 Hi Md Sp M DL6
12 Lo Md Sp H DL2 39 Mo Md Sp H DL4 66 Hi Md Sp H DL5
13 Lo Md Me L DL4 40 Mo Md Me L DL6 67 Hi Md Me L DL7
14 Lo Md Me M DL2 41 Mo Md Me M DL4 68 Hi Md Me M DL5
15 Lo Md Me H DL1 42 Mo Md Me H DL3 69 Hi Md Me H DL4
16 Lo Md De L DL3 43 Mo Md De L DL5 70 Hi Md De L DL7
17 Lo Md De M DL1 44 Mo Md De M DL3 71 Hi Md De M DL4
18 Lo Md De H DL1 45 Mo Md De H DL2 72 Hi Md De H DL3
19 Lo Hg Sp L DL4 46 Mo Hg Sp L DL5 73 Hi Hg Sp L DL5
20 Lo Hg Sp M DL3 47 Mo Hg Sp M DL4 74 Hi Hg Sp M DL5
21 Lo Hg Sp H DL2 48 Mo Hg Sp H DL3 75 Hi Hg Sp H DL4
22 Lo Hg Me L DL3 49 Mo Hg Me L DL4 76 Hi Hg Me L DL5
23 Lo Hg Me M DL2 50 Mo Hg Me M DL3 77 Hi Hg Me M DL4
24 Lo Hg Me H DL1 51 Mo Hg Me H DL2 78 Hi Hg Me H DL3
25 Lo Hg De L DL2 52 Mo Hg De L DL3 79 Hi Hg De L DL4
26 Lo Hg De M DL1 53 Mo Hg De M DL2 80 Hi Hg De M DL3
27 Lo Hg De H DL1 54 Mo Hg De H DL1 81 Hi Hg De H DL2

4. Simulation Results

In this section, we discuss the simulation results of IFS-CMR. The results for each
subsystem are separately organized to better present and understand the way IFS-CMR



Sensors 2022, 22, 878 15 of 20

controls its final output, which is the selection of the resources to be used by vehicles that
can best satisfy the considered requirements. Nevertheless, there is no distinctly separate
discussion of results since the explanation is rather focused toward the overall purpose
of system.

4.1. Results of FS-AQoS

The simulation results for FS-AQoS are presented in Figure 8. We see the effect of UIVP
on QoS for different degrees of reliability, by considering many scenarios with various
radio interference levels and link latency values.

Figure 8a gives the results for LL = 0.1 and RI = 0.1. We can see that in all cases, the
QoS is decided above the moderate level. This is due to the fact that the communication
links between vehicles have very low latency and there is no or very little interference
present. However, when the interference is at harmful levels (see Figure 8b), the links that
will be considered for a potential communication are mostly the ones with high reliability.
The links with medium effective reliability, on the other hand, are considered only when
vehicles are using a moderate number of UIVP packets. In all other cases, the QoS values
are smaller than 0.5, which means that the chances of successful communications are not
very high.

In Figure 8c, we consider the scenarios with LL = 0.5 and RI = 0.5. The results show
clearly the importance of UIVP in QoS. A link with effective reliability is no longer enough
to have successful communication, as opposed to the scenarios in Figure 8b, where links
with high ER are considered for communication regardless of the number of UIVP packets.
In these conditions, acceptable QoS values are achieved only for moderate levels of UIVP.

The same holds true for the scenarios in Figure 8d,e, with the difference that the links
must have high reliability. If the link does not have high reliability, the QoS is decided
under the moderate level, in any case. Comparing the results for these scenarios, we see
that having no interference in reliable links with high latency (RI = 0.1, LL = 0.9) is slightly
better than the other conditions (RI = 0.9 and LL = 0.5), as a vehicle being exposed under
the former conditions can at least use the available communication links for applications
that are not time-sensitive.

For both high latency and high interference levels (see Figure 8f), the QoS is always
decided as extremely or very low in all cases. Under these circumstances, it is impossible
for vehicles to use these communication links, as performing any kind of transmission
between vehicles will lead to loss of information.
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Figure 8. Simulation results for FS-AQoS.
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4.2. Results of FS-ANVPC

While we have conducted many simulations for FS-ANVPC, the scenarios we present
in this paper are the ones shown in Figure 9. The results show the relation between QoS
and NiPC for different PCD values. The effect of ACP or AS on NiPC can be seen when a
pair of subfigures are selected for comparison, provided that one of the parameters has the
same value.

In Figure 9a, we show the results for ACP = 0.1 and AS = 0.1. The results indicate that
no neighbor vehicle can be of much help for the vehicle in these conditions. In Figure 9b,
we see that there is some improvement in NiPC values when the neighbor vehicles have
large amounts of storage resources to share. Nevertheless, the probability the vehicle uses
the resources of these neighbors remains very low. This is can be attributed to the low ACP,
which denotes that there will be no guarantee that these neighbors can run any additional
applications successfully.

In Figure 9c,d, we see how an increase in ACP, however small, affects NiCP. A neighbor
vehicle offering a medium amount of computing power has more chances of being selected
to help the vehicle, provided that their connection is of high quality and they stay connected
for a long time.

When the neighboring vehicles have much more to offer in terms of ACP, their NiPC
values are improved even more. We can see this effect in Figure 9e,f. Nevertheless, if they
have almost no storage to offer, the neighbors should be within the communication range
of the vehicle for a long time and the QoS must be above the moderate level to enable quick
data transmission all the time. On the other hand, when the neighbor vehicles are willing
to and can share abundant resources in terms of both storage and computing power, we see
that the system decides that they are capable of helping even if they do not stay connected
with the vehicle for a long time. These neighbors are sometimes chosen even when the PCD
is short or the QoS is not in high values, since letting their resources unexploited would
lead to a huge amount of resources in the edge layer being unused.
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Figure 9. Simulation results for FS-ANVPC.

4.3. Results of FS-CFELS

The simulation results of FS-CFELS are given in Figure 10. The parameters consid-
ered constant for presenting the results are DC and TS as these parameters represent the
application requirements, and as such, they differ only from application to application.
Therefore, each subfigure represents practically a different set of applications that have sim-
ilar requirements. Using this configuration we can see how LSD relates with the changing
characteristics of the edge layer, which are represented by NNV and APCpNV.
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The simulation results considering a set of non-complex applications that are delay
tolerant are presented in Figure 10a. The results show that when the vehicle is surrounded
by many potentially helpful neighbors, the system selects the edge layer as the most
appropriate layer for the vehicle to run its applications. Although these applications do not
require real-time processing, running them in the edge layer has two benefits: it exploits the
high capacity of neighbors which at this point is being unused and it avoids unnecessary
traffic being sent in the core network. On the other hand, in Figure 10b,c, we can see that
the edge layer is hardly selected when the data complexity increases. Most of the data are
sent in the fog or cloud layer, with the latter being used significantly more as the complexity
increases. Using the cloud layer instead of fog for complex data frees the fog servers from
unnecessary overload, considering the fact that these applications do not need to run in
real-time.

However, as we can see from the results shown in Figure 10d–f, the system decides
that the time-sensitive applications will be processed only in the edge and fog layer and
never in the cloud. This decision fulfills such a strong requirement like latency. When the
applications are not too complex, the vehicle is suggested to use mostly the resources of the
neighboring vehicles, provided that there is a considerable number of them in its vicinity.
When the number of neighboring vehicles is not very high or they are not prospective
helpers, the system suggests the fog layer as the appropriate layer, especially for complex
data. Fog servers have more powerful computing capabilities, and since they offer low
latency as well, they can handle these data better while still ensuring real-time processing.
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Figure 10. Simulation results for FS-CFELS.

5. Conclusions

In this paper, we discussed the need for new strategies that can efficiently coordinate
and manage the abundant resources available in VANETs and proposed an intelligent
approach that can achieve this goal in a very flexible way. The proposed integrated fuzzy-
based system decides the resources that vehicles should use when set under different
circumstances. These circumstances include the condition of the network created among
vehicles, which is represented by the QoS in the network, its longevity, its size, and the
currently available resource, together with the application requirements, such as their com-
plexity and time-sensitivity. We evaluated the proposed approach by computer simulations.
From the simulation results, we conclude the following.

• Higher QoS values are achieved for a moderate number of beacon messages broad-
casted, which increases the possibility of vehicles being categorized as potentially
helpful neighbors.
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• When a neighbor vehicle offers only a small amount of resources, it is considered less
capable of helping, regardless of the quality of communication.

• In a dense environment, moderate complex data can be processed in the edge only if
there are many potentially helpful neighbors in the vicinity.

• Time-sensitive applications are run either in edge or fog layer and never in the cloud.
• With the increase of data complexity less data is processed in the edge layer even if

vehicles stay connected to the same potentially helpful neighbors for a long time.

In the future, we would like to improve IFS-CMR by considering parameters that
characterize the fog layer and implementing the proposed approach in a testbed in order to
demonstrate its accuracy.
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