
New Role for Photoexcited Na2 Eosin
Y via the Direct Hydrogen Atom
Transfer Process in Photochemical
Visible-Light-Induced Synthesis of
2-Amino-4H-Chromene Scaffolds
Under Air Atmosphere
Farzaneh Mohamadpour*

School of Engineering, Apadana Institute of Higher Education, Shiraz, Iran

The Knoevenagel–Michael cyclocondensation of malononitrile, aryl aldehydes, and
resorcinol was used as a multicomponent green tandem strategy for the metal-free
synthesis of 2-amino-4H-chromene scaffolds. Through a visible-light-induced process,
the photo-excited state functions derived from Na2 eosin Y were used as direct hydrogen
atom transfer catalysts in aqueous ethanol at ambient temperature. The purpose of this
study was to examine the further use of an organic dye that does not contain metal and is
inexpensive and commercially available. Na2 eosin Y is synthesized by photochemical
means using the least amount of catalyst, which results in excellent yields, energy
efficiency, and environmental friendliness, high atom economy, time-saving features,
and ease of operation. As a result, some properties of green and sustainable
chemistry are met. This kind of cyclization can be performed on a gram scale,
indicating the potential utility of this reaction in industry.

Keywords: photoexcited Na2 eosin Y, photochemical synthesis, visible light mediated, 2-amino-4H-chromene
scaffolds, green chemistry

INTRODUCTION

Eosin Y is a metal-free organic dye that has gained widespread use in recent years as a cost-effective
and environment friendly alternative to transition-metal-based photocatalysts (Zhu et al., 2018;
Wang et al., 2019; Yan et al., 2019; Chen et al., 2020). Successfully oxidized/reduced target substrates
by their incited mode in eosin Y-catalyzed photoredox reactions are typically dependent on whether
the substrates’ prospective oxidability or reducibility falls within the scope of eosin Y (Yan et al.,
2019). The electrochemical requirements that have been discussed have limited the range of eosin
Y-catalyzed photochemical processes. Eosin Y is distinguished from other organic dyes by its distinct
xanthene and phenol moieties, as well as notable acid–base properties, which can result in four
distinct constructions. In most earlier reports on photoreactions, there is ample evidence that the
anionic kinds of eosin Y exhibit photocatalytic properties, but the neutral types are thought to have
typical inactivity and are ignorable in potentially applied synthesis procedures (Hari and König,
2014; Majek et al., 2014). The structural properties of eosin Y have inspired a team of Wang (Zhao
and Wang, 2018) and Wu (Fan et al., 2018) to innovate in the discovery of novel activating states of
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photoexcited eosin Y in recent years. The researchers observed
that incited modes derived from neutral eosin Y may operate as
photoacids and direct hydrogen atom transfer (HAT) catalysts for
activating glycals and native C–H bonds in the order they were
identified (Yan et al., 2019).

HAT (hydrogen atom transfer) is a fundamental stage that
may be responsible for a variety of chemical, environmental, and
biological processes. In recent years, benzophenone- and
quinone-mediated direct HAT catalysis has been promoted as
a tool for activating the C–H bond under light radiation (Ravelli
et al., 2016; Romero and Nicewicz, 2016; Capaldo and Ravelli,
2017). Direct HAT catalysis mediated by benzophenone and
quinone has recently been established as a viable method for
irradiating the C–H bond (Ravelli et al., 2016; Romero and
Nicewicz, 2016; Capaldo and Ravelli, 2017). Due to the
similarities between eosin Y and quinones (Ravelli et al., 2016;
Romero and Nicewicz, 2016), Wu and others suggested that when
exposed to visible light, eosin Y may work as a direct HAT
catalyst, activating a C–H bond and creating radical species for
further functionalities (Fan et al., 2018). The radical species
formed from eosin Y is unlikely to suffer the kinds of side
reactions seen in HAT catalysis with diaryl ketones, allowing
for a reverse transfer of hydrogen atom, due to its captodative and
steric features. Wu and others demonstrated that when eosin Y in
the neutral state is exposed to the visible spectrum, it may
successfully initiate numerous C (sp3)-H and C (sp2)-H bonds
to start generating the matching carbon radicals, allowing radical
introduction to multiple alkenes with electron deficit. This
method covers a wide range of substrates and has a high
group tolerance. The needed C–H alkylation compounds were
synthesized with good yields and site selectivity. A number of C
(sp3)-H and C (sp2)-H bonds of ethers, thioethers, alcohols,

aldehydes, and cyclohexanes were radically alkylated with
acceptable site selection (e.g., 10 c). This approach can be used
to a wide range of tri- and tetrasubstituted olefins with various
properties. The substrate restrictions of traditional SET-based
redox reactions are circumvented by this HAT catalysis technique
(Yan et al., 2019).

In the eco-friendly synthesis of organic molecules, visible light
irradiation has also proven to be a trustworthy strategy for green
chemists because of its abundant energy reserves, low prices, and
renewable source of energy (Mohamadpour, 2020;
Mohamadpour, 2021a). In general, visible light sources such as
light emitting diodes and tiny fluorescent lamps are used for
various conversions.

Because of their biological actions, chromenes and their
equivalents have gotten a lot of attention such as antimicrobial
(Kathrotiya and Patel, 2012), antifungal (Alvey et al., 2009), anti-
inflammatory (Moon et al., 2007), antibacterial (Kumar et al.,
2009), antioxidant (Symeonidis et al., 2009), antileishmanial
(Narender et al., 2004), anti-HIV (Flavin et al., 1996; Rueping
et al., 2008), anticancer (Abdelrazek et al., 2004; Paliwal et al.,
2013), and hypotensive (Cai et al., 2009). Also, they are used as
inhibitors (Wang et al., 2000; Huynh et al., 2012).

Several multicomponent reactions for manufacturing 2-amino-
4H-chromene scaffolds have been described against various
catalysts such as glycine (Datta and Pasha, 2012), mesolite
(Pawar et al., 2018), potassium phthalimide (Dekamin and
Eslami, 2014), MgFe2O4NPs (Eshtehardian et al., 2020), POM@
Dy-PDA (Hosseinzadeh-Baghan et al., 2020), P4VPy-CuI (Albadi
andMansournezhad, 2016), nanozeolite clinoptilolite (Baghbanian
et al., 2013), water extract of lemon fruit shell ash (WELFSA)
(Kantharaju and Khatavi, 2018), tungstic acid functionalized SBA-
15 (Kundu et al., 2013), MIL-101(Cr)-SO3H (Saikia and Saikia,

TABLE 1 | Optimization table of photocatalyst for the synthesis of 4aa.

Entry Photocatalyst Light source Solvent (3 ml) Time (min) Isolated yields (%)

1 — White light (18 W) H2O/EtOH (2:1) 15 57
2 Na2 eosin Y (0.2 mol%) White light (18 W) H2O/EtOH (2:1) 5 78
3 Na2 eosin Y (0.5 mol%) White light (18 W) H2O/EtOH (2:1) 5 93
4 Na2 eosin Y (1 mol%) White light (18 W) H2O/EtOH (2:1) 5 93
5 Erythrosin B (0.5 mol%) White light (18 W) H2O/EtOH (2:1) 5 51

6 Phenanthrenequinone (0.5 mol%) White light (18 W) H2O/EtOH (2:1) 5 53
7 Rhodamine B (0.5 mol%) White light (18 W) H2O/EtOH (2:1) 5 72
8 Acenaphthenequinone (0.5 mol%) White light (18 W) H2O/EtOH (2:1) 5 57
9 Riboflavin (0.5 mol%) White light (18 W) H2O/EtOH (2:1) 5 64
10 9H-xanthen-9-one (0.5 mol%) White light (18 W) H2O/EtOH (2:1) 5 60
11 Fluorescein (0.5 mol%) White light (18 W) H2O/EtOH (2:1) 5 77
12 Rose bengal (0.5 mol%) White light (18 W) H2O/EtOH (2:1) 5 68

aReaction conditions: benzaldehyde (1 mmol), malononitrile (1 mmol), resorcinol (1 mmol) in H2O/EtOH (2:1) (3 ml), white LED (18 W), and various photocatalysts at rt. Bold values
provides optimal conditions for reaction.
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TABLE 2 | Photoexcited Na2 eosin Y as a photocatalyst for the synthesis of 2-amino-4H-chromene scaffolds.

4a (5min, 93%)
MP. 234-236°C
Lit. 232-234°C [27]

4b (5min, 94%)
Mp. 166-168°C
Lit. 168-170°C [32] 4c (3min, 91%)

Mp. 185-187°C
Lit. 186-188°C [33]

4d (10min, 88%)
Mp. 223-225°C
Lit. 222-224°C [24]

4e (7min, 91%)
Mp. 179-181°C
Lit. 180-182°C [33]

4f (5min, 95%)
Mp. 192-194°C
Lit. 190-192°C [32]

4g (10min, 84%)

4h (5min, 86%)
Mp. 187-189°C
Lit. 189-191°C [27]

4i (5min, 92%)
(Continued on following page)
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TABLE 2 | (Continued) Photoexcited Na2 eosin Y as a photocatalyst for the synthesis of 2-amino-4H-chromene scaffolds.

Mp. 249-251°C
Lit. 250-252°C [23]

Mp. 194-196°C
Lit. 194-196°C [24]

4j (9min, 87%)
Mp. 200-202°C
Lit. 198-200°C [35]

4k (5min, 92%)
Mp. 211-213°C
Lit. 210-212°C [24]

4l (3min, 93%)
Mp. 146-148°C
Lit. 148-150°C [29]

4m (7min, 89%)
Mp. 175-177°C
Lit. 176-178°C [35]

4n (3min, 94%)
Mp. 229-229°C
Lit. 223-231°C [25] 4o (3min, 96%)

Mp. 189-191°C
Lit. 188-190°C [27]

4p (7min, 88%)
Mp. 208-210°C
Lit. 210-212°C [29]

4q (7min, 88%)
Mp. 259-261°C
Lit. 257-259°C [27]

4r (3min, 96%)
Mp. 160-162°C
Lit. 162-163°C [34]

4s (8min, 87%)
Mp. 218-220°C
Lit. 219-221°C [33] 4t (9min, 85%)

Mp. 229-231°C
Lit. 227-229°C [33]

4u (3min, 94%)
Mp. 201-203°C
Lit. 200-202°C [34]

(Continued on following page)
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2016) [Et2NH(CH2)2CO2H][AcO] (Shaikh et al., 2019), {[4,4′-
BPyH][C(CN)3]2} (Zolfigol et al., 2016), DBU (Raghuvanshi and
Singh, 2010), and hydrotalcite (Kale et al., 2013). Several cases arose
from these surgeries. Some synthetic policies, however, include
restrictions on the use of metal catalysts, harsh reaction conditions,
expensive reagents, monotonous workup processes, unacceptable
yields, long reaction times, environmental hazards, and the use of
homogeneous catalysts that are problematically detached from the
reaction mixture.

Given the foregoing factors and our interest in producing 2-
amino-4H-chromenes, the key goal was to investigate the
photocatalyst (Mohamadpour, 2021b; Mohamadpour, 2021c)
under green conditions for the appropriate synthesis of these
heterocyclic compounds. This study paves the new role for
further usage of a metal-free organic dye with commercial
availability and inexpensiveness, Na2 eosin Y in aforementioned
photochemical synthesis. Evidence suggests that the photoexcited
states of Na2 eosin Y act as a direct hydrogen atom transfer (HAT)
catalyst in the photochemical synthesis of 2-amino-4H-chromenes
via the Knoevenagel–Michael cyclocondensation reaction of aryl
aldehydes, malononitrile, and resorcinol in aqueous ethanol at
ambient temperature under air atmosphere. This is a successful
one-pot reaction that uses extremely effective, moderate, and simple
reaction conditions.

EXPERIMENTAL

Producing 4a-w
Under white light (LED) irradiation (18 W), Na2 eosin Y
(0.5 mol%) was added to a mixture of aryl aldehydes,
malononitrile, and resorcinol in an H2O/EtOH (2:1) (3 ml)
(Supplementary Figure S2). At rt, the mixture was agitated,
and TLC was used to track the reaction’s progress. The resulting
solid was filtered and rinsed with H2O before the reaction was
completed. The pure substance was then recrystallized crude
solid from ethanol with no further purification. After that, the
goods were classified by comparing the spectroscopic data
(1HNMR). The spectroscopic data listed below can be found
in the Supplementary Material file.

RESULTS AND DISCUSSION

To prepare 4a in H2O/EtOH (2:1) (3 ml) at ambient temperature
under LED irradiation, the reaction between malononitrile,
benzaldehyde, and resorcinol was studied first. In 3 ml of
H2O/EtOH (2:1) for 15 min with no photocatalysts, there was
a 57% of 4a at rt. Various organic photocatalysts, such as Na2
eosin Y, erythrosin B, phenanthrenequinone, rhodamine B,
acenaphthenequinone, riboflavin,9H-xanthen-9-one,
fluorescein, and rose bengal, were tested in similar settings to
stimulate the process. While achieving the matching product 4a,
the progression of this reaction was seen in 51–93% yields. The
results showed that in such a response, Na2 eosin Y performed
better. The yield was enhanced to 93% by using 0.5 mol% Na2
eosin Y. (Table 1, entry 3). In addition, CHCl3, toluene, THF,
DMSO, CH2Cl2, CH3CN, and DMF, all had reduced product
yields. The reaction rate and yield were enhanced by performing
the reaction in EtOAc, MeOH, EtOH, H2O/EtOH, H2O, and
solvent-free. The reaction went well in a 2:1 mixture of H2O and
EtOH. Table 1 shows that in identical conditions, a yield of 93%
was attained (entry 3). Different light sources were employed to
screen the yield, demonstrating the effect of white light. There was
a minuscule of 4a without using the light source, according to the
test control. To create product 4a successfully, visible light and
Na2 eosin Y are required, according to the findings. Furthermore,
the increased settings were specified by irradiating white LEDs of
varied intensities (10, 12, 18, and 20W). The best results were
obtained under the irradiation of white LEDs (18W), according
to Table 1 (entry 3). It was discovered that the process may be
used on a variety of substrates (Table 2; Scheme 1). (More data
are provided in Supplementary Table S1 in the Supplementary
Material file).

The proposed technique is depicted in Scheme 2.
Malononitrile (2) is exposed to tautomerization through the
visible light to provide (A). Then, aldehydes (1) and (A)
combine to make arylidenemalononitrile (B), which undergoes
photochemical activation to yield a radical intermediate (C). The
visible light can be changed in part by the application of more
energy to speed up this reaction. Eosin Y-made photoexcited
modes can operate as direct HAT catalysts to activate C–H bonds

SCHEME 1 | Synthesis of 2-amino-4H-chromene scaffolds.
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eosin, according to earlier findings (Fan et al., 2018; Yan et al., 2019;
Chen et al., 2020). Through a HAT method, the malononitrile
radical is produced to boost the visible light triggered Na2 eosin Y*.
The reverse hydrogen atom transfer (RHAT) method between
radical adduct C and eosin Na2 Y-H produces intermediate D
and ground-state Na2 eosin Y. A hydrogen atom is then removed
from (E) by the malononitrile radical, resulting in intermediate (F).
Then, as a Michael acceptor, intermediates (F) and (D) coalesce to
produce (G), which undergoes intramolecular cyclization and
tautomerization to yield the product (4).

Table 3 compares the capability of some of the catalysts
used in this investigation to generate 2-amino-
4H-chromenes. It could be used for a variety of purposes,
such as the use of a short-time reaction with the least
amount of photocatalyst and no by-products when
exposed to visible light. The multigram-scale atom-
economic amazing protocol is operative because it
contains the main industrial applications that achieve
both good purity and excellent performance. The atomic
economy was likewise carefully managed in this sense.

SCHEME 2 | The proposed mechanistic pathway to synthesize the 2-amino-4H-chromene scaffolds.

Frontiers in Chemistry | www.frontiersin.org June 2022 | Volume 10 | Article 8802576

Mohamadpour Photochemical Synthesis

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


CONCLUSION

The photo-excited state functions produced fromNa2 eosin Y can be
used to metal-free synthesis the 2-amino-4H-chromene scaffolds,
according to the findings. This procedure is carried out in an
aqueous ethanol air environment at room temperature using
visible light. The most obvious benefits of this green protocol
include the use of the least amount of catalyst, high yields,
efficient sides of the reaction, secure reaction conditions, and a
quick operation without the use of toxic solvents or catalysts. As a
result, this procedure hasmore advantages when it comes tomeeting
industrial needs and environmental issues.
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