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Abstract: In this paper, quantum correlation (QC) swapping for certain separable two-qubit mixed
states is treated. A QC quantifier, measurement-induced disturbance (MID) (Luo in Phys Rev A
77:022301, 2008), is employed to characterize and quantify QCs in the relevant states. Properties of all
QCs in the swapping process are revealed. Particularly, it is found that MID can be increased through
QC swapping for certain separable two-qubit mixed states.

Keywords: quantum correlation swapping; measurement-induced disturbance (MID); separable
two-qubit mixed state

1. Introduction

In 2001, Ollivier and Zurek [1] exposed a surprising feature that there exist quantum
correlations (QCs) in some separable states, where it is obvious that quantum entangle-
ments do not occur. This distinct phenomenon started a new era. In this new era, people
no longer believed that quantum entanglement was the avatar of QC and they were equiva-
lent. Besides quantum entanglement, there is QC beyond entanglement (QCBE). Moreover,
from then on, people gradually began to pay close attention to the new kind of QC, i.e.,
QCBEs. Several years later, a number of works [2–15] about QCBEs emerged, including
its recognition and applications. Consequently, recently, QCBE study has formed a hot
field in quantum information and computation, and many methods have been proposed or
developed to investigate QCBEs in various quantum systems.

In some quantum tasks, long-distance QCs are indispensable. As for the case of long-
distance entanglement, quantum entanglement repeaters are usually employed. The core
technique in the repeaters is entanglement swapping [16–22]. Entanglement swapping can
entangle a bipartite system without any previous entanglement. In addition, entanglement
swapping was used as a technique to increase long-distance shared quantum entangle-
ment [23].

Recently, quantum entanglement swapping was generalized to QC swapping [24–26].
In QC swapping, the relevant QCs can be quantum entanglement, QCBEs, or both of them.
It is found that swapping of QCBEs can be realized in a way similar to that of entanglement
swapping. However, in the existing studies about the swapping of QCBEs, QCBE in the
final state cannot exceed that in the initial state. Hence, one tends to believe that although
QC swapping can realize long-distance shared QCBEs, it cannot increase long-distance
shared QCBE. Naturally, a problem is arising. Are there some special circumstances in
which QC swapping can increase long-distance shared QCBE? The answer is positive. In
this study, we will innovatively present a special case.
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To be concrete, in this paper, we will consider a comparatively complicated case,
where the two QCs to be swapped inhabit a pair of separable two-qubit mixed states
with four host qubits distributed among three remote nodes, the swapping is realized
via four Bell state measurements, and all QCs are quantified by measurement-induced
disturbance [2]. The motivations in our study are fourfold: (1) To find whether quantum
correlation swapping can be realized through separable two-qubit mixed states. (2) If yes,
to explore the characteristics of the quantum correlation in the final states after quantum
swapping. (3) To find the relationships between the quantum correlations in the final
state and the ones in the initial states. In particular, to explore whether the special case
can increase long-distance shared QCBE or not. (4) To study the physical origins of the
above characteristics. Through concrete investigations in the following study, we will
show the following essential results: (a) Quantum correlation swapping can be realized
through separable two-qubit mixed states; (b) some distinct characteristics of the quantum
correlation in the final states after quantum swapping can be obtained; (c) in the special
QC swapping case, the long-distance shared QCBE can be realized and increased.

The rest of this paper is outlined as follows. In Section 2, the QC swapping in our case
is described. In Section 3, measurement-induced disturbance is employed to characterize
and quantify all QCs which occur in the swapping process. In Section 4, some analyses,
discussions, and comparisons about the QCs are given. Finally, a concise summary is given
in Section 5.

2. Quantum Correlation Swapping between Two Separable Two-Qubit Mixed States

In this paper, we will consider the separable two-qubit mixed states as the initial
states for QC swapping. The separable two-qubit mixed states are taken as the following
forms [27]:

ρab(q1) = q1|00〉ab〈00|+ (1− q1)|1+〉ab〈1 + |, (1)

ρcd(q2) = q2|00〉cd〈00|+ (1− q2)|1+〉cd〈1 + |, (2)

where q1 and q2 are real, q1, q2 ∈ (0, 1) and |+〉 = (|0〉+ |1〉)/
√

2. Incidentally, in this
paper, q1 = q2 = 0 and q1 = q2 = 1 are excluded because the corresponding states are
trivial product ones, which are unhelpful and meaningless for our present study of QC
swapping. It is worth mentioning that the two initial two-qubit mixed states are separable,
due to the states consisting of arbitrary mixtures of two bi-qubit product pure states. That
is to say, in these two initial states, there is no entanglement in them. One can also easily
prove the no-entanglement property by calculating the zero entanglements [28] in them.

To realize the QC swapping, the middle bipartite measurements are respectively
selected as the four Bell states, i.e.,

|Φ〉±ac = (|00〉 ± |11〉)/
√

2, (3)

and

|Ψ〉±ac = (|01〉 ± |10〉)/
√

2. (4)

Then, after the middle measurement, the initial states ρab ⊗ ρcd collapse to the final
state ρbd, i.e.,

ρbd =ac 〈φ|ρab ⊗ ρcd|φ〉ac/tr[ac〈φ|ρab ⊗ ρcd|φ〉ac], (5)

where the middle measurement |φ〉acs are selected as |Φ〉±ac and |Ψ〉±ac, respectively.
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Substituting Equations (1)–(4) into Equation (5) and for the measurements |Φ〉±ac, after
some deductions, one can obtain

ρ1
bd(q1, q2) =


α1 β1 β1 β1
β1 β1 β1 β1
β1 β1 β1 β1
β1 β1 β1 β1

, (6)

where α1 = 4q1q2+(1−q1)(1−q2)
4q1q2+4(1−q1)(1−q2)

, β1 = (1−q1)(1−q2)
4q1q2+4(1−q1)(1−q2)

.

As for the measurement |Ψ〉±ac, after some derivations, another final state can be
obtained, i.e.,

ρ2
bd(q1, q2) =


1
2 α2 β2 0

α2 α2 0 0
β2 0 β2 0
0 0 0 0

, (7)

where α2 = q1(1−q2)
2q1(1−q2)+2q2(1−q1)

, β2 = q2(1−q1)
2q1(1−q2)+2q2(1−q1)

.

Obviously, for the middle Bell state measurements |Φ〉+ac and |Φ〉−ac, the two final states
obtained through QC swapping are equivalent, denoted as ρ1

bd(q1, q2). As for |Ψ〉+ac and
|Ψ〉−ac, the two corresponding final states are also the same, represented by ρ2

bd(q1, q2).
It should be noted that the two kinds of final states in Equations (6) and (7) remain

separable. One can easily prove the separability due to the entanglement calculations [28].
The separable final states tell us that in the process of QC swapping, the middle Bell state
measurements do not introduce any entanglement into the final state.

3. Measurement-Induced Disturbance in the Initial States and Final States

Recently, a QC measure named measurement-induced disturbance (MID) has been
attracting considerable attention for its easy computability. It was originally put forward
by Luo [2]. It is defined as the difference between the total correlation quantified by
quantum mutual information of the relevant state and its special classical correlation. The
special classical correlation in a state is determined by measuring both subsystems with
the eigenvectors of marginal states as the measuring bases.

In this section, we will use the QC quantifier, i.e., MID, to quantify the QCs in the
relevant states in the QC swapping, i.e., initial states and final states.

3.1. MIDs in the Initial States ρab(q1) and ρcd(q2)

For the two initial states ρab(q1) and ρcd(q2), MIDs can be expressed as follows [27]:

Q(ρab) = −Pab
00 log2 Pab

00 − Pab
01 log2 Pab

01 − Pab
10 log2 Pab

10 − Pab
11 log2 Pab

11

+ q1 log2(q1) + (1− q1) log2(1− q1),
(8)

Q(ρcd) = −Pcd
00 log2 Pcd

00 − Pcd
01 log2 Pcd

01 − Pcd
10 log2 Pcd

10 − Pcd
11 log2 Pcd

11

+ q2 log2(q2) + (1− q2) log2(1− q2),
(9)

where

Pab
00 =

q1x2
1

x2
1+y2

1
, Pcd

00 =
q2x2

2
x2

2+d2 ,

Pab
01 =

q1y2
1

x2
1+y2

1
, Pcd

01 =
q2y2

2
x2

2+d2 ,

Pab
10 = 1−q1

2
(x1+y1)

2

x2
1+y2

1
, Pcd

10 = 1−q2
2

(x2+y2)
2

x2
2+y2

2
,

Pab
11 = 1−q1

2
(x1−y1)

2

x2
1+y2

1
, Pcd

11 = 1−q2
2

(x2−y2)
2

x2
2+y2

2
,
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with x1 = 1− q1, y1 =
√
(1− q1)2 + q2

1 − q1, x2 = 1− q2, y2 =
√
(1− q2)2 + q2

2 − q2.

3.2. MIDs in the Final State ρ1
bd(q1, q2)

Within the framework MID, the total correlation in ρ1
bd is

I(ρ1
bd) = S(ρ1

b) + S(ρ1
d)− S(ρ1

bd), (10)

where S(·) denotes von Neumann entropy, ρ1
b and ρ1

d are marginal states of ρ1
bd. The explicit

forms of the marginal states are

ρ1
b = (α1 + β1)|0〉b〈0|+ 2β1(|0〉b〈1|+ |1〉b〈0|+ |1〉b〈1|), (11)

ρ1
d = (α1 + β1)|0〉d〈0|+ 2β1(|0〉d〈1|+ |1〉d〈0|+ |1〉d〈1|). (12)

It is easy to work out

S(ρ1
b) = 1− [(1 + u1) log2(1 + u1) + (1− u1) log2(1− u1)]/2, (13)

S(ρ1
d) = 1− [(1 + u1) log2(1 + u1) + (1− u1) log2(1− u1)]/2, (14)

S(ρ1
bd) = 1− [(1 + t1) log2(1 + t1) + (1− t1) log2(1− t1)]/2, (15)

where u1 =
√

1− 8β1(α1 − β1) and t1 =
√

1− 12β1(α1 − β1).
Now, let us turn to the classical correlation in ρ1

bd. In the framework of MID, the
measurements for obtaining classical correlation are selected as the product of eigenvectors
of two reduced states. In this method, the spectral resolutions of the two reduced states of
ρ1

bd in Equations (11) and (12) can be written as follows:

ρ1
b = λb

1,1|Nb
1,0〉〈Nb

1,0|+ λb
1,2|Nb

1,1〉〈Nb
1,1|, (16)

ρ1
d = λd

1,1|Md
1,0〉〈Md

1,0|+ λd
1,2|Md

1,1〉〈Md
1,1|, (17)

where

λb
1,1 = λd

1,1 = 1+u1
2 , λb

1,2 = λd
1,2 = 1−u1

2 ,

|Nb
1,0〉 = |Md

1,0〉 =
− f1√
f 2
1 +g2

1
|0〉+ g1√

f 2
1 +g2

1
|1〉,

|Nb
1,1〉 = |Md

1,1〉 =
g1√
f 2
1 +g2

1
|0〉+ f1√

f 2
1 +g2

1
|1〉,

with f1 = 4β1, g1 = α1 − β1 − u1.
Accordingly, the classical state of ρ1

bd can be obtained as

χρ1
bd
= ∑

i,j
P1,ij|Nb

1,i〉|Md
1,j〉〈Md

1,j|〈Nb
1,i|, (18)

where

P1,ij = 〈Md
1,j|〈Nb

1,i|ρ1
bd|N

b
1,i〉|Md

1,j〉. (19)

Through some derivations, P1,ij in Equation (19) can be obtained as

P1,00 = α1F4
1 + β1

(
6F2

1 G2
1 + G4

1 − 4F1G1
)
,

P1,01 = P1,10 = α1F2
1 G2

1 + β1
(

F4
1 − 3F2

1 G2
1 + G4

1
)
,

P1,11 = α1G4
1 + β1

(
F4

1 + 4F1G1 + 6F2
1 G2

1
)
, (20)
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with F1 = f1√
f 2
1 +g2

1
, G1 = g1√

f 2
1 +g2

1
.

Accordingly, the von Neumann entropy of χρbd
1

can be obtained as

S(χρ1
bd
) = −P1,00 log2 P1,00 − P1,01 log2 P1,01 − P1,10 log2 P1,10 − P1,11 log2 P1,11 (21)

With the classical state in Equation (18), one can obtain the classical correlation in ρ1
bd,

i.e., the mutual information in the classical state χρ1
bd

,

C(ρ1
bd) = I(χρ1

bd
) = S(χρ1

b
) + S(χρ1

d
)− S(χρ1

bd
), (22)

where χρ1
b

and χρ1
d

are marginal states of χρ1
bd

.

As a result, the quantum correlation in ρ1
bd estimated via MID can be obtained as

Q(ρ1
bd) = I(ρ

1
bd)− C(ρ

1
bd) = S(χρ1

bd
)− S(ρ1

bd). (23)

Finally, MID in the final state ρ1
bd can be written as

Q(ρ1
bd) = −P1,00 log2 P1,00 − P1,01 log2 P1,01 − P1,10 log2 P1,10 − P1,11 log2 P1,11

+
1 + t1

2
log2(

1 + t1

2
) +

1− t1

2
log2(

1− t1

2
).

(24)

3.3. MIDs in the Final State ρ2
bd(q1, q2)

The total correlation in the final state ρ2
bd is

I(ρ2
bd) = S(ρ2

b) + S(ρ2
d)− S(ρ2

bd) (25)

where ρ2
b and ρ2

d are marginal states of ρ2
bd, with

ρ2
b = (α2 +

1
2 )|0〉b〈0|+ β2(|0〉b〈1|+ |1〉b〈0|+ |1〉b〈1|), (26)

ρ2
d = (β2 +

1
2 )|0〉d〈0|+ α2(|0〉d〈1|+ |1〉d〈0|+ |1〉d〈1|). (27)

One can work out

S(ρ2
b) = 1− [(1 + u2) log2(1 + u2) + (1− u2) log2(1− u2)]/2, (28)

S(ρ2
d) = 1− [(1 + u2) log2(1 + u2) + (1− u2) log2(1− u2)]/2, (29)

S(ρ2
bd) = 1− [(1 + t2) log2(1 + t2) + (1− t2) log2(1− t2)]/2, (30)

where u2 =
√

1− 8α2β2 and t2 =
√

1− 12α2β2.
In the framework of MID, to obtain the classical state, the marginal states ρ2

b and ρ2
d in

Equations (26) and (27) can be rewritten as

ρ2
b = λb

2,1|Nb
2,0〉〈Nb

2,0|+ λb
2,2|Nb

2,1〉〈Nb
2,1|, (31)

ρ2
d = λd

2,1|Md
2,0〉〈Md

2,0|+ λd
2,2|Md

2,1〉〈Md
2,1|, (32)
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where

λb
2,1 = λd

2,1 = 1+u2
2 ,

λb
2,2 = λd

2,2 = 1−u2
2 ,

|Nb
2,0〉 =

β2√
β2

2+ f 2
2
|0〉 − f2√

β2
2+ f 2

2
|1〉,

|Nb
2,1〉 =

f2√
β2

2+ f 2
2
|0〉+ β2√

β2
2+ f 2

2
|1〉,

|Md
2,0〉 =

α2√
α2

2+g2
2
|0〉 − g2√

α2
2+g2

2
|1〉,

|Md
2,1〉 =

g2√
α2

2+g2
2
|0〉+ α2√

α2
2+g2

2
|1〉,

with f2 = α2 − u2
2 and g2 = β2 − u2

2 .
With the spectrum representation of ρ2

bd, the classical state of ρ2
bd in the framework of

MID can be expressed as

χρ2
bd
= ∑

i,j
P2,ij|Nb

2,i〉|Md
2,j〉〈Md

2,j|〈Nb
2,i|, (33)

where

P2,ij = 〈Md
2,j|〈Nb

2,i|ρ2
bd|N

b
2,i〉|Md

2,j〉. (34)

After some tedious calculations, one can obtain

P2,00 = 1
2 F2

2,1F2
2,2 + α2F2

2,1G2,2(G2,2 − 2F2,2) + β2F2
2,2G2,1(G2,1 − 2F2,1),

P2,01 = 1
2 F2

2,1G2
2,2 + α2F2

2,1F2,2(2G2,2 + F2,2) + β2G2
2,2G2,1(G2,1 − 2F2,1),

P2,10 = 1
2 F2

2,2G2
2,1 + α2G2

2,1G2,2(G2,2 − 2F2,2) + β2F2,1F2
2,2(F2,1 + 2G2,1),

P2,11 = 1
2 G2

2,1G2
2,2 + α2G2

2,1F2,2(F2,2 + 2G2,2) + β2F2,1G2
2,2(F2,1 + 2G2,1),

with F2,1 =
f2,1√

f 2
2,1+g2

2,1

, G2,1 =
g2,1√

f 2
2,1+g2

2,1

and F2,2 =
f2,2√

f 2
2,2+g2

2,2

, G2,2 =
g2,2√

f 2
2,2+g2

2,2

.

Accordingly, the von Neumann entropy of χρbd
2

can be obtained as

S(χρ2
bd
) = −P2,00 log2 P2,00 − P2,01 log2 P2,01 − P2,10 log2 P2,10 − P2,11 log2 P2,11, (35)

Further, the classical correlation in ρ2
bd can be obtained as

C(ρ2
bd) = I(χρ2

bd
) = S(χρ2

b
) + S(χρ2

d
)− S(χρ2

bd
), (36)

where χρ2
b

and χρ2
d

are marginal states of χρ2
bd

.

Finally, the quantum correlation of ρ2
bd is consequently obtained as

Q(ρ2
bd) = I(ρ

2
bd)− C(ρ

2
bd)

= S(χρ2
bd
)− S(ρ2

bd)

= −P2,00 log2 P2,00 − P2,01 log2 P2,01 − P2,10 log2 P2,10 − P2,11 log2 P2,11

+
1 + t2

2
log2(

1 + t2

2
) +

1− t2

2
log2(

1− t2

2
).

(37)

4. Analyses, Discussions, and Comparisons

In the last section, QCs in the initial states and final states which emerge during the
swapping process are quantified by MID. In this section, we will carry out some analyses,
discussions, and comparisons on them.
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As mentioned above, the initial states and final states are all separable states. That is
to say, there is no entanglement in any of the relevant states. Hence, in the present study,
the QC swapping case is not entanglement swapping. It is a quantum correlation beyond
entanglement (QCBE) swapping. The QCBE quantifier utilized in this paper is MID.

4.1. Features of MIDs in the Relevant States

Firstly, let us briefly see the monotony features of MID in the initial states for the kind
of separable state ρ(q) in Equations (1) and (2). All the captured QCs increase with q in the
region (0, 1/2] and decrease with q in the region [1/2, 1). Moreover, there exists an obvious
symmetry. That is to say, QCs in both states with q = 1/2± δq (0 ≤ δq ≤ 1/2) are the same.
See Figure 1 for an example. In Figure 1, MIDs in the initial state ρab and final state ρ1

bd are
described for q2 = 0.25, 0.5, 0.75.

Secondly, let us turn to the MIDs in the final states. In the QC swapping progress,
the final states are derived from the initial states due to the middle measurements. In
this paper, the middle measurement states are selected as the four Bell states, respectively.
Accordingly, two kinds of final states are obtained, i.e., ρ1

bd and ρ2
bd. Hence, two kinds of

MIDs are derived, Q(ρ1
bd) and Q(ρ2

bd). Obviously, Q(ρi
bd) (i = 1, 2) is determined by two

parameters, q1 and q2, which are from the initial states. In Figures 1 and 2, Q(ρ1
bd) and

Q(ρ2
bd) are depicted with q1 for q2 = 0.25, 0.5, 0.75, respectively.

Figure 1. MIDs in ρab and ρ1
bd for q2 = 0.25, 0.5, 0.75, respectively.
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Figure 2. MIDs in ρab and ρ2
bd for q2 = 0.25, 0.5, 0.75, respectively.

Inspecting the QCs in the final states, i.e., Q(ρi
bd) (i = 1, 2) in Equations (24) and (37),

one can see the following four distinct features.
(i) In the region q1 ∈ (0, 1), Q(ρi

bd) (i = 1, 2) first increases, then decreases with the
value of q1, and the position of peak Q(ρi

bd) varies with the value of q2.
(ii) The peak of Q(ρi

bd) (i = 1, 2) maintains a fixed value of 0.3903 for different q2. For
example, in Figure 1, the peak values of Q(ρ1

bd) in the three different cases (corresponding
to q2 = 0.25, 0.5, 0.75, respectively) are all equivalent to the same value, i.e., 0.3903 (see
Figure 3). In Figure 3, a three-dimensional image of Q(ρ1

bd) is plotted with q1 and q2.
Similarly, it is found that the peak of Q(ρ2

bd) is also maintained at a fixed value of 0.3903.
With further inspection of the final states ρi

bd in Equations (6) and (7), one can find that
∂2Q(ρ1

bd)/∂q1∂q2 = 0 when q1 + q2 = 1 and ∂2Q(ρ2
bd)/∂q1∂q2 = 0 when q1 = q2. That is

to say, Q(ρ1
bd) reaches to its maximal value at q1 + q2 = 1 and Q(ρ2

bd) reaches its maximal
value at q1 = q2. Moreover, in the extreme point conditions, the two final states become
constant states and, correspondingly, Q(ρi

bd) are 0.3903. Hence, one can conclude that
Q(ρ1

bd) reaches the maximal value 0.3903 at q1 + q2 = 1 and Q(ρ2
bd) reaches the maximal

value 0.3903 at q1 = q2.
(iii) In the region q1 ∈ (0, 1), Q(ρi

bd) with q2 and Q(ρi
bd) with 1− q2 are symmetric

about q1 = 1/2 (see Figure 1 for an example). Comparing the first picture (q2 = 0.25) with
the third one (q2 = 0.75), one can find that they are symmetrical about q1 = 1/2. This
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symmetrical feature originates from the internal symmetries in the initial states in the QC
swapping process.

(iv) Q(ρ1
bd)(q1, q2) = Q(ρ2

bd)(q1, 1 − q2). For example, the first variation diagram
in Figure 1 is same with the third variation diagram in Figure 2. To be concrete,
Q(ρ1

bd)(q1, q2 = 0.25) = Q(ρ2
bd)(q1, q2 = 0.75).

Figure 3. Three-dimensional image of Q(ρ1
bd) with q1 and q2.

4.2. QC Swapping Can Be Realized through Separable Two-Qubit Mixed States

From Figures 1 and 2, one can see that QCs always exist in the initial state ρab and the
final state ρi

bd in the regions qi ∈ (0, 1) (i = 1, 2). Obviously, another initial state ρcd has
the same property as ρab. Hence, QC does not vanish in any of the three states. This is a
distinct phenomenon. To be concrete, in the region qi ∈ (0, 1),(i = 1, 2), QCs in the two
initial states are non-zero. Correspondingly, QC in the final state is non-zero too. That is to
say, QC swapping can be realized through separable two-qubit mixed states.

4.3. MID Can Be Increased through QC Swapping

Now, let us turn to the comparison between the MIDs before QC swapping with
those after QC swapping. From Figures 1 and 2, one can find a distinct feature, i.e., Q(ρi

bd)
(i = 1, 2) can be bigger than Q(ρab) in some special regions. That is to say, in our case, MID
can be increased through QC swapping. Taking Q(ρ1

bd) as an example, see Figure 1. For
the case of q2 = 0.25, in the region q1 ∈ (0.731, 1), values of Q(ρ1

bd) are greater than those of
Q(ρab); for the case of q2 = 0.75, in the region q1 ∈ (0.269, 1), values of Q(ρ1

bd) are greater
than those of Q(ρab).

The special region for Q(ρ1
bd) that is bigger than Q(ρab) varies with the value of q2.

To be concrete, for different q2, the q1 region in which MID can be increased is different.
Obviously, the special region is determined by a crosspoint of curves Q(ρab) and Q(ρ1

bd).
From the cases of q2 = 0.25 and q2 = 0.75 in Figure 1, one can find that the number of

crosspoints (except for zero and one) of Q(ρab) and Q(ρ1
bd) is one. However, in the q2 = 0.5

case, the number becomes two (see Table 1). In Table 1, the points of intersection between
Q(ρab) and Q(ρi

bd) are listed.
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Table 1. Points of intersection between Q(ρab) and Q(ρi
bd).

[q1,Q(ρ1
bd)] [q1,Q(ρ2

bd)]

q2 = 0.250 [0.731,0.390] [0.269,0.390]
q2 = 0.500 [0.089,0.112] [0.089,0.112]

[0.911,0.110] [0.911,0.110]
q2 = 0.750 [0.269,0.390] [0.731,0.390]

From Table 1, one can see that when q2 = 0.5, the number of intersections (except
for zero and one) between Q(ρab) and Q(ρi

bd) is two. However, when q2 6= 0.5, taking
q2 = 0.25 as an example, the number of intersections is one. Upon further inspection
of the variation of the intersections with the value of q2, one can find a phenomenon.
To be concrete, when q2 decreases from 0.5 to zero, the graph of Q(ρ1

bd) moves to the
right gradually. As a result, the left intersection disappears gradually. On the contrary,
when q2 increases form 0.5 to one, the graph of Q(ρ1

bd) moves to the left and the right
intersection disappears gradually (see Figure 1 for an example). As for the graph of Q(ρ2

bd),
the asymptotic behavior is adverse. That is to say, when q2 decreases from 0.5 to zero, the
graph of Q(ρ2

bd) moves to the left gradually and the right intersection disappears gradually.
When q2 increases from 0.5 to one, the graph of Q(ρ2

bd) moves to the right and the left
intersection disappears gradually.

In a word, in some special regions, QCs in the final state can be bigger than those in
the initial states. That is to say, in our considered QC swapping case, QC can be increased
through the QC swapping process.

Finally, let us make some simple remarks. In this study, we consider a special case
of quantum correlation swapping. The two initial states we considered are separable
two-qubit mixed states. In this case, a distinct phenomenon has been found, i.e., quantum
correlation can be increased through QC swapping. However, in this paper, we only
consider one kind of QC quantifier, i.e., MID. This is because of its comparatively easy
computability. Are the features and conclusions obtained in the study applicable for
swapping QCs in other initial states via other QC measures? This is still an open question.
We will pay attention to them in the near future.

5. Summary

To summarize, in this paper, we have considered QC swapping with separable two-
qubit mixed states as the initial states. With the assistance of numerical computations, some
distinct features have been exposed. In particular, it is found that MID in the final state
after QC swapping can be bigger than those in the initial states before QC swapping. That
is to say, MID can be increased through QC swapping.
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18. Żukowski, M.; Zeilinger, A.; Horne, M.A.; Ekert, A.K. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys.

Rev. Lett. 1993, 71, 4287. [CrossRef] [PubMed]
19. Goebel, A.M.; Wagenknecht, C.; Zhang, Q.; Chen, Y.A.; Chen, K.; Schmiedmayer, J.; Pan, J.W. Multistage entanglement swapping.

Phys. Rev. Lett. 2008, 101, 080403. [CrossRef] [PubMed]
20. Branciard, C.; Gisin, N.; Pironio, S. Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett.

2010, 104, 170401. [CrossRef]
21. Roy, S.M.; Deshpande, A.; Sakharwade, N. Remote tomography and entanglement swapping via von Neumann-Arthurs-Kelly

interaction. Phys. Rev. A 2014, 89, 052107. [CrossRef]
22. Ottaviani, C.; Lupo, C.; Ferraro, A.; Paternostro, M.; Pirandola, S. Multipartite entanglement swapping and mechanical cluster

states. Phys. Rev. A 2019, 99, 030301. [CrossRef]
23. Modlawska, J.; Grudka, A. Increasing singlet fraction with entanglement swapping. Phys. Rev. A 2008, 78, 032321. [CrossRef]
24. Xie, C.M.; Liu, Y.M.; Xing, H.; Chen, J.L.; Zhang, Z.J. Quantum correlation swapping. Quantum Inf. Process. 2015, 14, 653.

[CrossRef]
25. Xie, C.M.; Liu, Y.M.; Chen, J.L.; Zhang, Z.J. Study of quantum correlation swapping with relative entropy methods. Quantum Inf.

Process. 2016, 15, 809. [CrossRef]
26. Xie, C.M.; Liu, Y.M.; Chen, J.L.; Zhang, Z.J. Quantum correlation swapping in parallel and antiparallel two-qubit mixed states.

Quantum Inf. Process. 2019, 18, 106. [CrossRef]
27. Ye, B.L.; Liu, Y.M.; Xu, C.J.; Liu, X.S.; Zhang, Z.J. Quantum correlations in a family of two-qubit separable states. Commun. Theor.

Phys. 2013, 60, 283. [CrossRef]
28. William, K.W. Entanglement of formation of arbitrary state of two qubits. Phys. Rev. Lett. 1998, 80, 2245.

http://doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1103/PhysRevA.77.022301
http://dx.doi.org/10.1103/PhysRevA.82.034302
http://dx.doi.org/10.1103/PhysRevA.84.062105
http://dx.doi.org/10.1088/1751-8113/44/35/352002
http://dx.doi.org/10.1103/PhysRevLett.104.080501
http://www.ncbi.nlm.nih.gov/pubmed/20366919
http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://www.ncbi.nlm.nih.gov/pubmed/21231155
http://dx.doi.org/10.1103/PhysRevA.84.042109
http://dx.doi.org/10.1007/s11128-012-0458-8
http://dx.doi.org/10.1103/PhysRevA.84.062328
http://dx.doi.org/10.1103/PhysRevLett.124.110401
http://dx.doi.org/10.1103/PhysRevA.98.062320
http://dx.doi.org/10.1007/s11128-020-02709-2
http://dx.doi.org/10.1007/s11128-018-2007-6
http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://dx.doi.org/10.1103/PhysRevLett.101.040502
http://www.ncbi.nlm.nih.gov/pubmed/18764314
http://dx.doi.org/10.1103/PhysRevLett.71.4287
http://www.ncbi.nlm.nih.gov/pubmed/10055208
http://dx.doi.org/10.1103/PhysRevLett.101.080403
http://www.ncbi.nlm.nih.gov/pubmed/18764594
http://dx.doi.org/10.1103/PhysRevLett.104.170401
http://dx.doi.org/10.1103/PhysRevA.89.052107
http://dx.doi.org/10.1103/PhysRevA.99.030301
http://dx.doi.org/10.1103/PhysRevA.78.032321
http://dx.doi.org/10.1007/s11128-014-0875-y
http://dx.doi.org/10.1007/s11128-015-1209-4
http://dx.doi.org/10.1007/s11128-019-2222-9
http://dx.doi.org/10.1088/0253-6102/60/3/05

	Introduction
	Quantum Correlation Swapping between Two Separable Two-Qubit Mixed States
	Measurement-Induced Disturbance in the Initial States and Final States
	MIDs in the Initial States ab(q1) and cd(q2)
	MIDs in the Final State bd1(q1,q2)
	MIDs in the Final State bd2(q1,q2)

	Analyses, Discussions, and Comparisons
	Features of MIDs in the Relevant States
	QC Swapping Can Be Realized through Separable Two-Qubit Mixed States 
	MID Can Be Increased through QC Swapping

	Summary
	References

