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Abstract

The motion energy sensor has been shown to account for a wide range of physiological and psychophysical results in
motion detection and discrimination studies. It has become established as the standard computational model for retinal
movement sensing in the human visual system. Adaptation effects have been extensively studied in the psychophysical
literature on motion perception, and play a crucial role in theoretical debates, but the current implementation of the energy
sensor does not provide directly for modelling adaptation-induced changes in output. We describe an extension of the
model to incorporate changes in output due to adaptation. The extended model first computes a space-time representation
of the output to a given stimulus, and then a RC gain-control circuit (‘‘leaky integrator’’) is applied to the time-dependent
output. The output of the extended model shows effects which mirror those observed in psychophysical studies of motion
adaptation: a decline in sensor output during stimulation, and changes in the relative of outputs of different sensors
following this adaptation.
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Introduction

The motion energy model [1] has become established as the

standard computational model for low-level motion sensing in the

human visual system. In its original form it is a multistage model

that includes four spatiotemporal filters (two for rightwards

motion, and two for leftwards motion) oriented in space-time.

These filters are created by combining pairs of spatial and

temporal filters which are shifted in their spatial or temporal

phase. The output of the spatiotemporal filters is squared before

opponent energy is computed as the difference between left and

right sensor outputs (i.e., EL – ER). Physiological studies [2] have

shown that the properties of each stage of the model correspond to

the behaviour of cells in the Lateral Geniculate Nucleus (LGN),

striate cortex (V1), and extrastriate cortex (V5/MT). De Valois et

al. [2] found two sub-populations of non-directional V1 cells, one

with a slow monophasic temporal response, and one with a fast

biphasic temporal response. Moreover, these two populations are

in approximate temporal quadrature and differ in the spatial phase

of their receptive fields (RF). The same authors also reported that

the RFs of some directional V1 cells can be constructed by a linear

combination of fast biphasic and slow monophasic cells. Fast

biphasic cells receive input from magnocellular cells in the LGN,

whereas slow monophasic cells receive input from parvocellular

cells in the LGN. Thus, directional V1 cells could receive the

approximately temporal and spatial quadrature inputs required for

motion detection by combining signals from the two non-

directional sub populations which have their origins in magno

and parvo cells of the LGN. In addition, there is physiological

evidence that motion area V5/MT is the principal cortical area

involved in motion opponency, corresponding to the model stage

at which opponent energy is computed [3–6]. Area V5/MT has

been found to contain mutually suppressive neural populations

sensitive to motion in opposite directions, whereas in the primary

visual cortex there is little evidence for motion opponency [3].

Georgeson and Scott-Samuel [7] added a normalization stage to

the model, in which opponent energy is normalised with flicker

energy (i.e., the sum of the directional motion energies: EL + ER),

because they found that opponent energy was a poor predictor of

psychophysical direction discrimination performance. Normalised

energy called motion contrast (EL – ER)/(EL + ER) uses divisive

inhibition to implement contrast gain control in the model, as

suggested by Heeger [8]. Motion contrast was found to be a good

predictor of direction discrimination performance over a wide

range of contrast levels. Although this updated version of the

motion energy model provides a good account of a wide range of

psychophysical tasks, such as direction discrimination and lateral

masking [9,10] a crucial limitation of the model in its current form

is that it cannot account for the well-known and dramatic effects of

prolonged exposure to unidirectional motion (i.e., motion adap-

tation), such as the motion after-effect (MAE). These effects have

played a pivotal role in both empirical and theoretical studies of

motion perception for nearly 150 years [11,12], so their exclusion

from the energy model is a major limitation of the dominant

theoretical scheme (previous attempts to apply the model to MAE

data [15] have simply used the magnitude of sensor output during

adaptation as a proxy for the strength of the resulting adaptation).
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To address this limitation, the present study extends the motion

energy model by introducing an additional stage in the form of a

RC automatic gain-control circuit operating in time domain. The

function of this stage is to regulate the gain of each motion sensor

based on its recent exposure to directional motion. The

performance of the extended model is tested by comparing its

output with psychophysical data from the standard MAE obtained

using stationary test patterns. Model output shows effects which

mirror those observed in psychophysical studies of motion

adaptation.

Method

1. Computational Modelling
1.1. RC Integrator. The new extension of the model

implements divisive feed-forward gain control in motion sensors

using a ‘leaky integrator’ circuit. A general feature is that the

output signal at any point in time is a fraction of the input,

proportional to the magnitude of the input in the past. The

simplest form of leaky integrator circuit is known as an RC

integrator. It is made up by a resistor R and a capacitor C. Applying a

constant voltage Vin to the input causes the potential difference

across the resistor to follow an exponential function:

Vout~Vine{t=RC ðEq:1Þ

Output tends asymptotically towards zero, at a rate that

increases as the input value increases. This happens because there

is a continuous storage of energy inside the capacitor, reducing the

gain of the circuit (amount of current flowing through the resistor).

This type of RC integrator is the same as that used by van de

Grind et al. [13], where the reduced gain was defined as adaptation.

However, in such a simple RC integrator the output has a limiting

value at zero. This means that a specific neural circuit will reach

zero efficiency if subjected to a stimulus for a sufficiently long

amount of time. Consequently exposure to a constant directional

stimulus would cause the corresponding sensor to become

completely silent. This behaviour is very rarely observed

physiologically or psychophysically. van de Grind et al. [13] fixed

this issue by rescaling the adaptation using an ad hoc factor that, if

chosen carefully as much smaller than 1, avoids complete

suppression. In the present study we propose an alternative and

more efficient solution, and we embed the solution in a full

implementation of the motion sensor. Specifically, we added

another resistor to the RC integrator, as shown in Figure 1 (panel

A). The additional branch allows a portion of the current to avoid

the capacitor and to flow directly through the two resistors, shifting

the asymptotic value of the output from zero to a positive quantity:

Vasym = aVin, where:

a~
w

(1zw)
and w~

R1

R2

That is, the ratio w between the two resistors defines the portion

a of signal that keeps flowing indefinitely in the grid (Figure 1 –

Panel B). From a biological perspective, we constrained the motion

response to converge on a fixed ratio of the original response,

whose precise value can be established empirically with a

psychophysical experiment. Thus, the channel described by the

modified integrator can only be adapted up to a certain level,

indefinitely maintaining a certain amount of ‘‘sensitivity’’.

Moreover, it should be noted that linearity between input and

output is also conserved. For example, given a second input V’in =

2Vin the new asymptotic output is given by:

V
0
asym~aV

0
in~2aVin~2Vasym ðEq:2Þ

In addition, it is worth focusing on some particular relationships

between the two resistors R1 and R2:

(i) R2 » R1: the second resistor has an extremely high value,

which practically isolates the additional branch of the circuit,

bringing us back to the simple RC integrator. In this limit w is

extremely small, and so is the ratio a, which corresponds to the

above described situation of complete saturation (i.e., Vasym = 0).

(ii) R2 = R1: the two resistors have exactly the same value. This

gives w = 1, and consequently a = 1/2, which corresponds to a

50% saturation (i.e., Vasym = Vin/2).

(iii) R2 « R1: the second resistor offers almost no resistance to the

current flow, thus excluding the branch with the capacitor. In this

limit w has a very large value, while the ratio a tends to unity,

which corresponds to the situation of no saturation (i.e., Vasym =

Vin).

The observed ratio (aobs) will lie somewhere in the interval [0, 1]

and, as already stated, must be estimated from experimental

measurements. The other parameter of great importance in the

model, and that has to be derived from experiments, is the decay

time, that is, t = R1C, measuring the amount of time needed by the

motion sensor to lose most of its gain and approach its asymptotic

value.

It should be noted that all the arguments expressed above were

based on the assumption of a constant input stimulus. Nonetheless

it is necessary to remark that we are able to derive the response of

our modified RC integrator to a stimulus that is a generic function

of time. Making use of the redefinitions Vin = z and Vout = y, such

a response is given by:

y(t)~z(t){
e{(1zw)t=t

t

ðt

0

e(1zw)s=tz(s)ds ðEq:3Þ

Equation 3 contains an integral of the input over the previous

time intervals, encapsulating the required feature of gain control

based on the value of the input in the past.

The effect decays as the input signal z(t) ceases, so the MAE is

expected to decay after the end of the adapting stimulus, tA. This

would be in agreement with previous psychophysical observations

on the MAE [11,12,14]. In the next section the modified RC

integrator will be embedded in the motion energy model, after

which its output will be compared to published psychophysical

data.

1.2. The Extended Motion Energy Model. The extended

model is outlined in Figure 2 and was implemented in Matlab.

The spatial and temporal profiles of the filters of the model

covered 2.25 deg of space and 1 s of time. Spatial filter profiles

were even (EV) and odd (OD) Gabor functions of the form:

Extended Motion Energy Model
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Figure 1. Schematic representation of the RC circuit (A) and its output (B). (A) The input signal is represented by the voltage generator V,
while the output is the voltage difference across the resistor R1. (B) The dashed line indicates the input signal [V(t)], whereas the solid line indicates
the output of the RC circuit [V1(t)]. The asymptotic behavior of the output is clearly visible at the far right of the plot.
doi:10.1371/journal.pone.0059298.g001

Figure 2. The extended motion energy model. The integrator
stage is located after the squaring stage. See text for details.
doi:10.1371/journal.pone.0059298.g002

Figure 3. Space-time (xt) representation of the stimulus. The
input stimulus consisted of a space-time representation of a
squarewave adapting grating drifting leftward and with duration of
120 or 150 s (the image represents an adapting stimulus of 120 s). The
adapting stimulus was immediately followed by a stationary test
stimulus. The space-time presentation of the adapting pattern (i.e.,
tilted bars) appears quite coarse, but this is a merely graphic artifact
caused by the necessity to resize an image with a vertical dimension
much larger than the horizontal one. However, the input matrix is
composed of smoothly leftward drifting black and white bars.
doi:10.1371/journal.pone.0059298.g003

Extended Motion Energy Model
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EV (x)~ cos (2pfx)e{(x=s)2 ðEq:4Þ

OD(x)~ sin (2pfx)e{(x=s)2 ðEq:5Þ

where e is 1.95 cpd and s is 0.28 deg. Temporal filters had the

following form, taken from Adelson and Bergen [1] Eq. (6):

f (t)~(kt)ne{kt 1=n!{b(kt)2=(nz2)!
� �

ðEq:6Þ

The value of k scales the response into time units and was set to

100, while n sets the vertical width of the filter [15]. The parameter

n was equal to 9 for the slow temporal filter and 6 for the fast

temporal filter, as used in previous modelling [16–20]. The

parameter b reflects the weighting of the negative phase of the

temporal impulse response relative to the first positive phase and

was set to 0.9 [17,18,21]. The product of the even and odd spatial

profiles [i.e., EV(x) and OD(x)] with the two temporal profiles

eslow(t) and efast(t)] creates four (space-time) separable filters (first

layer of the model; Figure 2). These filters were combined to

obtain in turn four sensors oriented in space-time; two oriented for

leftward motion and two for rightward motion (second layer of the

model; Figure 2). The two members of each pair are approxi-

mately 90 deg out of phase with each other [1]. Convolving these

four filters with the same input image gives four response matrices

that are subsequently squared (third layer of the model; Figure 2).

We label the matrices resulting from this squaring as RL1, RL2, RR1,

and RR2.

We then implemented the adaptation stage by introducing the

modified RC integrator (fourth layer of the model; Figure 2). That

is, at each time slice (row in the output matrix), the output of each

convolution stage was multiplied by a factor:

r(t)~1{
e{(1zw)t=t

z(t)t

ðt

0

e(1zw)s=tz(s)ds ðEq:7Þ

where z(t) is the output of the respective sensor averaged over the

whole spatial range as a function of time in the recent past. For

example, rL1(t) will be obtained taking as z(t) the spatial average of

RL1(x,t). Notice that the above formula directly derives from Eq. 3.

Formally this can be written as follows:

R0L1(x,t)~RL1(x,t)rL1(t)

R0L2(x,t)~RL2(x,t)rL2(t)

R0R1(x,t)~RR1(x,t)rR1(t)

R0R2(x,t)~RR2(x,t)rR2(t)

ðEqs:8Þ

Then, as required in the standard model, we summed the

responses derived from the two pairs of filters to compute leftward

and rightward motion energies. The output matrices are

respectively defined as:

EL(x,t)~R0L1(x,t)zR0L2(x,t)

ER(x,t)~R0R1(x,t)zR0R2(x,t)
ðEqs:9Þ

Opponent energy is then computed using the following measure

of net Energy:

Enet~
EL{ER

Eflk
ðEq:10Þ

with a normalization factor, called flicker energy [7], defined as an

average over the whole output matrix:

Eflk~
1

size(M)

ð
M

(ELzER) ðEq:11Þ

2. Psychophysics
The output of the extended motion energy model was fitted to

MAE data reported in Experiment 1 of Hershenson [14]. Briefly,

the stimulus was a horizontal squarewave grating that moved

upward with a temporal and spatial frequency of 6 Hz and 2.5 c/

deg, respectively (velocity = 2.4 deg/s).

Observers rated the strength of the MAE (approximately every

1 s) during the test period that was presented immediately after the

cessation of the adapting motion. Observers used an 11-point scale

in which 10 represented the strength of the perceived motion of

the MAE immediately upon cessation of the motion of the

adapting stimulus (i.e., its initial perceived strength), and 0

represented no perceptible motion. For the purposes of compar-

ison with the model output we shall present the data obtained by

Hershenson [14] at adapting durations of 120 and 150 s.

The spatiotemporal characteristics (drift velocity) of the input

stimulus in the model matched those of the stimulus reported in

[14]. The input stimulus was encoded in space-time (i.e., xt) with a

spatial dimension covering 4.5 deg sampled at intervals of 0.028

deg, and a temporal dimension of 260 s sampled at intervals of

10 ms. In particular, stimuli consisted of a spatiotemporal

representation of a leftward drifting squarewave grating (adapting

pattern) and a stationary test grating (Figure 3). Adapting stimuli

consisted of 120 or 150 s of unidirectional drift, within a grey

matrix.

Results

We first compared the time-dependent output of the standard

energy model (i.e., lacking the integrator) against the output of the

extended model. The stimulus contained directional motion for

the first 120 seconds, followed by a stationary test pattern for the

remaining stimulus period. The output of the models is shown in

Figure 4; combining the four filters in the way described above

results in a net energy value that, when averaged over the spatial

dimension, can be visualised as a function of time. As can be seen

Extended Motion Energy Model
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in the Figure, the standard model maintains a constant rightward

output during adaptation, and a constant non-directional output

during the test interval. The extended model, on the other hand,

shows an initial drop in directional energy at the start of the

adapting period, and an ‘after-effect’ lasting approximately

20 seconds at the cessation of adaptation; net energy signalled

by the sensors is in the opposite direction to the adapting stimulus.

In the section ‘RC Integrator’ we stated that the two parameters of

the leaky integrator, a and t, must be inferred from experimental

measurements. This was achieved as follows. For the sake of

simplicity we performed this part of the analysis using ready-made

time functions as input stimuli zL = zL(t) and zR = zR(t) averaged

over the spatial dimension. We assume that a unidirectional

adapting stimulus is applied for duration of tA in one specific

direction followed by a static test stimulus. The motion sensor

coding for the adapting direction will thus be adapted from the

beginning of the adapting period, while the motion sensor coding

for the opposite direction will arrive at tA with no prior adaptation.

This will cause an imbalanced response to test stimulus, which can

be quantified in terms of net energy. Again for the sake of simplicity

we will consider this function as already averaged over the spatial

dimension, allowing us to make use of the following

definition : Enet~
yL{yRð Þ

Eflk

ðEq:12Þ

where yL = yL(t) and yR = yR(t) are the spatially averaged output of

the left and right channel and the flicker energy is now defined as an

average over the duration (T) of the stimulus (as the spatial average

is already implied in the definition of Enet, so that the definition

actually coincides with the one of Eq. 11)

Eflk~
1

T

ðT

0

(yLzyR)dt ðEq:13Þ

Enet ranges between some negative number -N (when yL

vanishes) and +N (when yR vanishes). Such a function can be

considered as an index of directionality of the motion response:

positive (negative) means left- (right-) ward, while zero means total

ambiguity. As shown in Figure 4, immediately after the offset of

the adapting pattern (tA) the model signals motion in the opposite

direction to that of the adapting pattern. The effect exponentially

decays as time increases, so the MAE is expected to decay soon

after the onset of the test stimulus.

To find the best-fitting values of a and t, we define the inputs

zL~h(tA{t) zR~0 ðEq:14Þ

written in terms of the step function h(q), equal to 1 when q.0 and

0 otherwise. Making use of the definition Eq. 12, we defined a

variable p as the ratio between the net energy evaluated at a time-

point of the test stimulus at which we wish to measure the model

output (i.e., telapsed) and its minimum value Emin = Enet(tA)

Figure 4. Comparison between the outputs of the standard (black line) and extended (gray line) motion energy models. The outputs
are averaged across the spatial dimension. The dashed line indicates no motion. tA indicates the offset of the adapting pattern and T the duration of
the stimulus.
doi:10.1371/journal.pone.0059298.g004

Extended Motion Energy Model
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p~Enet(tT )=Emin ðEq:15Þ

being tT = tA+telapsed, so that it will assume the maximum value, p =

1, when evaluated at tT ; tA. The function p can be calculated

analytically with respect to the input functions of Eq. 7, giving the

expression

p(telapsed )~e
{1zw

T
telapsed ðEq:16Þ

that only depends on the time-point on the test pattern at which

the output model is evaluated. The estimation of t and w (from

which a can be inferred) was obtained by fitting Eq. 16 to

Hershenson’s data. Clearly the comparison is based on the

assumption that the observer’s ratings of MAE are directly

proportional to the model output Enet. In order to compare the

data with the output of our model, they were exponentiated to

base 10 and then divided by 10, in such a way as to span the

interval [0, 1]. The estimated values were: a = 0.911 and t =

95.60 s. Using these parameters in the extended Adelson-Bergen

energy model, we simulated a set of outputs corresponding to the

selected data (tA = {120 s, 150 s} and telapsed = [0 s, 15 s]), then

calculated the RMSE separately for each adaptation duration.

Figure 5 shows the comparisons between psychophysical results of

Hershenson [14] and the predictions of the extended motion

sensor model, for 120 and 150 s adapting durations. Data and

model clearly show that MAE strength decays exponentially as the

test period progresses. It is not necessary to plot predictions for the

standard model, since it would simply predict no MAE at any time

(a horizontal line at zero). The extended motion energy model

accurately fits the exponential decay of the adaptation; the RMSE

we obtained were 0.037 and 0.059 for 120 and 150 s adaptations,

respectively.

Discussion

Computational results show that the output of the extended

energy model is able accurately to account for the psychophysical

adaptation data obtained in the MAE study of Hershenson [14].

In particular, the extended Adelson-Bergen model can predict the

exponential decay of the MAE as the test interval increases.

RC gain-control circuits of the kind used here have a long

history in the context of visual processing. They have been used in

both physiological studies [21] and in psychophysical studies [22].

This paper represents the first attempt to employ such a circuit in a

plausible computational model of human motion detection.

Exponential decay is a characteristic feature of leaky integrators,

and has also been noted as a psychophysical property of the decay

in MAE adaptation [22,23], and as an electrophysiological

property of adaptation in cortical direction-selective neurons

[24,25]. There is psychophysical and physiological evidence for

multiple sites of adaptation and corresponding multiple decay time

constants [26]. In this regard it should be noted that Hershenson’s

data also show an increase in MAE strength as adaptation

duration increases from 30 to 180 s, which we have not observed

in the behaviour of the model. This failure may reflect the fact that

MAEs are due to combination of multiple adaptation processes at

different neural sites, with different time constants, and the model

incorporates only one such process. Thus it seems that, as well as

the gain-control circuit which is modelled here, other gain-control

circuits are likely to be present in the motion pathway.

All electrical circuits, whether metallic or neural, have resistance

and capacitance, so time-dependent behaviour of the kind

modelled in this paper is likely to ubiquitous. However, current

theories of adaptation argue that it is not simply a by-product of

resistance and capacitance, but is an adaptive feature of neural

processing which serves to reduce redundancy, conserve energy,

and maximise processing efficiency [11].

Figure 5. Extended motion energy model output fitted to the psychophysical data. MAE strength is shown as a function of the time (s) on
the test phase at which the model output is evaluated (filled circles) [14]. Model fits are shown in separate panels for two adaptation durations: 120 s
(left panel) and 150 s (right panel). The pair of a and t that produced the best fit were a = 0.911 and t = 95.60. The RMSE obtained for 120 s
adaptation was 0.037, whereas for 150 s adaptation was 0.059.
doi:10.1371/journal.pone.0059298.g005

Extended Motion Energy Model
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