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Abstract: The availability of data produced from various sequencing platforms offer the possibility to
answer complex questions in plant research. However, drawbacks can arise when there are gaps in
the information generated, and complementary platforms are essential to obtain more comprehensive
data sets relating to specific biological process, such as responses to environmental perturbations in
plant systems. The investigation of transcriptional regulation raises different challenges, particularly
in associating differentially expressed transcription factors with their downstream responsive genes.
In this paper, we discuss the integration of transcriptional factor studies through RNA sequencing
(RNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-seq). We show how the data
from ChIP-seq can strengthen information generated from RNA-seq in elucidating gene regulatory
mechanisms. In particular, we discuss how integration of ChIP-seq and RNA-seq data can help to
unravel transcriptional regulatory networks. This review discusses recent advances in methods for
studying transcriptional regulation using these two methods. It also provides guidelines for making
choices in selecting specific protocols in RNA-seq pipelines for genome-wide analysis to achieve
more detailed characterization of specific transcription regulatory pathways via ChIP-seq.

Keywords: RNA-sequencing; ChIP-sequencing; transcriptome; transcriptional regulatory mechanism;
data integration

1. Introduction

The transcriptome defines the functional element in a genome as it encompasses the complete
set of coding and non-coding RNA molecules present in a single cell or a population of cells [1].
The ultimate expression of a subset of genes into complementary RNA transcripts would designate a
cell’s identity and the control of the biological activities within the cell [2]. Transcriptome profiling
therefore can greatly facilitate the understanding of a functional genome via characterization of the
gene structures, identification of the alternative splicing events, as well as detection of the dynamic
regulation of transcripts in various tissues during development, diseased, or stressed conditions [3].

Ever since they were first introduced in 2005, high throughput next-generation DNA sequencing
(NGS) technologies have revolutionized the transcriptomics field through massively parallel sequencing
of complementary DNA (cDNAs) derived from a transcript population. This important application of
NGS termed RNA-sequencing (RNA-seq) [4,5] has overcome several limitations posed by generally
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used microarray technologies, including not requiring prior knowledge of the genome or sequence
of interest, which enables genome-wide unbiased detection of both known and novel transcripts [3].
Single nucleotide-resolution RNA-seq data can also enhance the detection of alternative splicing events
and isoform expression. Reanalyzing RNA-seq data in relation to any new genome or datasets that
become available in future also can be easily achieved [6]. On the other hand, microarrays inherently
exhibit cross-hybridization results in high background noise and have a limited dynamic range of
detection, for example in identification of low-abundance transcripts [7]. Due to its distinct advantages
and rapid decrease in the per-base costs, together with the application of multiplexing strategies,
RNA-seq methods have mostly displaced hybridization-based methods as the preferred option for
gene expression studies [6]. With constantly improving RNA-seq techniques and platforms for
bioinformatics analysis, RNA-seq has been widely adopted in the analysis of both prokaryotic and
eukaryotic transcriptomes as in the studies of bacterial pathogens [8–10], livestock [11–14], and human
cancer and disease [15–18].

Since the initiation of the oneKP project, which aims to sequence 1000 of plant transcriptomes,
RNA-seq has been extensively applied to transcriptome studies of a wide range of economically
important crop plants [19–22]. Moreover, integration of RNA-seq with different molecular biology
and biochemical techniques has allowed deeper exploration of various aspects of the transcriptome in
plants, such as miRNA-seq [23], Ribo-seq [24], HITS-CLIP/CLIP-seq [25], and GRO-seq [26].

Protein–DNA binding interactions play key roles in gene regulatory and expression processes
such as replication, splicing, transcription, and DNA repair. To predict the accuracy of
modified histones and bound proteins, functional assays were developed, such as electrophoretic
shift mobility assays (EMSA) [27,28], DNA microarrays [29], yeast one-hybrid studies [30,31],
and chromatin immunoprecipitation, followed by microarray, also termed ChIP-chip [32]. Chromatin
immunoprecipitation, followed by sequencing (ChIP-seq) assays, have become an indispensable next
generation technique for detecting in vivo interactions of DNA target sites against their corresponding
transcription factors (TFs), epigenetic histone modifications, as well as chromatin remodeling.
Chromosome structure and function is largely determined by nucleic acids interactions with specific
proteins [33]. ChIP-seq is, so far, the best technique to study these interactions because of its improved
signal-to noise ratio and genomic sequence information [34]. ChIP-seq nomenclature has been reported
in different forms to suit different investigators’ research goals. For instance, ChIP quantitative
polymerase chain reaction (ChIP-qPCR) was developed to be a robust method to analyze ChIP-data
via different normalization strategies [35]. In contrast, Nano-ChIP-seq has been used to study protein
DNA interactions where little source of DNA is available [36], which is necessary because ChIP-seq
was originally proposed to use a large number of cells.

The ‘big data’ generated by many high-throughput technologies often tend to be noisy and contains
various sources of unwanted variance and procedural artifacts. It is a challenge for the accurate analysis
of extraordinary data volumes to identify true signals, combine variable data types, and understand
their relationships [37]. When designing integrated Omics (ChIP-seq and RNA-seq) experiments,
RNA-seq can be performed prior to ChIP-seq. In this way, the most enriched TF in differentially
expressed genes (DEGs) revealed by RNA-seq, such as in studies involving biotic or abiotic stress
treatments, are considered as targets for ChIP-seq assay either by raising custom antibodies against the
TFs [38] or through transgenic expression against the tagged TFs (tags like FLAG, green fluorescent
protein (GFP), and Glutathione S-transferase (GST), etc.) in model plants [39]. Moreover, independent
ChIP-seq can be carried out based on TFs that have substantial literature information and subsequently
comparing with an independent RNA-seq assay under the same biological treatment on the same plant.
Combining ChIP-seq and RNA-seq assays can show agreement between both findings, revealing more
information about a TF by either discovering a new function or a new set of genes for the same
function [40]. Assays of transposase accessible chromatin [41] (ATAC-seq) can also measure how
much chromatin can be accessed for peak enrichment from ChIP-seq assay [42] and therefore, it can be
accompanied with ChIP-seq assay.
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In this review, we will discuss how ChIP-seq can strengthen information generated from RNA-seq
in elucidating the role of transcription factors. To be precise, we discuss how a combination of ChIP-seq
and RNA-seq data can help to unravel the transcriptional regulatory network. RNA-seq essentially
serves as the gene discovery tool for identifying specific transcription factors based on their expression
profiles and the profile of potential target genes. The ChIP-seq is potentially useful to validate
transcription factor target (downstream) genes interaction with potential link with certain physiological
or biochemical processes. This review also discusses the transformation of RNA-seq and ChIP-seq
assays over time, together with a review of the basic steps required for plant system, highlighting the
most recent applications in different plant species. We also review the basic characteristics of RNA-seq
and ChIP-seq data analysis pipelines. We then provide examples of genome-wide identification of
transcription factor co-regulated genes by RNA-seq and ChIP-seq, which highlight the potential of such
studies in elucidating transcriptional regulatory network in important biological processes in plants.
These examples will show how combining these tools will help in addressing hormonal response like
jasmonic acid in Arabidopsis [1], gibberellic acid in rice [2], and the developmental stage effect in
maize [3] to reveal some important insights on their transcriptional regulatory mechanisms. We also
introduce the third-generation sequencing, which expands the application of sequencing technology
due to the longer read length offering higher capability in sequence assembly and identifying sequence
variance in RNA-seq.

2. RNA-seq Platform Selections

There are several commercially available deep sequencing platforms for RNA-seq, such as Ion
Torrent, PacBio, and Illumina [43]. Currently, the HiSeq series of sequencers from Illumina is the
most widely deployed sequencing platform due to its ability to produce a high data output with
low sequencing errors. In view of the variation in data quality and quantity achieved from different
deep sequencing platforms and the downstream interpretation processes, the selection of a suitable
sequencing platform based on the research goals is an initial key step before starting an RNA-seq
experiment. For instance, Illumina Hiseq can produce short reads (50–250 bp), while PacBio generates
longer reads (4200–8500 bp). Longer reads will ease the de novo transcriptome assembly process
and the detection of alternative splice isoforms compared with short reads. Additionally, paired-end
reads (sequencing from both ends of a fragment) are attainable with Illumina instruments but not
with Ion Torrent [2,43,44]. Paired-end reads uncover sequence from both ends of the cDNA fragment
and accelerate the inspection of splicing variants, chimeric transcripts, and indels [45]. Figure 1
shows the summarized RNA-seq workflow comprising of the wet laboratory works (RNA extraction,
library preparation, and sequencing) and the dry laboratory works (in silico RNA-seq data analysis).
We will go through each of these steps in more detail in the text below.

In general, RNA-seq experiments start with total RNA isolation and selection of a specific RNA
population, such as messenger RNA (mRNA) or microRNA (miRNA), before subjecting samples to a
fragmentation step. Next, the short RNAs are converted to a cDNA library and each cDNA fragment
is ligated with platform-specific adaptors at one or both ends in order to capture the fragments on
a solid support. Millions of reads from one end (single-end sequencing) or both ends (pair-end
sequencing) are retrieved by parallel sequencing of millions of cDNA fragments in different NGS
platform. Read lengths can vary depending on the sequencing chemistry and technology. The resulting
reads will either align to a reference genome or transcriptome or de novo assembled to produce a
genome-wide transcription landscape [6,46]. The comprehension of the generated data to resolve the
primary research questions characterize the success of an RNA-seq study. Thus, it is crucial to consider
upfront several key points before conducting an RNA-seq experiment, such as the selection of the
library type, the number of biological and technical replicates, and the depth of sequencing across the
transcriptome [47].
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Figure 1. General RNA-seq analysis pipeline. The workflow typically starts with total RNA extraction
depending on experimental design and RNA integrity. The library preparation step relies on the
selection of sequencing platform and library type, while sequencing depth and number of replicates
can impact the downstream sequencing output analysis processes. RNA-seq data analysis generally
requires inputs such as raw sequencing reads, reference genome sequences, and gene annotations.
Next is examination of raw data quality and perform poor read trimming, transcriptome assembly,
and expression quantification. Finally, differential expressed genes (DEGs) must be identified and
interpreted through gene enrichment analysis. Each step in the data analysis has several representative
tools, as highlighted.

Determination of the number of biological and technical replicates required in an RNA-seq
experiment varies with the technical biases and the heterogeneity of each experimental system.
While reproducibility of RNA-seq data across lanes and flow cells is generally high, biological
replication is mandatory for population inferential analysis [48]. Optimal data interpretation can
be achieved by reducing the data variability with duplicate or triplicate experimental datasets [49].
The optimal sequencing depth, which means the number of sequencing reads for a given sample, is
strongly governed by the aims of the study. Generally, the required sequencing coverage depends
on several factors, including reference genome size, gene expression level, and specific application of
interest using the data generated. In this review, we will provide an overview of a typical RNA-seq
experiment and steps involved in the bioinformatics analysis.
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3. RNA-seq Workflow (Wet Laboratory)

3.1. Total RNA Isolation

High quality RNA is a prerequisite for a successful RNA-seq experiment. RNA integrity number
(RIN), a measuring unit produced by Agilent Bioanalyzer, is an unofficial standard used to estimate
the integrity of RNA before proceeding with library preparation step. RIN ranges from 1 to 10, with 10
being the highest score for samples with minimal degradation. RIN < 6 indicates low quality RNA that
can introduce substantial biases into the final sequencing results [2]. But for plant materials, a good
RIN number can be lower depending on species and tissue types. For fluorometric quantification of the
RNA input, Thermo Fisher Scientific Qubit or Nanodrop is the most commonly used fluorometer [50].

3.2. Library Preparation

The second step in RNA-seq is the construction of an RNA-seq library. It starts with enrichment or
depletion of the total RNA pool for that desired RNA species. In most cell types, RNA can be divided
into different populations comprised of ribosomal RNA (rRNA), transfer RNA (tRNA), non-coding
RNA (ncRNA), and messenger RNA (mRNA), which is the common interest in most transcriptome
studies. Deep sequencing without removal of rRNAs that occupy 80% of the RNA population will
reduce the depth of sequence coverage and limit the detection of lowly expressed transcripts [47].
The common practice before library construction is to enrich the mRNA by selecting the poly(A)
RNAs. Poly(A) RNA can be isolated using magnetic or cellulose beads coated with poly-T oligos.
Alternatively, rRNA depletion can be carried out through duplex-specific nucleases treatment or
commercial kits such as Ribo-Zero (Illumina), NEBNext® (New England BioLabs) or RiboMinus
(Thermo Fisher). The technical limitations and biases of each approach need to be discerned in
order to choose the most appropriate method for library preparation. For example, if one aimed at
the exploration of noncoding RNA including pre-mRNA, then ribo-depletion libraries are a more
appropriate choice than poly(A) libraries. In recent years, small RNA which includes microRNA
(miRNA), small interfering RNA (siRNA), and piwi-interacting RNA (piRNA) have gained great interest
among plant researchers to profile and characterize their functions in post-transcriptional regulation.
Therefore, several commercially available isolation kits have been developed to capture these short
and lowly abundant transcripts based on size fractionation method through gel electrophoresis or
silica spin columns [2].

Following poly(A) RNA selection or rRNA removal, RNA molecules need to be fragmented
into appropriate sizes (120–200 bp) by enzymatic digestion or chemical hydrolysis under an elevated
temperature. In the case of small RNAs, no fragmentation step is needed, and one can directly proceed
with adaptor ligation. Once the RNA is cleaved, samples are reverse transcribed into first strand
complementary DNA (cDNA) using random primers. After synthesis, the second strand cDNA using
DNA polymerase I and RNase H, a single ‘A’ base is added to the end of each cDNA fragments
before ligating with the sequencing adapters. The cDNA pool is then purified and amplified to form
the final sequencing-ready cDNA library [47]. By having the sequencing adapters ligated to both
ends of the cDNA, researchers may perform paired-end sequencing, which sequences the cDNA
from both directions (forward and reverse) to produce more reliable sequencing data compared to
single-end sequencing.

In the standard library construction protocol described above, the information about the strand
orientation of each transcript is lost, which could complicate the identification of overlapping genes
transcribed from the opposite strand and particularly in de novo transcript discovery. Subsequently,
this could mislead the quantification of global expression of both sense and antisense RNAs [51].
The preferred approach to retain the strand origin is by incorporating deoxy-UTPs (dUTPs) instead
of dTTPs during the second strand cDNA synthesis step, which can be selectively digested using
uracil-N-glycosylase (UDG). Eventually, the remaining first strand cDNA is amplified to yield a
strand-specific cDNA library. Zhao et al. (2015) [52] demonstrated that stranded RNA-seq could
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provide better resolution in estimating the relative abundance of overlapping transcripts expression as
compared with the conventional non-stranded RNA-seq.

Through the implementation of barcoding strategy, one can carry out multiplexing of several
samples in an analysis which could significantly reduce the per sample cost for large scale projects.
Van Nieuwerburgh et al. (2011) [53] compared three different barcoding methods, including pre-PCR,
TruSeq, and PALM. For pre-PCR method, the barcode is associated with the 5′ RNA adapter and
ligated to the RNA template before performing RT-PCR, while the barcode is incorporated into one
of the RT-PCR primers during the library amplification step in TruSeq method. On the contrary,
PALM barcoding method ligated the T-tailed barcode adapter to the A-tailed RT-PCR products after
the library amplification step to produce a library that is free of barcode-induced PCR bias.

4. RNA-seq Workflow (Data Analysis)

After completing the sequencing, the next challenge is dealing with millions of reads generated
from each experiment. The conventional analysis pipeline of the RNA-seq data starts with quality
checks and preprocessing of the raw sequencing short reads, followed by mapping of the filtered
reads to a reference genome sequence or de novo assembly using different de novo transcriptome
assemblers. Gene expression levels of all mapped transcripts are then quantified and normalized to
define the differential expressed genes. Further analysis of the listed genes, such as alternative splicing
analysis, functional annotation, and pathway enrichment analysis, can be carried out using a range of
bioinformatic programs. Specialized data analysis workflows can be designed according to individual
experimental setups and research aims. In this section, we will briefly discuss the routine RNA-seq
data analysis pipeline and related bioinformatics tools in each step.

4.1. Quality Control

The preliminary sequencing output is supplied in FASTQ format and is generally contaminated
with sequencing artefacts and errors which may arise in library preparation, sequencing, or imaging
steps that can ultimately lead to misinterpretation and erroneous conclusions. Therefore, pre-processing
and quality control of the raw reads data is mandatory to improve downstream assembly quality and
computational efficiency [54]. A Phred quality score (Q score) was assigned to estimate the base call
accuracy of the sequencing output. Q30 corresponds to an incorrect base call of 1 in 1000 (99.9%) and
serves as the gold standard for quality in read data. Publicly available tools such as FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) and PRINSEQ (http://prinseq.sourceforge.net/faq.html)
can be used to generate summary statistical reports for sequencing outputs including GC content
percentage, base quality and content, level of duplication, sequence quality scores, presence of
ambiguous bases, etc. Based on the quality report, further removal or trimming of poor-quality reads,
adapter sequences, or demultiplexing can be performed using software tools likes Cutadapt (https:
//cutadapt.readthedocs.org/en/stable) and FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit) [1,3].

4.2. Transcriptome Reconstruction

The process of identifying all of the transcripts and isoforms that are expressed in a specimen
through assembly filtered short reads or read alignments into transcription units is defined as
transcriptome reconstruction. Transcriptome assembly can be done using two different strategies:
reference-based assembly or de novo assembly. The reference-based approach involves mapping the
filtered sequencing reads to an annotated genome or transcriptome followed by transcript assembly.
This is relatively less computationally intensive compared with de novo assembly. However, the de
novo assembly approach is particularly beneficial when a reference genome or transcriptome is not
available. The analysis starts with assembling the sequencing reads into contigs, which will be used as
a novel reference transcriptome to align with the raw reads again [3].

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://prinseq.sourceforge.net/faq.html
https://cutadapt.readthedocs.org/en/stable
https://cutadapt.readthedocs.org/en/stable
http://hannonlab.cshl.edu/fastx_toolkit
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4.3. Reference-Guided Assembly

Once aberrant reads are eliminated, the RNA-seq data is ready for alignment, with the condition
that a reference genome or transcriptome is available. The national centre of biotechnology information
(NCBI; https://www.ncbi.nlm.nih.gov/genome/), Ensembl (www.ensembl.org/index.html), and UCSC
genome browser (https://genome.ucsc.edu/) are the three most well-known publicly available resources
for retrieving the reference genomes and annotation files for a variety of species. There are two major
categories of computational programs that have been developed to map the millions of short query
sequences to a reference genome or transcriptome precisely with appropriate parameter values at
each step of the analysis. The first group is referred as unspliced aligners which includes MAQ [55],
Bowtie2 [56], and Burrow Wheelers alignment (BWA) [57], which is a better option for prokaryotic
RNA-seq analysis, and in reference, transcriptome mapping as splicing event detection is unnecessary.
In contrast, spliced aligners such as HiSat2 [58], MapSplice [59], and STAR [60] are extensively applied
in mapping query sequences to the reference genome of eukaryotes. This group of aligners possesses
the ability to identify the exon boundaries and align the query sequences that span across introns,
which consequently increases the possibility for alternative splicing detection. Despite understanding
the intrinsic alignment algorithms, computational infrastructure requirements for each mapping
tools to complete the tasks should also be taken into consideration. Typically, the aligned read
data is presented in SAM file format and then compressed into binary of SAM (BAM) file format.
The alignment file can be viewed and manipulated using SAMtools (samtools.sourceforge.net/) and
Picard (https://broadinstitute.github.io/picard/). Integrative genomic viewer (IGV) (http://software.
broadinstitute.org/software/igv/) is a high-performance viewer that supports diverse file formats,
e.g., SAM, BAM, and Goby. In addition to the ability to display varying level of alignment details
depending on the resolution scale, IGV is also able to simultaneously display multiple genomic
regions in an adjacent panel [61]. Towards the completion of the alignment step, one can assess the
quality of the mapping result using tools like Qualimap 2 (http://qualimap.bioinfo.cipf.es/) and RSeQC
(http://rseqc.sourceforge.net/) considering several metrics including percentage of mapped reads, error
distributions, and 3′–5′ coverage ratio [2,3,47]. Subsequently, the overlapping reads can be assembled
into full length transcripts using RNA-seq analysis packages such as Cufflinks [62], Scripture [63],
and MISO [64]. This assembly method is more advantageous in the discovery of low expressed
transcripts and alternatively spliced isoforms. However, the success of the assembly is dependent
on the quality of the reference sequence being used. Large genomic deletions and mis-assembly of a
genome will sequentially propagate into a misassembled or partially assembled transcriptome [54].

A reference-based assembly strategy was extensively being applied in RNA-seq analysis, especially
for plant species with an established genome sequence available. Arabidopsis thaliana reference
genome (TAIR10) has contributed in the transcriptome data alignment and also in the mapping
of ChIP-seq data [65,66]. By mapping the RNA-seq reads against Arabidopsis genome (TAIR10),
Pajoro et al. (2017) [4] have successfully identified the temperature-induced differentially spliced
events in Arabidopsis plants after being exposed to different temperatures. Subsequently, they were
able to detect a total of 59,736 regions to be enriched in H3K36me3 after using similar reference genome
for the mapping of FASTQ files generated in ChIP-seq. Integration of the RNA-seq and ChIP-seq
datasets revealed that the H3K36me3 histone mark was overrepresented in differentially spliced
event genes, and reduction in the H3K36me3 mark deposition could affect the temperature-induced
alternative splicing.

4.4. De Novo Assembly

For species lacking a sequenced genome, de novo assembly of the overlapping reads can
be employed using one of the several assemblers, including Trinity [67], SOAPdenovo-Trans [68],
and Trans-ABySS [69]. All the de novo assemblers listed above are developed by referring to de Bruijn
graph algorithms, which broke the reads into k-mer seeds to construct a unique de Bruijn graph and
then parsed into consensus transcripts. Annotation of the consensus transcripts can be achieved by

https://www.ncbi.nlm.nih.gov/genome/
www.ensembl.org/index.html
https://genome.ucsc.edu/
https://broadinstitute.github.io/picard/
http://software.broadinstitute.org/software/igv/
http://software.broadinstitute.org/software/igv/
http://qualimap.bioinfo.cipf.es/
http://rseqc.sourceforge.net/
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mapping to a genome or alignment to a gene or protein database [70]. There are several general
metrics for assessment of the de novo assembled transcriptome quality, such as assembly statistics,
contigs statistics, mis-assembly statistics, number of contigs matching with the closest related genome,
and number of hybrid transcripts [3]. Typically, de novo assembly of large transcriptome is challenging
and requires much higher sequencing depth for better assembly output [54]. Nevertheless, the de novo
assembly method still possesses certain merits against reference-guided assembly method in discovery
of novel transcripts caused by missing genes or structural variants, identification of transcripts with
long introns, and in detection of rare events like trans-splicing and chromosomal rearrangements [71].

4.5. Expression Quantification and Normalization for Differential Expression Analysis

Following transcriptome assembly, transcript expression can be quantified by counting the reads
mapped to each coding unit including exon, gene, or transcript [72]. For single-end reads, the reads
per kilobase of transcript per million mapped reads (RPKM) metric is introduced to remove the
feature-length and library-size effects through dividing the number of read counts by both its length
and total number of mapped reads. Fragments per kilobase of transcript per million mapped reads
(FPKM) is the metric derived from RPKM which is applicable for paired-end reads data and considers
a fragment (not reads). Together with transcripts per million (TPM), RPKM and FPKM are the most
frequently reported values for transcript abundances in RNA-seq [3,47,70]. Although RPKM/FPKM
is a popular choice in place of read count, its value in a sample can be significantly altered by the
presence of several highly expressed genes which will “consume” many reads and subsequently
underestimated the remaining genes, particularly lowly expressed genes [3]. Wagner et al. (2012) [73]
demonstrated that RPKM has the potential to cause inflated statistical significance values due to its
inconsistency between samples, which arises from the normalization by the total number of reads.
HTSeq (https://pypi.python.org/pypi/HTSeq) is a Python library that contains a stand-alone script
htseq-count which can count the number of aligned reads mapped to a single gene while discarding
multi-mapping reads. These counts can then be used as input data for gene-level quantification using
methods such as edgeR or DESeq [74]. The major challenges in read quantification is to quantify
multi-mapping reads because of genes with multiple isoforms or close paralogs. In order to address
this problem, several algorithms were developed to allow isoform-level quantification. Alternative
expression analysis by sequencing (ALEXA-seq) estimates isoform abundances by counting the reads
that mapped uniquely to a single isoform, but this method is not suitable for genes lacking unique
exons [70]. Alternatively, Cufflinks will quantify isoform abundances by constructing a likelihood
function that models the sequencing process to estimate the maximum likelihood that the read maps
to an isoform and reports in FPKM or RPKM values [2].

Throughout the RNA-seq experiment, there will be various biases and variances being incorporated
which involves intra-sample differences such as differences in length, GC content, or inter-sample
differences, for example, differences in sequencing depth, sampling time, and so on [3]. These variations
should be eliminated to improve the accuracy of the statistical analysis applied for inferring differential
expression. Previous studies have demonstrated that the choice of normalization procedure can impact
on the result of differential expression analysis and emphasizes the requirement for normalization [48,75].
Sequencing depth of a sample is one of the major sources of biases in RNA-seq data, therefore trimmed
mean of M-values (TMM) and median of ratio approach by assuming most genes are not differentially
expressed have been proposed [76]. A comparison study involving seven normalization methods
demonstrated that TMM and median of ratio are the two most robust normalization approaches for
library size normalization after testing with simulated and real RNA-seq data [77]. The TMM approach
has been implemented in R/Bioconductor packages edgeR [78], while the median of ratio approach has
been implemented in R/Bioconductor packages DESeq [79], DESeq2 [80], and in Cuffdiff2 [81].

One of the most routinely used analyses conducted using RNA-seq data is to identify differentially
expressed genes (DEG) among phenotypes and experimental conditions, and hence, a number of
complex statistical methods have been designed to perform this task. Tuxedo suite, a suite of tools for

https://pypi.python.org/pypi/HTSeq
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transcript assembly and quantification comprises of Bowtie, TopHat, and Cufflinks packages. TopHat
utilizes Bowtie as an alignment “engine” to map millions of RNA-seq reads to the genome and these
read alignments serve as input for Cufflinks to produce a transcriptome assembly for each condition.
The assembly files are then merged together using the Cuffmerge and fed to Cuffdiff to detect DEGs and
genes that are differentially spliced or differentially regulated via promoter switching across multiple
conditions. Data generated by Cuffdiff analysis can be visualized and explored with CummeRbund [82].
Additionally, there are several other software tools that support DEG analysis such as edgeR, DESeq2,
baySeq [83], and NOIseq [84]. EdgeR software uses an over-dispersed Poisson model to account for
biological and technical variations in replicated data, and subsequently applied an empirical Bayes
method to alleviate the degree of overdispersion across genes. Lastly, differential expression analysis
is performed using either quasi-likelihood (QL) F-test or likelihood ratio test [85]. While DESeq2
is adapted from DESeq with the critical enhancement by incorporating empirical Bayes shrinkage
estimators for dispersion and fold change, which facilitates a sound and statistically well-founded
differential expression analysis across a wide dynamic of RNA-seq experiments. Besides, through the
implementation of shrinkage of fold change on a per-sample basis termed as rlog transformation
eases the visualization of differences in heatmap and the application of numerous downstream
techniques, including principal component analysis and clustering, in which homoscedastic input data
is needed [80].

Costa-Silva et al. (2017) [86] evaluated the impact of six mapping and nine differential expression
analysis methodologies on real RNA-seq data and adopted qRT-PCR data as reference. The results
indicated that mapping methods have minimal impact on the expression analysis result and highlighted
that the DEGs identification method is the main choice for differential expression analysis. Based on
the adopted experimental model, NOIseq, DESeq2, and limma + voom [87] are the most balanced
DEGs identification software by considering the precision, accuracy, and sensitivity. However, there is
no consensus on the best-suited differential analysis method for all circumstances.

4.6. Functional Annotation and Pathway Analysis

The final step in a standard transcriptome analysis pipeline is often the interpretation of the gene
expression data through gene set enrichment analysis. The analysis would favour the characterization
of the functional annotation of the listed DEGs and their associated biological pathways or molecular
function in order to infer biological insights from these genes. Publicly available resources, such as
Gene Ontology [88] and DAVID [89], containing annotation databases of gene products for most
model species are commonly used for gene annotation purposes and also would allow identification
of functional information across orthologs [47]. On the other side, multiple listed DEGs may have
interactions with each other and be involved in certain biological pathways. KEGG (Kyoto encyclopedia
of genes and genomes) pathway database provides a valuable resource for investigating significantly
enriched biological pathways associated with the listed DEGs [90]. MapMan4 [91], which is the latest
version of MapMan framework coupled with the revised Mercator4 online tool, provides another option
for protein classification and annotation task of any land plant. With the triple increased total number
of bin categories, MapMan4 has been improved to perform more precise protein descriptions for all
assignments through a leaf node category. The prediction of protein–protein interaction network would
facilitate the understanding of cellular processes and annotation of structural and functional properties
of proteins. This analysis can be performed using the STRING database (http://string-db.org/), which is
a web resource of known and computational predicted protein interactions [92]. During the de
novo transcriptome reconstruction, there will be a number of unknown transcripts being discovered,
and Blast2GO can be used for homologous gene identification through GenBank BLAST or InterProScan
and assigning gene ontology terms to each locus [93].

http://string-db.org/
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5. ChIP-seq Workflow (Wet Laboratory)

ChIP-seq assay is a powerful tool used to determine nuclear protein interactions with DNA that is
usually applied in the context of disease diagnostics, gene expression, and cell differentiation in animal
systems for personalized medicine development. Plant scientists have now adopted the technique
to better understand various in vivo epigenetics changes and discover genes expressed in a certain
biotic/abiotic stress response (that is protein–DNA interaction) in plant systems. The encyclopedia
of DNA elements (ENCODE) is now the largest database of sequencing-based techniques, including
ChIP-seq. The database has a massive amount of information limited to four different animal species,
namely; human, mouse, worm, and fly. ENCODE encodes ChIP-seq overview information covering
experimental design to data analysis and contains some published standards to achieve each step
in ChIP-seq analysis. Plant researchers can employ the same ENCODE standards. For instance,
the ENCODE manual [94] reports step-by-step methods for primary and secondary characterization of
protein/antibody, which can also be applicable to plants. Western blot and immunoprecipitation are
amongst the primary methods, while secondary methods are subordinates to the primary methods
and they use previously characterized antibodies for ChIP-seq, epitope-tagged expression pattern,
motif analysis, etc.

For plants, the ChIP-seq protocol usually takes about 3–7 days to completion, starting from nuclei
extraction to immunoprecipitation. There might be changes in some steps which are geared towards
reducing time consumption and simplifying the tedious nature of the technique. In this section,
major steps of ChIP-seq will be reviewed starting from formaldehyde fixing of plant sample, chromatin
isolation, and to data analysis (as shown on Figure 2).
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Figure 2. Basic steps involved in ChIP-seq: stage I starts from crosslinking to sequencing and stage II
involves steps for gene mining. Sequenced file Qseq are converted to fastq format using fastx tools,
reads undergo trimming and filtering using Scythe utility or parallel Q.C, then reads alignment using
Bowtie or Burrow Wheelers alignment (BWA), matched reads viewing is aided by integrative genome
browser (IGB). Peaks are called using any available software like MAC/Peakseq, reads are normalized
by removing duplicate reads and searching for tag densities in a window of reads per kilobase per
million reads (RPKM) around the reference peak, mostly 1 kb upstream of transcription start site (TSS)
to transcription end site (TES), with SAMTools, motif search using MEME suites, and finally predicts
gene through MAST suite or R statistic package SOMBRE with the aid of GO and transcription factor
databases like JASPAR.
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5.1. Crosslinking in Plant Samples

Formaldehyde is a small (2Å) dipolar compound that can entrap protein–protein and protein–DNA
complexes in vivo. Its small size makes it the best candidate for capturing macromolecular interaction
that are close to one another [95]. Its carbon atom plays a role as a nucleophilic center. Amino and
imino functional groups of DNA (adenine and cytosine) and of some amino acids (arginine, histidine,
and lysine) readily react with formaldehyde to form a Schiff base intermediate. This can also react to
another amino group to form the final crosslinked protein–DNA complex [96].

Formaldehyde is now the crosslinking agent of choice in ChIP-seq protein–DNA binding due to
its robustness, reversibility, and less hazardous nature compared to use of ultraviolet (UV) radiation as
a cross linker method [97,98]. For example, Haring et al. (2007) [35] used 3% formaldehyde to crosslink
protein to DNA region in Maize (Zea mays) while subsequent publications used 1% formaldehyde in
Arabidopsis thaliana [99,100]. Hoffman et al. (2015) [97] has reviewed formaldehyde binding chemistry
and showed a two-stage stoichiometry mechanism of crosslinking protein–DNA with formaldehyde
and quenching with glycine. Figures 3 and 4 show the two-step forward chemical reactions of
crosslinking and quenching of excess crosslinking agent respectively. Reversal of protein–DNA
crosslinking is typically achieved by heating (usually 65 ◦C) in the presence of high salt concentrations
(example 5 M NaCl and 20% SDS) [35,101] or treating with proteinase K at 37 ◦C [100].
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Figure 3. Chemical reactions of protein–DNA crosslinking by formaldehyde: Crosslinking of
protein–DNA by formaldehyde occurs in two steps. Firstly, a strong nucleophile, commonly a
lysine є-amino group from a protein, reacts with formaldehyde to form a methylol intermediate which
will lose water to give a Schiff base (an imine). Secondly, the Schiff base reacts with another nucleophile
amine of a DNA to generate a crosslinked product. The latter nucleophile might also be from another
protein or the same protein as the first nucleophile. All the reactions in this stoichiometric process are
reversible. Modified from Hoffman et al. (2015) [97].

The reversal of protein–DNA crosslinking is normally achieved by heating (at 65 ◦C) in the
presence of high salt concentration (example: 5 M NaCl and 20% SDS) [99,102] or by treating with
proteinase K at 37 ◦C [100].
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Figure 4. Glycine and Tris quenching reactions of formaldehyde: The chemical reactions are like those
shown in Figure 3 above with the amino group of glycine or Tris serving as the principal nucleophile.
The Schiff base formed from glycine is not necessary to react with a second nucleophile, but regardless,
the crosslinking between protein–DNA will be quenched. The Tris molecule has another available
nucleophile (hydroxyl group) that creates stable intramolecular penta-membered rings. Tris can also
react with two molecules of formaldehyde, resulting in the last product shown. The tendency of Tris
forming some stable intramolecular products allows it to search for formaldehyde from other molecules
and thus enable crosslink reversal. Here, mint green color represents DNA/protein. Reconstructed
from Hoffman et al. (2015) [97].

5.2. Chromatin Isolation

The method of nuclei isolation is dependent on the source of plant sample and quantity (required
mostly 1 to 5 g). For example, whether it is a high phenolic and carbohydrate content like oil palm and
Jatropha, which may need higher concentration or a longer treatment period with cell wall degradation
components like Triton x-100 detergent in nuclei extraction buffer [103], and if physical shearing or
if the sample is from a delicate plant such as Arabidopsis, in which nuclei can be isolated with mild
extraction buffer. A protocol developed by Saleh et al. (2008) [99], also by Kaufmann et al. (2010) [100]
and many more, explains the laboratory procedure for chromatin extraction. On the other hand,
DNA shearing optimization is quite similar across different plant biology laboratories and it is achieved
by sonicating the nuclei in a probe sonicator, or water bath ultrasonicator five times (more or less), 30 s
ON and one minute OFF on ice (keep the whole step in cold conditions) until a desired DNA fragment
size is achieved, which should be within 100–800 bp [35,100,104]. Shearing can also be achieved using
an endo-exonuclease MNase [105], but random shearing is mostly not achieved using MNase due to
the present of specific cut sites, and this makes sonication the most preferred shearing method since its
DNA defragmentation is random.

Immunoprecipitation is a pulldown assay which involves an antibody designed against protein
of interest or against a tagged DNA fragment (tags like FLAG, GFP, yellow fluorescent protein
(YFP)) coupled with protein of interest, which is used to pull all DNA bound to the protein tag [98].
Conventionally, chromatin is incubated with 1 to 5 µg antibody overnight [106–108] to appropriately
pull down all DNA fragments.

Obviously, ChIP-seq is a difficult immunological assay in plants. The major problems plant
scientists are facing includes cell wall complexity of plant cell that requires vigorous disruption to
avoid sample loss; high level of polysaccharides and phenolic compounds in plant tissues may be
a problem for PCR amplification prior to library preparation; ChIP-grade antibodies selection in
plants is limited, and as a result of that, investigators will have to take several months to generate
epitope-tagged transgenic lines before ChIP-seq experiments [34]. These problems are not yet solved
with the plant researchers, but significant contributions have been made to address some part of
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the problems such as high DNA recovery [105,109] and production of customized protein-specific
antibody [110], which takes a similar period of time as transgenic epitope-tagged antibodies do.

5.3. ChIPped-DNA Purification

After immunoprecipitation, antibody ChIPped isolated DNA is followed by a purification step
preceded by de-crosslinking. There are several methods for ChIPped-DNA purification, amongst
which Zhong et al. (2017) [105] compared ten commercial kits and observed that phenol-chloroform
(Invitrogen; PC) method gives the best DNA recovery. Interestingly, they found PC to yield the best
DNA recovery. DNA recovery is important because ChIP usually gives insufficient amount of DNA
for library construction and qPCR, and sometimes, PCR of the recovering DNA is required.

5.4. Library Construction

Sequencing library construction is the last stage of bench work for ChIP-seq assay and the
subsequent steps will only be in silico. Library preparation is often carried out with the use of
commercially available kits. From the recent literature, researchers often use kits such as Illumina
TruSeq library protocol [40,111], NEBNext ChIP-seq library preparation reagent for Illumina kit (New
England Biolab) [40,112], ThruPLEX DNA-Seq kit (Takara Bio USA) [65], and Ovation ultralow library
kit (NuGEN Tech, San Carlos, CA, USA) [113,114]. Usually, for sequencing, reads preparation are
either single-ended or paired-ended and can also be both. From the names, sequencing one end or both
ends of DNA fragment is referred to as single-end tags (SET) and paired-end tags (PET), respectively.
SET is the commonly used option while PET is more precise, less ambiguous in genome alignment,
and typically used for repetitive fragments of genome [115]. After all, reads sequencing is commonly
supplied by HiSeq 2000–3500 Illumina machine (San Diego, CA. US).

6. ChIP-seq Workflow (Data Analysis)

ChIP-sequencing data contain millions of short nucleotide sequences based on sequencing depth.
The depth of the sequence depends on the organism’s genome size, the probable binding site’s size,
and frequencies [116]. For example, 43 million reads are adequate for studying TFs involved in stress
response mediated by jasmonic acid (JA) signaling pathway in rice [39] and approximately 25 million
reads for analyzing maize endosperm development [117]. To get a reliable result, an ENCODE
consortium standard of using two independent biological controls should be followed. This will help
to assess replicates’ agreement and threshold with the use of irreproducible discovery rate (IDR) [94].
Complexity of ChIP-seq libraries is linked to several factors such as antibody quality, over-cross-linking,
amount of material, sonication, or over-amplification by PCR. Hence, the last factor can be corrected
by systematic identification and removal of redundant reads, which is implemented in many peak
callers because it may improve the specificity of PCR [116].

Large ChIP-seq data output analyses usually employ a stage-wise bioinformatic software pipeline
and webtools for proper data interpretation and visualization. The steps include sequence alignment
to a reference genome (mapping), peak calling, motif discovery, and interpretation [118], as shown in
Figure 2. There are several reviews on ChIP-seq computational analysis encompassing reads quality
control to TF motif discovery [119,120].

6.1. Reads Mapping

Alignment of ChIP-seq reads signal in the genome region has three categories: small point
source base pairs coverage (known as punctate region with few kilobases) of localized signals, such as
transcription factor and broad region of several kilobases that covers a large epigenetic domain like
H3K36me3, and a mixed region which covers both transcription site on upstream part of a gene [120,121]
and within the downstream part of a gene like RNA polymerase [122,123]. Nevertheless, there is a need
for a complex normalization procedure for significant variation distribution coverage among samples,
not only relying on the sequencing depth but similarly on library preparation methodological differences
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and sample disparity [124], as well as chromatin condition of the samples. There are a few ChIP-seq
analysis normalizations methods in the public domain to provide identical coverage distribution across
samples [125]. A peak is considered if its number of readings is higher than a predetermined cut-off

value or if a minimum enrichment value equated to the background signal, is frequently in a genome
through a sliding window. Many peak calling algorithms give an approximate calculation of a p value
for called peaks, height of the peaks, and/or background rank peaks enrichment and a FDR to provide
peak list [126]. PeakSeq mapping analysis technique [123] compares control sample and IP threshold
factor coverages for two linear regression, a quantile normalization technique proposed by [127],
which uses statistical moments for the normalization process [125]. Bowtie [56] indexes a reference
genome based on the Burrows-Wheeler transform (BWT) [128] and FM index [129]. Besides these,
there are many sequence aligners, but the most widely used are SOAP2 [130], BWA [57], Hisat2 [131],
and DANPOS2 suite with Dpeak [132]. Bowtie seems to be the most preferred [110,113,133,134] based
on the literature, while DANPOS2 [132] is the least preferred. Likewise, numerous software packages
are used for peak calling, but the most popular peak caller is MAC [135], as reported in several
publications [136–138].

6.2. Enrichment of Genomic Region

In order to determine TF binding site on a plant’s genome, special web-based tools and software
packages are designed to help with motif finding analyses. Some of these tools are based on various
kinds of algorithms which are statistically dependent. According to the most recent ChIP-seq reports,
the following motif enrichment tools are commonly used for genome enrichment: MEME [139],
MEME/MAST suite [140], and the most repetitive in literature [38,40,112]; DREME [141], RSAT [142],
CSAR Cisgenome [125], SICER package [143], and BEDTools [144]. Table 1 provides a summary of the
trend of some ChIP-seq publications from 2014 to 2019 series, highlighting the field of research and
emphasizing the type of antibody used.
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Table 1. A summarized ChIP-seq research findings highlighting the kind of research and type of antibody used.

Application Findings Antibody Type Refernce

Abiotic factor
Abscisic acid stress (ASR5) a TF binds Sensitive To Aluminum Rhizotoxicity 1
(STAR1) promoter in other to positively response against Aluminum stress in

rice.
Anti-ASR5 Arenhart et al. (2014) [145]

Developmental + immunity

ROS and defense responsive genes were repressed by HBI1 indicating defense
function of HBI1 and also indirectly plays a role in repressing growth through
activation of growth-inhibiting HLH genes. HBI1 was also learned to bind to

positive activators brassinosteroids function.

Anti-YFP Fan et al. (2014) [112]

Genetics
In genetic imprinting, some subsets of genes are expressed according to their

parental origin. Paternally expressed genes (PEGs) were associated to
maternal-specific H3K27me3.

Anti-H3K27me3 Zhang et al. (2014) [146]

Abiotic + developmental Abscisic, Stress, Ripening (ASR1) from tomato is upregulated in drought stress
which acts primarily in the cell wall. Anti-ASR1 Ricardi et al. (2014) [134]

Developmental
SQUAMOSA Promoter Binding Protein-Like3 (SPL3) bind GTAC motif of

phosphate starvation responsive gene promoters like PLDZ2, miR399f,
and Pht1;5.

Anti-HA Lei et al. (2016) [147]

Developmental Combinatorial action affect MADS-box transcription factors FLC and SVP in
flowering shows gibberellins’ processing genes. Anti-GFP Mateos et al. (2015) [137]

Genetics In circadian clock of Maize hybrids, expression of morning-phased genes from
binding with ZmCCA1 encourages growth vigor and photosynthesis. Anti-CCA1 Ko et al. (2016) [110]

Photosynthesis
Discovers E-box variant binding motif for Phytochrome interacting factor 4/5
(PIF4 and PIF5) in Cryptochromes (CRYs) during exposure to low blue light

and CRY2 association with PIF4/5.
Anti-HA Pedmale et al. (2016) [148]

Cellular
Shows chromatin domain organization at the nuclei periphery of Arabidopsis.

The domain is a clear translation of a repressed environment that contains
jumping genes, heterochromatic marks and silenced coding genes.

Anti-GFP Bi et al. (2017) [149]

Immunity
Using both ChIP-seq and RNA-seq, 655 MYC2 binding were identified in

response to Jasmonic acid genes. Also found MYC2 TFs that function in late
defense stage.

Anti-GFP Du et al. (2017) [40]
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Table 1. Cont.

Application Findings Antibody Type Refernce

Immunity

After flagellin (flg22) treatment, HD2B targets chromatin were
hyperacetylated responsible in plant immune defense and phosphorylation

while hypoacetylated marks function in metabolic regulation, plastid
organization, and chloroplast.

Anti-GFP Latrasse et al. (2017) [133]

Biochemical A zinc finger TF of rice ZFP36 inhibits ROS production by binding to
ascorbate peroxidase known to have specificity to hydrogen peroxide. Anti-ZFP36 Huang et al. (2018) [150]

Developmental

Maize GIF in leaves and stems promotes meristematic determinacy and shoot
architecture. ChIP-seq has found several GIF1 targets including mostly some
transcriptional regulators like UB3, ZMPLATZ5, ZMARR7, bHLH and MYB

family members.

Anti-GFP Zhang et al. (2018) [114]

Developmental
FRUITFULL (FUL), a TF that directly repressed APETALA2 expression
promotes meristem arrest and maintains the sequential expression of

meristem maintenance factor WUSCHEL.
Anti-GFP Balanzà et al. (2018) [151]

Abiotic factor
bZIP10 found to be active in Zinc regulation in Brachypodium which relate to

oxidative stress and a motif homologous to Arabidopsis was found
TGDCGACA.

Anti-GFP Martin et al. (2018) [152]

Abiotic factor Growth-Regulating Factor 4 (GRF4) TF co-interacts with growth inhibition
regulator DELLA to regulate carbon, nitrogen metabolism and growth. Anti-FLAG Li et al. (2018) [153]

Abiotic factor Rice OsTF1L mapped drought related stress and lignin biosynthesis genes. Anti-MYC and anti-RNA
Pol II Bang et al. (2019) [154]

Epigenetics Genome-wide ADCP1 is linked with chromosome enrichment site
(pericentrome) and co-localization with H3K9me2. Anti-GFP Zhao et al. (2019) [155]

General
GmBZL3 is a brassinesteroids signaling molecule cross talking with many

pathways like disease-related, immunity response pathways and
hormone signaling.

GmBZL3 antibody Song et al. (2019) [156]

Developmental A Leucine zipper domain TF FD plays a crucial role in floral transition. Anti-GFP Collani et al. (2019) [157]

General Found new Oryza VIP1 response element (OVRE) cis-element in abiotic and
biotic responses. Anti-FLAG Liu et al. (2019) [39]
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7. Genome-Wide Identification of Transcription Factor Co-Regulated Genes by RNA-seq
and ChIP-seq

Shamimuzzaman and Vodkin (2013) [38] were interested to understand early seedling
developmental stages in soya bean. They classified the stages into 7 (from pre-emerging hypocotyls to
fully grown cotyledons above the ground) and performed RNA-Seq on 7 libraries generated from the
different stages. The RNA-seq generated 78,773 mapped reads using ultrafast bowtie, allowing three
mismatches. Reads normalization was followed using RPKM and DESeq package to identify the DEGs
between developmental stage 3 and 6 at p-value < 0.05. Two TFs, NAC and YABBY, which showed
promising expression levels throughout the different stages, were chosen. Consequently, NAC and
YABBY antibodies were used to perform ChIP-seq using pooled cotyledons from stage 4 (yellow-green
cotyledons 30–35 mm) and 5 (yellow-green cotyledons; starts of primary roots) which is a physiological
transition stage between yellow food reserve to a photosynthetic green stage in order to identify their
genome-wide binding sites and their co-regulated genes. ChIP-seq data was first aligned using Bowtie
to generate 34 million reads and 86 million reads for NAC and YABBY, respectively, at p-value < 0.05,
and subsequently MACS was used to call significant peaks, which were 8246 and 18,064 peaks,
respectively, for the two TF at p-value = 1.0 × 10−5. Gene location were identified from the soya bean
gene annotation using a custom-made Python program. In the promoter, there were 1526 and 974 peaks
for NAC and YABBY, respectively. These two TFs play an important role in regulating developmental
processes and the sequence similarity analysis between RNA-seq, and NAC and YABBY TFs ChIP-seq
data showed 72 genes to be potentially regulated by the NAC and 96 genes by the YABBY.

Opaque2 (O2) TF is involved in maize endosperm development and its mutation o2 confers better
nutrition with 70% higher lysine content (quality protein maize; QPM) than in wild type maize kernels,
which were studied. However, the mutant plant exhibited some pleiotropic biological effects that
lowers its agronomic quality. Li et al. (2015) [117] performed RNA-seq on both wild-type (WT) O2
and mutant o2 endosperms. Fifty-five million reads were uniquely mapped to B73 maize genome
sequence using TopHat and further normalized as fragments per kilobase of exon per million fragments
mapped at p-value < 0.05 using MACS, 52,601 genes were found to be transcribed in both O2 and o2.
Further analysis narrowed the genes to 3070 in O2 and 6613 genes in o2. At last, 1605 genes mRNA
steady levels were affected by O2: 767 upregulated in O2 and 838 upregulated in endosperm deficient
in O2 function. On the other hand, ChIP-seq assay was performed using O2 custom antibody on
wild-type plants, and 15 million reads were specifically mapped using Bowtie2 aligner, while 1686
peaks were mapped using MACS at q-value < 0.05 by comparing O2 and IgG ChIP outputs based
on poisson distribution. RNA-seq revealed 1605 DEGs between wild-type and mutant endosperm
while ChIP-seq identified 39 genes as O2 putative target. Thirty-five of them were down-regulated
in o2 RNA-seq, while four were upregulated. But none of the DEGs found in o2 were identified as
O2 putative binding target in ChIP-seq, suggesting the potential involvement of non-coding RNA as
downstream targets. Combination of the RNA-Seq and ChIP-Seq results had demonstrated the roles of
O2 as a central regulator of multiple metabolic pathways related to anabolic functions during maize
endosperm development.

Jasmonic acid (JA) mediates activation of plant resistance against insect attack (wounding) and
necrotrophic pathogens. MYC2 is a basic helix-loop-helix (bHLH) TF which plays a significant role in
orchestrating JA-mediated expression of defense genes. To understand the role of MYC2 TF in tomato,
Du et al. (2017) [40] performed RNA-seq on mutant (MYC2-RNAi) and wild-type treated with or
without methyl jasmonate (MeJA); wild-type wounded and no wound wild-type. Bowtie2, HISAT2,
and TopHat2 were used to align sequencing output to tomato genome SL2.50. Expression levels
were determined using eXpress [158] for calculating gene expression levels in all biological replicates
at FDR-adjusted p-value < 0.05. DESeq2 was used for mRNA levels quantitation at p-value < 0.05.
Pairwise comparisons of RNA-seq data recognized 6544 genes that were DEGs between treatments
(with and without MeJA). Two thousand, five hundred and sixty-seven genes showed significant
expression differences between untreated mutant and wild-type and 3058 genes showed significant
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expression differences between mutant treated and wild-type. Additional analyses of these 3058 genes
revealed about 40% (2558 from 6544) of the JA-regulated genes also regulated by MYC2. Whereas,
ChIP-seq was performed on MYC2-GFP transgenic plants either subjected to MeJA or wounding
treatment. Sequence alignment using Bowtie2 and mapping using MACS at q-value < 0.05 were
performed. BEDTools with default parameters were used to identify peaks within genic regions
and a total of 12–18 thousand putative MYC2 binding peaks from the two biological replicates were
identified. The replicates shared 7594 peaks agreement and further overlapped to identify 3389
MYC2-targeted genes. Comparison of ChIP-seq 3389 MYC2-targeted JA-responsive genes (MTJA)
and pairwise comparison of RNA-seq data output identified 2258 genes are coregulated by MYC2
and JA. After comparing these two data sets, 655 genes were found to overlap for MYC2-targeted
JA-responsive genes (MTJA). The study also identified a group of MYC2-targeted TFs that may have a
direct role in regulating the JA-induced transcription of late defense genes. Altogether, it was proposed
that MYC2 and the MYC2-targeted TFs form a hierarchical transcriptional cascade during JA-mediated
plant immunity responsible for the initiation and amplification of the transcriptional output.

Gibberellic acid (GA) normally promotes plant growth by targeting the destruction of DELLA
proteins [158]. Wheat GRV DELLAs mutant [159] is resistant against GA destruction, whereas the rice
GRV mutant sd1 allele diminishes bioactive GA abundance [160,161], leading to the accumulation
of DELLA protein SLR1. This confers semi-dwarfism and results in yield-reducing lodging.
Lodging resistance by GRV increases nitrogen insensitivity associated with nitrogen-use efficiency.
Growth regulating factor 4 (GRF4) semi-dominantly increases nitrogen (NH4+) uptake rates and
assimilation while SLR1 inhibits these processes. Li et al. (2018) [152] carried out a study through
combined Omics (RNA-seq and ChIP-seq) to understand this process. Firstly, RNA sequencing was
performed using BGISEQ-500 platform to produce 24 million clean reads mapped to Nipponbare
reference genome with HISAT/Bowtie2 tools. The reads were normalized and FPKM was calculated
using RSEM software [159]. DEGs were identified using FDR < 0.01 and absolute log2 ratio ≥ 2 [160].
Four thousand, two hundred and forty-one DEGs were identified between mutant (loss of function)
and WT plants, while 4753 DEGs were accumulated between overexpression line and WT. Six hundred
and forty-two genes were identified by RNA-seq to be upregulated by GRF4 in a rice overexpressing
GRF4 variety and downregulated by SLR1 in sd1 mutant variety. Quantitative reverse transcription
PCR (RT-qPCR) shows high abundance of root mRNAs for NH4+ uptake transporters (AMT1.1 and
AMT1.2). For the ChIP-seq assay, after BGISEQ-500 sequencing output were mapped to Nipponbare
reference genome using SOAP aligner, MACS was used to call potential binding peaks. To define
genomic location type, peak summit was used to overlap 100 bp around the top of the peak summit,
which was then subjected to DREME motif analysis. Two loci density were drawn using density
plot tool in R 3.0 after a likelihood ratio score was considered for each motif in each peak using the
basic principles of Bayesian classifier [136]. ChIP-seq revealed potential GRF4 target-recognition sites,
with a predominant upstream GGCGGC binding motif common to many nitrogen-metabolism gene
promoters. Enriched ChIP-seq DNA through ChIP–PCR confirmed the RT-qPCR finding of GRF4
ammonium transporter AMT1.1 with a putative GCGG- promoter motif.

Albihlal et al. (2018) [39] studied resistance to environmental stress and reproductive fitness (seed
yield) regulated by heat shock transcription factor A1b (HSFA1b) protein in Arabidopsis thaliana.
To unravel the function of HSFA1b, they surveyed its ChIP-seq target and its significance on its
RNA-seq transcriptome of wild type under heat stress (HS) and non-stress (NS), and in transgenic
HSFA1b-overexpressing plants under NS. RNA-seq analysis workflow started from sequencing outputs
from Illumina HiSeq2000. Reads were mapped to Arabidopsis transcriptome GSNAP (allowing five
mismatches). Transcript assembly and DEGs analyses were followed using Cufflinks and Cuffdiff [82]
at q-value ≤ 0.05. For wild-type treatment under NS and HS, 7137 DEGs responded to HS: 721
were HSFA1b-bound genes. These bound genes were prevalent in downstream of protein-coding
genes suggesting binding to genomic regions or near cis natural long non-coding (cisNAT) RNA
genes. RNA-seq from HSFA1b-RFP overexpression lines under NS revealed 3306 protein-coding genes
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showing differential expression when compared with NS WT, and 72% of them were differentially
expressed in HS WT. After a Pearson correlation between NS 35S:HSFA1b and both NS (r = 0.92) and
HS WT (r = 0.88), heat shock proteins expression levels in 35S:HSFA1b NS plants were found to be
intermediate to WT NS and HS plants. Further analyses found a total of 952 HSFA1b-target DEGs and
at least 85 of them were developmentally associated and found bound mainly under NS. In addition,
480 natural antisense non-coding RNA (cisNAT) genes bound by HSFA1b were identified, suggesting
an additional mode of indirect regulation. On the ChIP-seq analysis, normalized peaks were called
with MACS tool and k-means clustering analysis of ChIP-seq signals on HSFA1b bound genes and
density maps were generated with seqMINER [161]. GO analysis of target features was performed
with a singular enrichment analysis (SEA) tool in the AgriGO database [162]. HSFA1b bound region
sequences motif were de novo identified by using MEME with p-value < 0.0001 and passed through
Cistrome atlas database [163]. ChIP-seq identified 1083 and 709 HSFA1b-bound regions under NS and
HS, respectively, consisting of 1207 HSFA1b target genes. K-means cluster analysis of binding regions
identified three groups: specific to NS (group I), common to NS and HS (group II), and unique to HS
(group III). After a deep analysis of binding regions in gene annotation features, HSFA1b was found
to be preferentially targeted within and downstream of genes in group I (54%) while it was 30% for
group II and III genes. NP:HSFA1b ChIP-seq data under HS and NS conditions intersection with the
DEGs from 35S:HSFA1b compared with NS WT plants revealed 1821 genes in WT HS plants and in
35S:HSFA1b NS plants that were not bound by HSFA1b. These were designated to regulate HSFA1b
indirectly, of which 281 genes were associated with plant development. It was also found that the
HSFA1b does not only target the heat shock elements, but also the MADS box, LEAFY, and G-Box
promoter motifs. Thus, this suggested that HSFA1b transduces environmental cues to many stress
tolerance and developmental genes to enable continuous growth and developmental adjustment by
plants in a varying environment under diverse environmental factors.

JA is a plant hormone involved in different plant biological processes such as plant growth,
seed germination, response to water stress, wounding, and pathogen attack [40,164]. TF basic
region/leucine zipper (bZIP) belongs to a diverse superfamily of TFs divided into 13 groups in
Arabidopsis. VIP1, a member of bZIP group I TF, is a bridge between nuclear importin α and VirE
which facilitates transport of Agrobacterium T-DNA strand into plant nucleus [165]. In addition to its
role in Agrobacterium-mediated transformation, it functions in Botrytis attack, salt stress, and ABA
responses [166,167]. Liu et al. (2019) [39] studied bZIP TF activity using multi-Omics strategy in rice.
RNA sequencing output was generated using HiSeq3000 and mapped to Oryza sativa reference genome
(RGAP v. 7.0), performed on OsbZIP81.1ox and WT ZH11. Gene expression levels and identification
of DEGs were carried out using RPKM and edgeR, respectively. Five thousand, one hundred and
forty-three DEGs (in OsbZIP81.1ox versus ZH11) and 5002 DEGsOsbZIP81.2ox versus ZH11) were
identified. ChIP-seq analysis on OsbZIP81.1 under normal condition yielded 43 million reads after
SOAP2 alignment and unique mapping with MACS. These reads were subjected to motif analysis using
MEME-ChIP. They carefully analyzed the combined ChIP-seq and RNA-seq data of rice OsZIP81.1
and found 7 genes that were enriched in JA signaling pathway from 1332 genes that were identified.
For binding motif discovery by ChIP-seq, they found 15 probable motifs which were referred to as
Oryza VIP1 response element (OVRE) GCTG, which are closely related to the Arabidopsis VRE.

8. Third Generation Sequencing

The progress in NGS development has enabled researchers to study and understand the
complex world of microorganisms, plants, and animals from broader and deeper perspectives.
In the third-generation sequencing technology, platforms were designed to address the limitation in
obtaining an effective read coverage, especially in the short read lengths, which are poorly suited for
particular biological problems, including assembly and determination of complex genomic regions,
gene isoform, and DNA methylation detection [168]. This is due to inherent limitations of the short-read
technologies such as GC bias and problems associated with mapping to repetitive regions, differentiating
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paralogous sequences, and phasing alleles [169]. Long-read/third-generation sequencing technologies
revolutionised genomics research as they enable genomes and transcriptomes to be analysed at an
unprecedented resolution. It allows direct native DNA and full-length transcript sequencing without
requiring sequence assembly. Oxford nanopore and pacific biosciences offer long sequence read
technologies commercially. Both use single-molecule sequencing, but with contrasting detection
methods based on nanopores and optical detection, respectively. Both provide exceptionally long read
lengths, up to greater than 20 kb. These platforms allow sequencing/assembly of repetitive elements,
direct variant phasing, and determination of epigenetic modifications [169].

The pacific biosciences RS platform was first released in 2010. It uses hairpin adapters ligated
on either end of a DNA molecule to be sequenced, generating capped templates referred to as
single-molecule real-time (SMRTbells) [169]. SMRT sequencing is a sequencing-by-synthesis technology
based on real-time imaging of fluorescently tagged nucleotides that are incorporated as complementary
strand is synthesized along individual DNA template [170]. DNA modifications such as methylation
are detected based on the kinetic variation obtained from the light-pulse. The technology allows
generation of full-length cDNA sequences without the need for assembly and characterization of
transcript isoforms within targeted genes or across an entire transcriptome. It uses a DNA polymerase to
drive the reaction and the sequencing reaction ends when the template and polymerase dissociate [171].
The average read length is about 3000 bp, but some may reach 20,000 bp or even longer [172].

NGS methods tend to lose information found in DNA and RNA due to the short-copied reads
and the inability to retain modifications. The Oxford nanopore technologies methods that were first
commercialised in 2014 can overcome these limitations through direct DNA and native poly(A) RNA
sequencing strategy. It does not involve any fragmentation and amplification steps, which are potential
source of bias faced in the NGS technology. The sequencing adapter contains the motor protein,
an enzyme controlling the passage of the nucleic acid through the nanopore. Read length is directly
proportional to the length of RNA and DNA being prepared. Nucleic acid bases determination based
on changes in electrical conductivity that are generated as the RNA/DNA strand passes through
a biological pore does not require chemical tagging of nucleotides. Sequence data information is
produced in real-time, enabling direct data analysis and processing [173]. The long-read nanopore
RNA sequencing enables precision characterisation of complete DNA and full-native RNA sequences
facilitating sequence assembly and mapping. It enables unambiguous determination of transcript
isoforms, giving a true reflection of gene expression with high sensitivity down to single cell level [174].

9. Conclusions and Future Prospects

The identification of DEGs is now widely available via high throughput analysis of transcriptomes.
However, the quality of data generated is highly dependent on the experimental design, quality of RNA,
and sequencing depth. The information generated will not always provide enough evidence of the
specific role of transcription factor, the master regulator at the transcriptional level in regulating certain
biological pathway or physiological process, as it only enables inferences based on co-expression of
genes. In contrast, genome-wide identification of transcription factors of interest or novel transcription
factors through RNA-seq can result in a more in-depth understanding of transcriptional networks
associated with these transcription factors and their regulons when followed with ChIP-seq analysis.
The ChIP-seq technique can provide valuable information about transcriptional regulation based
on transcription factor binding to target DNA promoter motifs for coordinating transcriptional
regulation in response to environmental cues, while RNA-seq alone does not provide complete
information. However, a combination of these technologies opens up new prospects to better elucidate
more comprehensive gene regulatory networks. This approach provides a better explanation of
gene regulatory networks [117] and opportunities to explore uncharacterized genes (new genes in a
treatment). The approach can give more insights in TFs and the networks they regulate, hence allowing
functional study on prospective TFs found in this approach. Although integrating data assembly
tools from both ChIP-seq and RNA-seq data like Partek [175] and BETA [176] could be interesting,
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unfortunately this approach needs to develop the full options of parameter inputs or algorithms
required for each method [126]. Advances in the development of new peak calling algorithms, as briefly
described in this paper, are providing more reliability and precision concerning the genes detected from
high throughput sequencing data [126]. Specifically, in Salmon and Sailfish RNA-seq data analysis,
pseudo-counting was introduced at the read counting stage to avoid large negative log transformed
values and arithmetic error [177]. This, in combination with third generation sequencing with improved
accuracy of sequence assemblies and the discovery of sequence variants, will enhance the potential of
combined ChIP-seq and RNA-seq applications that can better describe the functionalities of complex
plant genomes and their regulatory networks.

One way to alleviate the problem of TF-specific antibody development is to use clustered
regularly interspaced short palindromic repeat associated-Cas9 (CRISPR-Cas9) for epitope tagging.
CETCh-seq is designed to tag DNA-binding proteins and subsequently results in using a standard
Cas9 antibody [178–180]. This will lead to the creation of individual TF maps and the maps between
TF can cross-talk to give a network of TF maps, a new prospect offered by this technology. Likewise,
ChIP-seq DNA motifs can be verified using CRISPR single-guide RNA (sgRNA) [181] to target the DNA
motif [182]. This will pave a way for precision DNA motif discovery with CRISPR double checking.

Finally, the prime goal for this kind of multi-Omics approach is to comprehend big chunk of
data generated from genomic research, which can be a source of confusion and wrong inferences.
Combining RNA-seq and ChIP-seq output is like following a reductionist approach from millions of
reads of RNA-seq DEGs and thousands of ChIP-seq mapped reads to a few functional TFs binding
motif(s). Therefore, the plant community can understand how different experimental studies were
designed and approached using multi-Omics technique, and importantly, the analysis part where
two-way ANOVA and Python script and R software were employed to aid in clear understanding of
data [38,40,153].
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NGS Next Generation Sequencing
RNA-seq RNA Sequencing
RIN RNA Integrity Number
rRNA ribosomal RNA
mRNA micro RNA
siRNA small interfering RNA
piRNA piwi-interacting RNA
cDNA complementary DNA
dUTPs deoxy-UTPs
UDG Uracil-N-Glycosylase
SBS Sequencing by synthesis
BAM Binary of SAM
IGV Integrative Genomic Viewer
RPKM Reads per kilobase of transcript per million mapped reads
FPKM Fragments per kilobase of transcript per million mapped reads
TPM Transcripts per million
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TMM Trimmed mean of M-values
DEG Differentially Expressed Gene
ChIP-seq Chromatin Immunoprecipitation and Sequencing
UV Ultraviolet
ChIP qPCR ChIP quantitative realtime PCR
ENCODE Encyclopedia of DNA Elements
BWA Burrow Wheelers alignment
GFP Green fluorescence protein
YFP Yellow fluorescence protein
SET Single-ends tags
PET Paired-ends tags
JA Jasmonic acid
CRISPR Clustered regularly interspaced short palindromic repeats
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of Transcription Factor Binding Sites from PET and SET ChIP-Seq Data. PLoS Comput. Biol. 2013, 9, 9–11.
[CrossRef]

116. Bailey, T.; Krajewski, P.; Ladunga, I.; Lefebvre, C.; Li, Q.; Liu, T.; Madrigal, P.; Taslim, C.; Zhang, J. Practical
Guidelines for the Comprehensive Analysis of ChIP-seq Data. PLoS Comput. Biol. 2013, 9, 5–12. [CrossRef]

117. Li, C.; Qiao, Z.; Qi, W.; Wang, Q.; Yuan, Y.; Yang, X.; Tang, Y.; Mei, B.; Lv, Y.; Zhao, H.; et al. Genome-Wide
Characterization of cis -Acting DNA Targets Reveals the Transcriptional Regulatory Framework of Opaque2
in Maize. Plant Cell 2015, 27, 532–545. [CrossRef]

118. Yant, L.; Ott, F.; Keller, H.; Weigel, D.; Schmid, M. 20th International of Conference on Arabidopsis Research,
Scotland, United Kingdom. In Proceedings of the Design and Analysis of ChIP-Seq Experiments in Plants:
A Systematic Comparison of ChIP-Seq and ChIP-chip for APETALA2 (AP2), FD, and SCHLAFMÜTZE
(SMZ), Edinburgh, UK, 30 June–4 July 2009.

119. Nakato, R.; Shirahige, K. Recent advances in ChIP-seq analysis: From quality management to whole-genome
annotation. Brief. Bioinform. 2017, 18, 279–290. [CrossRef] [PubMed]

120. Pepke, S.; Wold, B.; Mortazavi, A. Computation for ChIP-seq and RNA-seq studies. Nat. Methods 2009, 6,
S22. [CrossRef] [PubMed]

121. Furey, T.S. ChIP–seq and beyond: New and improved methodologies to detect and characterize protein–DNA
interactions. Nat. Rev. Genet. 2012, 13, 840–852. [CrossRef] [PubMed]

122. Baugh, L.R.; DeModena, J.; Sternberg, P.W. RNA Pol II accumulates at promoters of growth genes during
developmental arrest. Science 2009, 324, 92–94. [CrossRef] [PubMed]

http://dx.doi.org/10.1126/science.1141319
http://dx.doi.org/10.1016/S0254-6299(15)30384-7
http://dx.doi.org/10.1199/tab.0170
http://dx.doi.org/10.1186/s12864-017-4371-5
http://dx.doi.org/10.1186/1471-2229-7-47
http://dx.doi.org/10.1007/s11295-015-0869-7
http://dx.doi.org/10.1186/s12870-015-0499-0
http://www.ncbi.nlm.nih.gov/pubmed/25957781
http://dx.doi.org/10.1038/ncomms7033
http://www.ncbi.nlm.nih.gov/pubmed/25607992
http://dx.doi.org/10.1371/journal.pgen.1006197
http://www.ncbi.nlm.nih.gov/pubmed/27467757
http://dx.doi.org/10.1038/nature12633
http://dx.doi.org/10.1105/tpc.113.121111
http://dx.doi.org/10.1038/s41467-018-02976-9
http://dx.doi.org/10.1105/tpc.17.00791
http://dx.doi.org/10.1371/journal.pcbi.1003246
http://dx.doi.org/10.1371/journal.pcbi.1003326
http://dx.doi.org/10.1105/tpc.114.134858
http://dx.doi.org/10.1093/bib/bbw023
http://www.ncbi.nlm.nih.gov/pubmed/26979602
http://dx.doi.org/10.1038/nmeth.1371
http://www.ncbi.nlm.nih.gov/pubmed/19844228
http://dx.doi.org/10.1038/nrg3306
http://www.ncbi.nlm.nih.gov/pubmed/23090257
http://dx.doi.org/10.1126/science.1169628
http://www.ncbi.nlm.nih.gov/pubmed/19251593


Int. J. Mol. Sci. 2020, 21, 167 28 of 30

123. Rozowsky, J.; Euskirchen, G.; Auerbach, R.K.; Zhang, Z.D.; Gibson, T.; Bjornson, R.; Carriero, N.; Snyder, M.;
Gerstein, M.B. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat. Biotechnol.
2009, 27, 66–75. [CrossRef] [PubMed]

124. Robinson, M.D.; Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq
data. Genome Biol. 2010, 11, R25. [CrossRef]

125. Muiño, J.M.; Kaufmann, K.; van Ham, R.C.; Angenent, G.C.; Krajewski, P. ChIP-seq Analysis in R (CSAR):
An R package for the statistical detection of protein-bound genomic regions. Plant Methods 2011, 7, 11.
[CrossRef]

126. Taleb, H.A.; AL-Dherasi, A.; Al-Mosaib, S.; Alnoud, M.; Vilaphong, S. Peak Calling Algorithms and Their
Applications for Next-Generation Sequencing Technologies. Indian J. Nat. Sci. 2019, 9, 16659–16670.

127. Johannes, F.; Wardenaar, R.; Colomé-Tatché, M.; Mousson, F.; de Graaf, P.; Mokry, M.; Guryev, V.;
Timmers, H.T.M.; Cuppen, E.; Jansen, R.C. Comparing genome-wide chromatin profiles using ChIP-chip or
ChIP-seq. Bioinformatics 2010, 26, 1000–1006. [CrossRef]

128. Burrows, M.; Wheeler, D. A Block-Sorting Lossless Data Compression Algorithm; Technical Report for Digital
Equipment Corporation: Maynard, MA, USA, May 1994.

129. Ferragina, P.; Manzini, G. An Experimental Study of an Opportunistic Index. In Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, Washington, DC, USA, 7–9 January 2001;
pp. 269–278.

130. Li, R.; Yu, C.; Li, Y.; Lam, T.W.; Yiu, S.M.; Kristiansen, K.; Wang, J. SOAP2: An improved ultrafast tool for
short read alignment. Bioinformatics 2009, 25, 1966–1967. [CrossRef]

131. Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements.
Nat. Methods 2015, 12, 357–360. [CrossRef] [PubMed]

132. Chen, K.; Xi, Y.; Pan, X.; Li, Z.; Kaestner, K.; Tyler, J.; Dent, S.; He, X.; Li, W. DANPOS: Dynamic analysis of
nucleosome position and occupancy by sequencing. Genome Res. 2013, 23, 341–351. [CrossRef] [PubMed]

133. Latrasse, D.; Jégu, T.; Li, H.; de Zelicourt, A.; Raynaud, C.; Legras, S.; Gust, A.; Samajova, O.; Veluchamy, A.;
Rayapuram, N.; et al. MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate
immunity. Genome Biol. 2017, 18, 131. [CrossRef] [PubMed]

134. Ricardi, M.M.; González, R.M.; Zhong, S.; Domínguez, P.G.; Duffy, T.; Turjanski, P.G.; Salgado Salter, J.D.;
Alleva, K.; Carrari, F.; Giovannoni, J.J.; et al. Genome-wide data (ChIP-seq) enabled identification of cell
wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor.
BMC Plant Biol. 2014, 14, 29. [CrossRef] [PubMed]

135. Zhang, Y.; Liu, T.; Meyer, C.A.; Eeckhoute, J.; Johnson, D.S.; Bernstein, B.E.; Nussbaum, C.; Myers, R.M.;
Brown, M.; Li, W.; et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9, R137. [CrossRef]
[PubMed]

136. Lu, Z.; Yu, H.; Xiong, G.; Wang, J.; Jiao, Y.; Liu, G.; Jing, Y.; Meng, X.; Hu, X.; Qian, Q.; et al. Genome-Wide
Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex
Network Regulating Rice Plant Architecture. Plant Cell 2013, 25, 3743–3759. [CrossRef]

137. Mateos, J.L.; Madrigal, P.; Tsuda, K.; Rawat, V.; Richter, R.; Romera-Branchat, M.; Fornara, F.; Schneeberger, K.;
Krajewski, P.; Coupland, G. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING
LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biol. 2015, 16, 31. [CrossRef]

138. Zhang, F.; Wang, L.; Qi, B.; Zhao, B.; Ko, E.E.; Riggan, N.D.; Chin, K.; Qiao, H. EIN2 mediates direct regulation
of histone acetylation in the ethylene response. Proc. Natl. Acad. Sci. USA 2017, 114, 201707937. [CrossRef]

139. Machanick, P.; Bailey, T.L. MEME-ChIP: Motif analysis of large DNA datasets. Bioinformatics 2011, 27,
1696–1697. [CrossRef]

140. Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME
SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [CrossRef]

141. Bailey, T.L. DREME: Motif discovery in transcription factor ChIP-seq data. Bioinformatics 2011, 27, 1653–1659.
[CrossRef] [PubMed]

142. Thomas-Chollier, M.; Darbo, E.; Herrmann, C.; Defrance, M.; Thieffry, D.; van Helden, J. A complete workflow
for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs. Nat. Protoc. 2012, 7, 1551–1568.
[CrossRef] [PubMed]

http://dx.doi.org/10.1038/nbt.1518
http://www.ncbi.nlm.nih.gov/pubmed/19122651
http://dx.doi.org/10.1186/gb-2010-11-3-r25
http://dx.doi.org/10.1186/1746-4811-7-11
http://dx.doi.org/10.1093/bioinformatics/btq087
http://dx.doi.org/10.1093/bioinformatics/btp336
http://dx.doi.org/10.1038/nmeth.3317
http://www.ncbi.nlm.nih.gov/pubmed/25751142
http://dx.doi.org/10.1101/gr.142067.112
http://www.ncbi.nlm.nih.gov/pubmed/23193179
http://dx.doi.org/10.1186/s13059-017-1261-8
http://www.ncbi.nlm.nih.gov/pubmed/28683804
http://dx.doi.org/10.1186/1471-2229-14-29
http://www.ncbi.nlm.nih.gov/pubmed/24423251
http://dx.doi.org/10.1186/gb-2008-9-9-r137
http://www.ncbi.nlm.nih.gov/pubmed/18798982
http://dx.doi.org/10.1105/tpc.113.113639
http://dx.doi.org/10.1186/s13059-015-0597-1
http://dx.doi.org/10.1073/pnas.1707937114
http://dx.doi.org/10.1093/bioinformatics/btr189
http://dx.doi.org/10.1093/nar/gkp335
http://dx.doi.org/10.1093/bioinformatics/btr261
http://www.ncbi.nlm.nih.gov/pubmed/21543442
http://dx.doi.org/10.1038/nprot.2012.088
http://www.ncbi.nlm.nih.gov/pubmed/22836136


Int. J. Mol. Sci. 2020, 21, 167 29 of 30

143. Zang, C.; Schones, D.E.; Zeng, C.; Cui, K.; Zhao, K.; Peng, W. A clustering approach for identification of
enriched domains from histone modification ChIP-Seq data. Bioinformatics 2009, 25, 1952–1958. [CrossRef]
[PubMed]

144. Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics
2010, 26, 841–842. [CrossRef] [PubMed]

145. Arenhart, R.A.; Bai, Y.; Valter De Oliveira, L.F.; Bucker Neto, L.; Schunemann, M.; Maraschin, F.D.S.;
Mariath, J.; Silverio, A.; Sachetto-Martins, G.; Margis, R.; et al. New insights into aluminum tolerance in rice:
The ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. Mol. Plant 2014, 7,
709–721. [CrossRef]

146. Zhang, M.; Xie, S.; Dong, X.; Zhao, X.; Zeng, B.; Chen, J.; Li, H.; Yang, W.; Zhao, H.; Wang, G.; et al.
Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of
imprinting regulation in maize. Genome Res. 2014, 24, 167–176. [CrossRef]

147. Lei, K.J.; Lin, Y.M.; Ren, J.; Bai, L.; Miao, Y.C.; An, G.Y.; Song, C.P. Modulation of the phosphate-deficient
responses by MicroRNA156 and its targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 in
arabidopsis. Plant Cell Physiol. 2016, 57, 192–203. [CrossRef]

148. Pedmale, U.V.; Huang, S.S.C.; Zander, M.; Cole, B.J.; Hetzel, J.; Ljung, K.; Reis, P.A.B.; Sridevi, P.; Nito, K.;
Nery, J.R.; et al. Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light.
Cell 2016, 164, 233–245. [CrossRef]

149. Bi, X.; Cheng, Y.-J.; Hu, B.; Ma, X.; Wu, R.; Wang, J.-W.; Liu, C. Nonrandom domain organization of
theArabidopsisgenome at the nuclear periphery. Genome Res. 2017, 27, 1162–1173. [CrossRef]

150. Huang, L.; Jia, J.; Zhao, X.; Zhang, M.Y.; Huang, X.; Ji, E.; Ni, L.; Jiang, M. The ascorbate peroxidase APX1 is a
direct target of a zinc finger transcription factor ZFP36 and a late embryogenesis abundant protein OsLEA5
interacts with ZFP36 to co-regulate OsAPX1 in seed germination in rice. Biochem. Biophys. Res. Commun.
2018, 495, 339–345. [CrossRef]

151. Balanzà, V.; Martínez-Fernández, I.; Sato, S.; Yanofsky, M.F.; Kaufmann, K.; Angenent, G.C.; Bemer, M.;
Ferrándiz, C. Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2
pathway. Nat. Commun. 2018, 9, 565. [CrossRef] [PubMed]

152. Martin, R.C.; Vining, K.; Dombrowski, J.E. Genome-wide (ChIP-seq) identification of target genes regulated
by BdbZIP10 during paraquat-induced oxidative stress. BMC Plant Biol. 2018, 18, 58. [CrossRef] [PubMed]

153. Li, S.; Tian, Y.; Wu, K.; Ye, Y.; Yu, J.; Zhang, J.; Liu, Q.; Hu, M.; Li, H.; Tong, Y.; et al. Modulating plant
growth–metabolism coordination for sustainable agriculture. Nature 2018, 560, 595–600. [CrossRef] [PubMed]

154. Bang, S.W.; Lee, D.K.; Jung, H.; Chung, P.J.; Kim, Y.S.; Choi, Y.D.; Suh, J.W.; Kim, J.K. Overexpression of
OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves
drought tolerance. Plant Biotechnol. J. 2019, 17, 118–131. [CrossRef]

155. Zhao, S.; Cheng, L.; Gao, Y.; Zhang, B.; Zheng, X.; Wang, L.; Li, P.; Sun, Q.; Li, H. Plant HP1 protein
ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation. Cell Res. 2019, 29, 54–66.
[CrossRef]

156. Song, L.; Chen, W.; Wang, B.; Yao, Q.M.; Valliyodan, B.; Bai, M.Y.; Zhao, M.Z.; Ye, H.; Wang, Z.Y.; Nguyen, H.T.
GmBZL3 acts as a major BR signaling regulator through crosstalk with multiple pathways in Glycine max.
BMC Plant Biol. 2019, 19, 86. [CrossRef]

157. Collani, S.; Neumann, M.; Yant, L.; Schmid, M. FT Modulates Genome-Wide DNA-Binding of the bZIP
Transcription Factor FD. Plant Physiol. 2019, 180, 367–380. [CrossRef]

158. Roberts, A.; Pachter, L. Streaming fragment assignment for real-time analysis of sequencing experiments.
Nat. Methods 2013, 10, 71–73. [CrossRef]

159. Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference
genome. BMC Bioinform. 2011, 12, 323. [CrossRef]

160. Benjamini, Y.; Drai, D.; Elmer, G.; Kafkafi, N.; Golani, I. Controlling the false discovery rate in behavior
genetics research. Behav. Brain Res. 2001, 125, 279–284. [CrossRef]

161. Ye, T.; Krebs, A.R.; Choukrallah, M.-A.; Keime, C.; Plewniak, F.; Davidson, I.; Tora, L. seqMINER: An integrated
ChIP-seq data interpretation platform. Nucleic Acids Res. 2011, 39, e35. [CrossRef] [PubMed]

162. Du, Z.; Zhou, X.; Ling, Y.; Zhang, Z.; Su, Z. agriGO: A GO analysis toolkit for the agricultural community.
Nucleic Acids Res. 2010, 38, W64–W70. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/bioinformatics/btp340
http://www.ncbi.nlm.nih.gov/pubmed/19505939
http://dx.doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
http://dx.doi.org/10.1093/mp/sst160
http://dx.doi.org/10.1101/gr.155879.113
http://dx.doi.org/10.1093/pcp/pcv197
http://dx.doi.org/10.1016/j.cell.2015.12.018
http://dx.doi.org/10.1101/gr.215186.116
http://dx.doi.org/10.1016/j.bbrc.2017.10.128
http://dx.doi.org/10.1038/s41467-018-03067-5
http://www.ncbi.nlm.nih.gov/pubmed/29422669
http://dx.doi.org/10.1186/s12870-018-1275-8
http://www.ncbi.nlm.nih.gov/pubmed/29636001
http://dx.doi.org/10.1038/s41586-018-0415-5
http://www.ncbi.nlm.nih.gov/pubmed/30111841
http://dx.doi.org/10.1111/pbi.12951
http://dx.doi.org/10.1038/s41422-018-0104-9
http://dx.doi.org/10.1186/s12870-019-1677-2
http://dx.doi.org/10.1104/pp.18.01505
http://dx.doi.org/10.1038/nmeth.2251
http://dx.doi.org/10.1186/1471-2105-12-323
http://dx.doi.org/10.1016/S0166-4328(01)00297-2
http://dx.doi.org/10.1093/nar/gkq1287
http://www.ncbi.nlm.nih.gov/pubmed/21177645
http://dx.doi.org/10.1093/nar/gkq310
http://www.ncbi.nlm.nih.gov/pubmed/20435677


Int. J. Mol. Sci. 2020, 21, 167 30 of 30

163. O’Malley, R.C.; Huang, S.C.; Song, L.; Lewsey, M.G.; Bartlett, A.; Nery, J.R.; Galli, M.; Gallavotti, A.; Ecker, J.R.
Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. Cell 2016, 165, 1280–1292.
[CrossRef] [PubMed]

164. Chen, Y.; Chen, Y.; Shi, Z.; Jin, Y.; Sun, H.; Xie, F.; Zhang, L. Biosynthesis and Signal Transduction of ABA, JA,
and BRs in Response to Drought Stress of Kentucky Bluegrass. Int. J. Mol. Sci. 2019, 20, 1289. [CrossRef]
[PubMed]

165. Hu, J.; Wang, Y.; Fang, Y.; Zeng, L.; Xu, J.; Yu, H.; Shi, Z.; Pan, J.; Zhang, D.; Kang, S.; et al. A Rare Allele of
GS2 Enhances Grain Size and Grain Yield in Rice. Mol. Plant 2015, 8, 1455–1465. [CrossRef] [PubMed]

166. Lapham, R.; Lee, L.Y.; Tsugama, D.; Lee, S.; Mengiste, T.; Gelvin, S.B. VIP1 and its homologs are not
required for agrobacterium-mediated transformation, but play a role in botrytis and salt stress responses.
Front. Plant Sci. 2018, 9, 749. [CrossRef]

167. Tsugama, D.; Liu, S.; Takano, T. A bZIP Protein, VIP1, Is a Regulator of Osmosensory Signaling in Arabidopsis
1[W]. Plant Physiol. 2012, 159, 144–155. [CrossRef]

168. Rhoads, A.; Au, K.F. PacBio Sequencing and Its Applications. Genom. Proteom. Bioinform. 2015, 13, 278–289.
[CrossRef]

169. Ardui, S.; Ameur, A.; Vermeesch, J.R.; Hestand, M.S. Single molecule real-time (SMRT) sequencing comes of
age: Applications and utilities for medical diagnostics. Nucleic Acids Res. 2018, 46, 2159–2168. [CrossRef]

170. Schloss, P.D.; Jenior, M.L.; Koumpouras, C.C.; Westcott, S.L.; Highlander, S.K. Sequencing 16S rRNA gene
fragments using the PacBio SMRT DNA sequencing system. PeerJ 2016, 4, e1869. [CrossRef]

171. Gueidan, C.; Elix, J.A.; McCarthy, P.M.; Roux, C.; Mallen-Cooper, M.; Kantvilas, G. PacBio amplicon
sequencing for metabarcoding of mixed DNA samples from lichen herbarium specimens. MycoKeys 2019, 53,
73–91. [CrossRef] [PubMed]

172. Roberts, R.J.; Carneiro, M.O.; Schatz, M.C. The advantages of SMRT sequencing. Genome Biol. 2013, 14, 405.
[CrossRef] [PubMed]

173. Lu, H.; Giordano, F.; Ning, Z. Oxford Nanopore MinION Sequencing and Genome Assembly. Genom. Proteom.
Bioinform. 2016, 14, 265–279. [CrossRef] [PubMed]

174. Ameur, A.; Kloosterman, W.P.; Hestand, M.S. Single-Molecule Sequencing: Towards Clinical Applications.
Trends Biotechnol. 2019, 37, 72–85. [CrossRef]

175. Laboratories, K. Partek: How to Integrate ChIP-Seq and RNA-Seq Data. Available online: https://www.
partek.com/how-to-integrate-chip-seq-and-rna-seq-data/ (accessed on 9 December 2019).

176. Wang, S.; Sun, H.; Ma, J.; Zang, C.; Wang, C.; Wang, J.; Tang, Q.; Meyer, C.A.; Zhang, Y.; Liu, X.S. Target analysis
by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc. 2013, 8, 2502–2515. [CrossRef]

177. Zhang, C.; Zhang, B.; Lin, L.-L.; Zhao, S. Evaluation and comparison of computational tools for RNA-seq
isoform quantification. BMC Genom. 2017, 18, 583. [CrossRef]

178. O’Geen, H.; Henry, I.M.; Bhakta, M.S.; Meckler, J.F.; Segal, D.J. A genome-wide analysis of Cas9 binding
specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res. 2015, 43, 3389–3404. [CrossRef]

179. Partridge, E.C.; Watkins, T.A.; Mendenhall, E.M. Every transcription factor deserves its map: Scaling up
epitope tagging of proteins to bypass antibody problems. BioEssays 2016, 38, 801–811. [CrossRef]

180. Savic, D.; Partridge, E.C.; Newberry, K.M.; Smith, S.B.; Meadows, S.K.; Roberts, B.S.; Mackiewicz, M.;
Mendenhall, E.M.; Myers, R.M. CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins.
Genome Res. 2015, 25, 1581–1589. [CrossRef]

181. Moradpour, M.; Abdulah, S.N.A. CRISPR/dCas9 platforms in plants: Strategies and applications beyond
genome editing. Plant Biotechnol. J. 2019. [CrossRef]

182. Li, C.; Chen, C.; Chen, H.; Wang, S.; Chen, X.; Cui, Y. Verification of DNA motifs in Arabidopsis using
CRISPR/Cas9-mediated mutagenesis. Plant Biotechnol. J. 2018, 16, 1446–1451. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cell.2016.04.038
http://www.ncbi.nlm.nih.gov/pubmed/27203113
http://dx.doi.org/10.3390/ijms20061289
http://www.ncbi.nlm.nih.gov/pubmed/30875790
http://dx.doi.org/10.1016/j.molp.2015.07.002
http://www.ncbi.nlm.nih.gov/pubmed/26187814
http://dx.doi.org/10.3389/fpls.2018.00749
http://dx.doi.org/10.1104/pp.112.197020
http://dx.doi.org/10.1016/j.gpb.2015.08.002
http://dx.doi.org/10.1093/nar/gky066
http://dx.doi.org/10.7717/peerj.1869
http://dx.doi.org/10.3897/mycokeys.53.34761
http://www.ncbi.nlm.nih.gov/pubmed/31205446
http://dx.doi.org/10.1186/gb-2013-14-6-405
http://www.ncbi.nlm.nih.gov/pubmed/23822731
http://dx.doi.org/10.1016/j.gpb.2016.05.004
http://www.ncbi.nlm.nih.gov/pubmed/27646134
http://dx.doi.org/10.1016/j.tibtech.2018.07.013
https://www.partek.com/how-to-integrate-chip-seq-and-rna-seq-data/
https://www.partek.com/how-to-integrate-chip-seq-and-rna-seq-data/
http://dx.doi.org/10.1038/nprot.2013.150
http://dx.doi.org/10.1186/s12864-017-4002-1
http://dx.doi.org/10.1093/nar/gkv137
http://dx.doi.org/10.1002/bies.201600028
http://dx.doi.org/10.1101/gr.193540.115
http://dx.doi.org/10.1111/pbi.13232
http://dx.doi.org/10.1111/pbi.12886
http://www.ncbi.nlm.nih.gov/pubmed/29331085
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	RNA-seq Platform Selections 
	RNA-seq Workflow (Wet Laboratory) 
	Total RNA Isolation 
	Library Preparation 

	RNA-seq Workflow (Data Analysis) 
	Quality Control 
	Transcriptome Reconstruction 
	Reference-Guided Assembly 
	De Novo Assembly 
	Expression Quantification and Normalization for Differential Expression Analysis 
	Functional Annotation and Pathway Analysis 

	ChIP-seq Workflow (Wet Laboratory) 
	Crosslinking in Plant Samples 
	Chromatin Isolation 
	ChIPped-DNA Purification 
	Library Construction 

	ChIP-seq Workflow (Data Analysis) 
	Reads Mapping 
	Enrichment of Genomic Region 

	Genome-Wide Identification of Transcription Factor Co-Regulated Genes by RNA-seq and ChIP-seq 
	Third Generation Sequencing 
	Conclusions and Future Prospects 
	References

