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Colorectal cancer (CRC) is one of the most common malignant
tumors, with the second-highest mortality of all 36 cancers
worldwide. The roles of fatty acid metabolism in CRC were
investigated to explore potential therapeutic strategies. The
data files were downloaded from The Cancer Genome Atlas
(TCGA) and Gene Expression Omnibus (GEO) databases. Uni-
variate and least absolute shrinkage and selection operator
(LASSO) Cox regression analyses were used to construct a prog-
nostic risk score model with fatty acid metabolism-related genes
for predicting prognosis in CRC. Patients with a high-risk score
had a poorer prognosis in TCGA cohort than those with a low-
risk score and were confirmed in the GEO cohort. Further anal-
ysis using the “pRRophetic”R package revealed that low-risk pa-
tients were more sensitive to 5-fluorouracil. A comprehensive
evaluation of the association between prognostic risk score
model and tumor microenvironment (TME) characteristics
showed that high-risk patients were suitable for activating a
type I/II interferon (IFN) response and inflammation-promot-
ing function. Tumor Immune Dysfunction and Exclusion
(TIDE) and SubMap algorithm results also demonstrated that
high-risk patients are more suitable for anti-CTLA4 immuno-
therapy. Therefore, the evaluation of the fatty acid metabolism
pattern promotes our comprehension of TME infiltration char-
acteristics, thus guiding effective immunotherapy regimens.

INTRODUCTION
Colorectal cancer (CRC) is one of the most common malignant tu-
mors in humans, accounting for about 10% of diagnosed cancers
and cancer-related deaths yearly. CRC mortality ranks second of all
36 cancers worldwide, with about 900,000 people dying yearly.1

Moreover, it has the third-highest incidence in men and the second
in women.2 However, there are regional differences in CRC inci-
dences. Its incidence in developed countries is higher than in devel-
oping countries.3 Arnold et al.4 have predicted that CRC cases could
increase to 2.5 million in 2035 because of the rapid growth in devel-
oping countries. Nationwide screening, including colonoscopy, can
stabilize or reduce CRC incidence.5 However, tumor recurrence oc-
curs in 25%–40% of postoperative patients, and chemotherapy does
not improve prognosis.6

The tumor microenvironments (TMEs) are characterized by hypoxia,
high oxidation, acidity, and malnutrition because of the rapid prolif-
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eration of tumor cells and inadequate angiogenesis. Therefore, cancer
cells exhibit unique metabolic characteristics different from normal
cells to deal with various adverse microenvironments through a meta-
bolic reprogramming process that maintains the proliferation and
survival of cancer cells when the carcinogenic signal is blocked.7–9 Re-
programming energy metabolism is a hallmark in cancers and is
essential in cell proliferation and division.10 Themetabolism of carbo-
hydrate, lipid, and amino acid in cancer cells is significantly different
from normal cells.11 For instance, normal cells catabolize most
glucose to pyruvate via glycolysis, and glucose catabolism coupled
with oxidative phosphorylation in mitochondria produces high en-
ergy. However, cancer cells catabolize glucose into lactate with insuf-
ficient energy production, making cancer cells need a higher glucose
consumption for growth.12 In CRC, cellular pyruvate metabolism
changes, including mitochondrial pyruvate carrier (MPC) reduction,
promote cancer initiation.13 Besides glucose metabolism, lipid meta-
bolism is a potential hallmark in malignant tumors. Upregulated up-
take, storage, and synthesis of the lipid promote the rapid growth of
the tumor.14 In recent years, fatty acid metabolism, essential for many
biological activities, such as cell membrane formation, energy storage,
and signaling molecule generation in oncogenesis, has attracted much
attention.15,16 For instance, Qi et al.17 have demonstrated that a spe-
cific expression pattern of fatty acid catabolic metabolism-related
genes is associated with malignancy, prognosis, and immune pheno-
type in glioma. Enhanced lipolysis and fatty acid synthesis induce
lymph node metastasis in cervical cancer patients via activated nu-
clear factor kB (NF-kB) signaling.18 Activated fatty acid oxidation
can promote acute myeloid leukemia cell survival by remodeling
and lipolysis of bone marrow adipocytes.19 Moreover, a study has
://creativecommons.org/licenses/by-nc-nd/4.0/).
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illustrated that metabolic pathway analysis of CRC could help us to
understand the molecular mechanism of CRC better and further
develop new treatment methods.20 However, the fatty acid meta-
bolism-related gene set in CRC has not been systematically studied.

In this study, the genomic information of 548 CRC samples was
analyzed to comprehensively assess the fatty acid metabolism pattern
and construct a fatty acid prognostic risk score model. The prognostic
risk score model independently predicted the survival outcome of
CRC patients and effectively distinguished CRC patients resistant
to 5-fluorouracil (5-FU). Moreover, the relationship between the
prognostic risk score model and TME cell-infiltrating characteristics
was investigated. The prognostic risk score model could effectively
define CRC patients suitable for anti-CTLA4 antibody immuno-
therapy, suggesting that fatty acid metabolism is essential in shaping
individual TME characterizations. These findings can provide a novel
perspective for exploring the metabolic mechanism and treatment of
CRC.

RESULTS
Enrichment analysis of normal and cancer tissue samples

Expression level comparison of fatty acid metabolism-related genes in
normal and cancer tissue samples was conducted, and 70 genes with
false discovery rate (FDR) < 0.05 were selected in The Cancer
Genome Atlas (TCGA) cohort. A total of 23 genes were upregulated
and 47 downregulated in the cancer tissue samples. Figure S1A shows
the differentially expressed genes (DEGs). Gene Ontology (GO)
enrichment analysis was then conducted for the DEGs. Fatty acid
metabolic, fatty acid catabolic, and nucleoside bisphosphate meta-
bolic processes were highly enriched GO terms in the biological pro-
cesses (Figure S1B). Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis results showed that fatty acid degrada-
tion, metabolism, biosynthesis, and elongation were highly enriched
KEGG terms (Figure S1C). These results illustrate that fatty acid
metabolism plays a significant role in CRC development.

Prognostic risk score model development in the training set

Samples from TCGA cohort were classified as the training set. Univar-
iate Cox regression analysis was performed on 70 differentially ex-
pressed fatty acid metabolism-related genes. A total of 13 genes related
to prognosis were identified with a p value <0.05 (Figure 1A). The so-
matic mutation profile of the 13 fatty acid metabolism-related genes
associated with prognosis was first summarized. A total of 67 of 399
CRC samples experienced mutations of fatty acid metabolism-related
genes, with a frequency of 16.79%, as shown in Figure 1B. ACACB
had the highest mutation frequency than ACOX1. However, ACAA2
did not exhibit any mutations in CRC samples. Further analyses
demonstrated a mutation co-occurrence relationship between
ACADM and ADH6, ACACB and ACADM, and OXSM and ACADM
(Figure 1C). Least absolute shrinkage and selection operator (LASSO)
Cox regression analysis was then used to narrow the number of genes.
Finally, eight genes (ELOVL3, ACADL, ACOX1, ACACB, ADH5,
CPT2,ACSL6, and ELOVL6) were used for prognostic risk score model
construction (Figures 1D and 1E). The risk score of each sample was
calculated using the following: risk score = (0.496855878561209) �
ELOVL3 + (0.564161973443707) � ACADL +(�0.21155749803107)
� ACOX1 + (0.46605598297121) � ACACB + (�0.04111229187679
07) � ADH5 + (�0.475528417085679) � CPT2 + (�0.1377482312
78715) � ACSL6 + (�0.178101766953256) � ELOVL6, which was
demonstrated in Table S1.

The risk score model was used to completely distinguish CRC samples
(low or high risk) (Figures 1F and 1G)

The relationship between risk score and clinical features

The cutoff value was themedian value of risk scores in the training set.
The sample risk scores were ranked and classified into low (n = 253)-
and high (n = 253)-risk score groups, according to the cutoff value
above. The distribution of risk scores in age, gender, pathological
stage, and American Joint Committee on Cancer (AJCC) TNM Clas-
sification of Malignant Tumors (TNM) stage of corresponding sam-
ples was analyzed. Although there were no significant differences in
risk score associations with age, gender, and AJCC-T (tumor inva-
sion) stages (Figures 2A�2C), higher risk scores were correlated
with higher AJCC-N (lymphoid metastasis) (p < 0.001; Figure 2D)
and AJCC-M (distal metastasis) (p = 0.05; Figure 2E) and advanced
pathological stages (p = 0.012; Figure 2F). High-risk score group sam-
ples had a worse prognosis in TCGA compared with the low-risk
score group (p = 2.995e�05; Figure 2G). Time-dependent receiver
operating characteristic (ROC) was plotted at 5 years to validate the
accuracy of the prognostic risk score model (Figure 2H). For prog-
nostic risk score model validation, test group samples from Gene
Expression Omnibus (GEO): GSE39582 were classified into low
(n = 270)- and high (n = 285)-risk score groups, according to the cut-
off value determined in the training set. High-risk group samples had
a poorer prognosis than the low-risk group (Figure 2I), indicating that
the prognostic risk score model can predict overall survival (OS) in
CRC (Figure 2J). Among factors associated with OS in the univariate
analysis, including clinical stage, T stage, lymph nodes status, distal
metastasis, CMS (consensus molecular subtype), and risk score,
only risk score and clinical T stage were independent predictors of
OS in multivariate analysis (Figures 2K and 2L).

The survival status and corresponding risk score of each sample were
plotted (Figure S2A). Figure S2A demonstrates the different expres-
sions of eight genes in the low- and high-risk score groups. High-
risk genes (ELOVL3, ACADL, and ACACB) had higher expressions
in the high-risk score group, whereas the low-risk score group had
a high level of protective genes (ACOX1, ADH5, CPT2, ACSL6, and
ELOVL6), consistent with previous results. The risk score distribu-
tion, the survival status of the CRC samples, and the gene expression
in the test set are represented in Figure S2B.

Construction of a nomogram for predicting survival

A nomogram with integrated age, gender, pathological stage, carci-
noembryonic antigen (CEA) level, and prognostic risk score model
was constructed for OS prediction in CRC samples (Figure 3A).
The calibration curves at 1 year, 3 years, and 5 years proved that
Molecular Therapy: Oncolytics Vol. 20 March 2021 533
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Figure 1. Development of prognostic risk score model

(A) Forrest plot of 13 fatty acid metabolism-related genes related with prognosis. (B) The mutation frequency of 13 fatty acid metabolism-related genes in 399 patients with

CRC from TCGA cohort. (C) The mutation co-occurrence and exclusion analyses for 13 fatty acid metabolism-related genes. Co-occurrence, green; exclusion, purple. (D)

LASSO coefficients of the 13 fatty acid metabolism-related genes. (E) Identification of genes for development of prognostic risk score model. (F) Principal component analysis

based on all fatty acid metabolism-related genes in CRC. (G) Principal component analysis based on fatty acid metabolism risk score to distinguish tumors from normal

samples in TCGA cohort. The group marked with green represented high-risk patients, and the group marked with red represented low-risk patients.
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the nomogram could accurately predict the OS of CRC patients, as
shown in Figures 3B�3D.Multivariate Cox regression analysis results
illustrated that prognostic risk score model, age, and clinical-patho-
logical stage are independent prognostic indicators (Figure 3E). The
534 Molecular Therapy: Oncolytics Vol. 20 March 2021
area under the ROC curves (AUC) demonstrated that the nomogram
(AUC = 0.840) had better prognostic value than a single indicator,
such as age (AUC = 0.631), pathological stage (AUC = 0.744), and
prognostic risk score model (AUC = 0.673; Figure 3F).



(legend on next page)
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Response to chemotherapy response

Since risk score is associated with poor prognosis, the relationship be-
tween risk score and chemoresistance was explored. The half-
maximal inhibitory concentration (IC50), calculated using the “pRRo-
phetic” R package, was used to predict the treatment response to 5-FU
in TCGA cohort. Low-risk score samples weremore sensitive to 5-FU,
widely used in treating advanced CRC (Figures 4A and 4B). There was
a strong correlation between chemotherapy sensitivity and risk score
in the GEO: GSE39582 cohort, according to RFS (recurrence-free sur-
vival) at 3 years (Figure 4C). The analyses for the activity of stroma-
related pathways responsible for chemotherapy resistance revealed
that high-risk scores were significantly related to intensive activation
of stromal pathways, including epithelial–mesenchymal transition
(EMT), transforming growth factor (TGF)-b pathways, angiogenesis,
and Wnt target (Figure 4D).

Gene set variation analysis (GSVA)

GSVA enrichment was conducted using the gene sets of
“c2.cp.kegg.v7.2” downloaded from the Molecular Signatures Data-
base (MSigDB) to explore the biological behaviors in the two groups.
Interestingly, most metabolism pathways, including fatty acid meta-
bolism, were enriched in the low-risk score (Figure 4E). The risk score
was negatively associated with fatty acid metabolism score, calculated
with single-sample gene-set enrichment analysis (ssGSEA) using the
expression of fatty metabolism-associated genes in CRC patients,
consistent with GSVA (Figures S3A and S3B). Although the time-
dependent ROC at 5 years suggested that the fatty metabolism score
could also accurately predict the patients’ survival rate, the prognostic
value (AUC = 0.652) was inferior to the risk score model (AUC =
0.718) (Figures S3C and S3D). The enrichment pathways of the
high-risk group were associated with the immune biological pro-
cesses, such as the T cell receptor andmammalian target of rapamycin
(mTOR) signaling pathways (Figure 4E). Furthermore, patients with
mismatch repair proficient (pMMR), chromosome instability (CIN),
and CpG island methylator phenotype (CIMP) had higher risk scores
(Figures 4F�4K).

Immune-related characteristic in the low- and high-risk score

groups

The group was remarkably rich in immune-suppressive cell infiltra-
tion, including MDSC (myeloid-derived suppressor cells), T cell reg-
ulatory cells (Tregs), and T helper (Th)17 cells, consistent with the
survival disadvantage in the high-risk group. Central memory CD8
T cells, effector memory CD8 T cells, and natural killer T cells were
also enriched in the high-risk group (Figure 5A). Moreover, type I
interferon (IFN) response, type II IFN response, and inflammation-
promoting function were also activated in the high-risk group, indi-
cating that patients in the high-risk group with immunity suppression
Figure 2. The predictive value of fatty acid metabolism score model in surviva

(A�F) The relationship of risk score and clinicopathological features, including age (A), ge

stage (F). (G and I) The comparison of overall survival (OS) between low- and high-risk sco

score measured by ROC curves in the training set and the test set. The area under th

multivariate Cox regression analysis in TCGA cohort.
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could respond to immunotherapy (Figure 5B). The immunotherapy
represented by the CTLA4 and programmed cell death 1 (PD-1)
blockade has made a breakthrough in cancer therapy. Immune check-
point-associated genes were activated in the high-risk group (Fig-
ure 5D). The ability of the prognostic risk score model to distinguish
patients with different responses to immune checkpoint blockade
therapy was investigated. Although there was no difference in clinical
response to anti-PD-1 immunotherapy, therapeutic advantages and
clinical responses to anti-CTLA4 immunotherapy in high-risk score
patients were better than the low-risk score group (Figure 5C; Figures
S4B�S4D). Further research revealed that besides immunity check-
point genes (PD-1, programmed death ligand 1 [PD-L1], and
CTLA4), immunity activation- and antigen presentation-associated
genes were all significantly upregulated in the high-risk group (Fig-
ure S4F). Moreover, CMS1 phenotype patients suitable for immuno-
therapy had higher risk scores (Figure S4E), indicating that the quan-
tification of fatty acid metabolism risk score is a novel and robust
biomarker for evaluating the prognosis and clinical response to
immunotherapy.
Protein-protein interaction (PPI) network of DEGs in the low- and

high-risk score groups

STRING online database was used to analyze the expression profiles
of DEGs in the low- and high-risk score groups. The PPI network was
constructed using the DEGs is shown in Figure S5A. Cytoscape soft-
ware was used to process and display the PPI network data. Figure 6A
presents DEG interaction, where upregulated genes in the high-risk
score group are marked in red and in the low-risk score group are pre-
sented in blue. cytoHubba, a plug-in of Cytoscape, was used to deter-
mine the hub genes from the DEGs. A total of 10 genes in the network
were selected, as shown in Figure 6B. FN1, EGF, CDKN2A, SYP,
KRT5, SERPINE1, CDH2, KRT14, ACTC1, and GNG8 were ranked
using the degree method. The gene expression differences between
normal and tumor were then compared. CRC patients had a higher
proportion of SERPINE1, CDKN2A, EGF, and KRT14 and a lower
proportion of GNG8, SYP, and CDH2 compared with normal colo-
rectal tissue. GO and KEGG analyses of eight difference hub genes
were analyzed using the “GOplot” R package to better understand
their function. GO results indicated that the genes participate in repli-
cative senescence, negative regulation of cell-matrix adhesion, posi-
tive regulation of receptor-mediated endocytosis, neuroepithelial
cell differentiation, and aging (Figure 6C). KEGG results indicated
that these genes were enriched in the P53 signaling pathway, (HIF-
1) signaling pathway, apelin signaling pathway, cellular senescence,
and human cytomegalovirus infection (Figure 6D). Survival analysis
indicated that only CDKN2A mRNA expression of the seven hub
genes was significantly associated with CRC patients’ prognoses
l status of CRC patients

nder (B), tumor invasion (C), lymphoid metastasis (D), distal metastasis (E), and TNM

re groups in the training set and the test set. (H and J) The predictive value of the risk

e curve (AUC) is 0.718 and 0.559. (K and L) The forest plot of the univariate and



Figure 3. The predictive value of fatty acid metabolism score in combination with clinical pathological characteristics in OS of patients from TCGA cohort

(A) Nomogram predicting OS of patients from TCGA cohort. (B�D) The calibration plots of the nomogram. The x axis is nomogram-predicted survival, and the y axis is actual

survival. (E) Multivariate Cox regression analysis of the nomogram. (F) ROC curves for fatty acid metabolism score and clinical pathological characteristics.
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Figure 4. Fatty acid metabolism model in the role of chemotherapy

(A) The correlation between risk scores of patients and estimated IC50 value of 5-FU. (B) The differences of response to 5-FU between low- and high-risk score groups. (C) The

comparison of disease-free survival (DFS) between low- and high-risk score groups in the GEO cohort. (D) Differences in stroma-activated pathways between low- and high-

risk score groups (*p < 0.05; **p < 0.01; ***p < 0.001). (E) The heatmap of GSVA enrichment between low- and high-risk score groups. (F�K) Differences in fatty metabolism

score among different of molecule subtypes, including KRAS mutation (F), BRAF mutation (G), MMR status (H), CIN status (I), TP53 status (J), and CIMP status (K).
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(Figure 6E; Figures S5B�S5J). Besides, CDKN2A expression in-
creases as the tumor stage advances (Figure 6F). CDKN2A expression
was associated with poor prognosis. The specific difference of TME
immune cell infiltration between high and low CDKN2A expression
538 Molecular Therapy: Oncolytics Vol. 20 March 2021
patients was explored using the CDKN2Amedian expression value as
the cutoff value. Tumors with high CDKN2A expressions had signif-
icantly increased infiltration in Tregs than patients with low expres-
sions (Figure 6G).



Figure 5. Fatty acid metabolism model in the role of immunotherapy

(A) The immunity infiltration difference between high-risk score and low-risk score. (B) The known function associated with immunity regulation difference between patients

with high-risk score and low-risk score. (C) Response prediction to immunotherapy (anti-PD-1 and anti-CTLA4) between the high-risk group and low-risk group according to

TIDE and SubMap algorithms. (D) The differences of known gene signatures between the low-risk score group and high-risk score group.
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DISCUSSION
The reprogramming of the cellular metabolism plays an essential role
in tumor development.21 Cell metabolic activity changes are cancer
hallmarks.22 For instance, the upregulated glycolytic metabolism is
one of the physiological characteristics of human malignant tumor.23

Some studies have illustrated that metabolic signatures containing the
cysteine metabolism, nucleotide metabolism, and 2-hydroxyglutarate
can be used to classify and treat gliomas.24–26 In CRC, increased
anaerobic metabolic pathways are essential in cancer stem-like cells
(CSCs) related to tumor formation, development, and therapy resis-
tance.27,28 Although most studies have focused on the role of a single
regulator of fatty acidmetabolism in CRC, the integrated roles of mul-
tiple fatty acid metabolism-related genes are unknown. The explora-
tion of the role of distinct fatty acid metabolism patterns in CRC
could help understand fatty acid metabolism in CRC progression,
thus guiding to an effective therapeutic strategy.

To date, this is the first study to explore the relationship between fatty
acid metabolism-related genes and CRC. Herein, a prognostic risk
score model with 70 differentially expressed fatty acid metabolism-
related genes in tumor and normal CRC tissue samples was estab-
lished in TCGA cohort and GEO cohort using univariate Cox regres-
sion analysis and LASSO Cox regression analysis. A prognostic risk
score model was used to predict the OS of CRC patients in the
training set to better understand the role of these genes in CRC. There
were differences in survival of CRC patients between low- and high-
risk score groups. The same result was reported in the test set, indi-
cating that the prognostic risk score model can screen patients with
poor survival. The prognostic risk score model was the independent
prognostic factor on multivariable analysis. Moreover, the predictive
potential of this prognostic risk score model was further improved by
combining with a few selected clinicopathological features and CEA
levels in a risk-assessment nomogram.

The differences in patients’ response to drug therapies between the
low- and high-risk score groups were compared to further understand
the role of the prognostic risk score model in CRC. The risk score was
positively associated with 5-FU chemoresistance, consistent with pre-
vious research. The CRC patients with higher risk scores had lower
RFS, indicating that the fatty acid prognostic risk score model can
be used for the personalized treatment of CRC patients. High-risk
score patients exhibited a significant stroma activation status, indi-
cating chemoresistance, consistent with the above definitions. Since
patients with high-risk scores experience chemoresistance, it was hy-
pothesized that they are not suitable for immunotherapy. Whereas
some patients are suitable for the immunotherapy (immune check-
point blockade [PD-1/L1 and CTLA4]), most CRC patients are not
suitable. Therefore, it is important to distinguish patients suitable
Figure 6. Protein-protein interaction (PPI) network

(A) PPI network processed by Cytoscape (red): DEGs that expressed highly in the high-ris

10 hub genes selected by cytoHubba. (C and D) The results of GO and KEGG enrichmen

CDKN2A mRNA expression. (F) The CDKN2A mRNA expression difference among diffe

high and low CDKN2A mRNA expression.
for immunotherapy in clinical practice. High-risk score patients
were enriched with inhibitory immunity cells, including Tregs and
MDSCs, and immune-inflamed cells. Moreover, high-risk score pa-
tients had the activation of type I IFN response, type II IFN response,
and inflammation-promoting function, indicating that high-risk
score patients are suitable for the immunotherapy, consistent with
the prediction using Tumor Immune Dysfunction and Exclusion
(TIDE) and SubMap algorithms. CTLA4, limited to activated
T cells and Tregs, is the inhibitory counterpart to CD28, because it
shares ligands with the same conserved MYPPPY motif.29 Therefore,
anti-CTLA4 antibodies could be suitable for high-risk score patients,
especially chemoresistance patients.

Since there are significant differences between low-risk and high-risk
score groups, the different genes in the two groups were further
explored. CDKN2A, p16, was found to be essential. CDKN2A
mRNA expression was not only positively related to the clinical stage
but also associated with poorer prognosis. Previous studies have also
demonstrated a highly significant correlation between higher
p16INK4A expression, especially in the front of invasion, and lower
survival. However, mechanical research has shown that CDKN2A is
a b-catenin target gene that could inhibit CRC cell proliferation.
This paradoxical result could have attributed to the over-estimation
that proliferation promotes CRC malignant progression. Interest-
ingly, some tumor cells defined by p16INK4A expressions are compo-
nents of the budding zone and good prognostic markers for low sur-
vival. However, these results should be further explored.30,31

In summary, the fatty acid prognostic risk score model can be used to
evaluate the fatty acid metabolism patterns comprehensively. The risk
score can characterize patients’ clinicopathological features, including
clinical stages, molecular subtypes, microsatellite instability (MSI)
status, CIN status, and CIMP status. Besides, the risk score is associ-
ated with patients’ prognosis and can also predict chemotherapy
sensitivity. Therefore, risk score and clinical stage can effectively
guide clinical practice to achieve a more personalized clinical
follow-up strategy. Patients suitable for anti-CTLA4 treatment can
be distinguished using risk scores. These findings provide a novel, effi-
cient, and accurate predicting model in prognosis and in response to
chemotherapy and immunotherapy, thus promoting personalized
cancer chemotherapy and immunotherapy in the future.

MATERIALS AND METHODS
Data processing

The raw RNA sequencing (RNA-seq) data profiles, including 568
CRC and 44 normal colorectum tissue samples, were downloaded
in the High Throughput Sequencing (HTSeq)-fragments per kilobase
of transcript per million mapped reads (FPKM) workflow type from
k score group; blue: DEGs that expressed highly in the low-risk score group. (B) Top

t analysis on top 10 hub genes. (E) Survival analysis for subgroup patients stratified by

rent clinical stages. (G) The abundance of each TME-infiltrating cell in patients with
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TCGA database (https://www.cancer.gov/about-nci/organization/
ccg/research/structural-genomics/tcga). The clinical information of
548 CRC samples, including gender, age, pathological stage, AJCC
TNM stage, and prognostic information, was also obtained from
TCGA database. The microarray data profiles of GEO: GSE39582
based on platform GPL570 were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The Entrez Gene IDs of each
sample were converted into corresponding gene symbols using the
annotation platform. Mean value was adopted if the identical Entrez
Gene ID was targeted by more than one probe. Besides, clinical infor-
mation of each sample in GEO: GSE39582 was downloaded from the
GEO database.

In a previous study,32 92 fatty acid metabolism-related genes were
identified. A total of 81 common genes were then selected from these
genes in TCGA and GEO cohorts.
Enrichment analysis of theDEGs in the normal and cancer tissue

samples

“limma” R package was used to analyze differentially expressed fatty
acid metabolism-related genes in the normal and cancer tissue sam-
ples. Genes with FDR < 0.05 were considered statistically significant.
“org.Hs.eg.db” R package was then used to convert the symbol gene of
each DEG into a corresponding Entrez Gene ID. The GO and KEGG
pathway enrichment analyses were performed on DEGs using “clus-
terProfiler”R package to identify themajor biological features and cell
functional pathways. p value (q value) <0.05 was considered a statis-
tically significant difference. Finally, “enrichplot” and “ggplot2” R
packages were used to visualize the enrichment analysis results.
Development and verification of a prognostic risk score model

TCGA cohort samples were classified as the training set and GEO:
GSE39582 samples as the test set. The expression level of differentially
expressed fatty acid metabolism-related genes of each sample was first
merged with corresponding prognostic outcomes using the samples’
ID. The genes related to prognosis were screened from differentially
expressed fatty acid metabolism-related genes through univariate
Cox regression analysis in the training set. The genes with p value
<0.05 were selected. The “maftools” R package was used to analyze
the mutation and correlation of the genes in CRC samples of the
training set. “glmnet” R package was used to further process the prog-
nosis-related genes using LASSO Cox regression analysis to develop a
prognostic risk score model for predicting OS of CRC samples. The
ten-fold cross-validation was conducted to determine the penalty
parameter (l) of the model. The formula below was used to calculate
each sample risk score.

Risk score =
Xi

1
ðCoef i � ExpGeneiÞ

The “Coef” represents non-zero regression coefficients calculated us-
ing the LASSO Cox regression analysis, and “ExpGene” is the expres-
sion values of genes from the prognostic risk score model. All samples
were classified into low- and high-risk score groups based on the me-
dian value of risk scores. Kaplan-Meier analysis with the log-rank test
542 Molecular Therapy: Oncolytics Vol. 20 March 2021
was used to compare the OS difference between low-risk and high-
risk score groups. The time-dependent ROC curve was plotted using
the “survivalROC” package in R to evaluate the predictive accuracy of
prognostic risk score mode. Finally, the reliability and applicability of
the prognostic risk score model were further validated in the test set.
Principal-component analysis (PCA) comparison before and

after prognostic risk score model

limma package in R was successfully used to perform PCA on expres-
sion profiles of genes before and after the prognostic risk score model
in the training set to understand the prominent distinction in the low-
and high-risk score groups. PCA was first performed on the expres-
sion profiles of all differentially expressed fatty acid metabolism-
related genes. PCA was then used to analyze the expression profiles
of genes from the prognostic risk score model. Finally, ggplot2 pack-
age was used to present the PCA results on two-dimensional diagrams
according to the first two principal components.

Relationship between risk scores and clinical features

In TCGA cohort, “CMScaller” R package was used to classify all sam-
ples into CMSs based on their features. The risk score of each sample
was merged with corresponding clinical characteristics based on the
sample ID. The relationship between risk scores and clinical informa-
tion, including gender, age, pathological stages, AJCC TNM stages,
and CMS, was explored using the limma R package. Besides, the
expression level of the immune checkpoint (represented by PD-1,
PD-L1, and CTLA4) was obtained from TCGA database. The expres-
sion levels of the immune checkpoints in the low- and high-risk score
groups were then compared. The clinical information related to CRC
in the GEO cohort, including CIMP status, CIN status, MMR status,
and KRAS/BRAF/TP53 mutation, was collected to determine the as-
sociation between risk scores and clinical features. Samples were clas-
sified into two groups, according to the clinical features, to compare
the risk score differences. Wilcoxon rank-sum and Kruskal-Wallis
(K-W) tests were used to compare two groups and more than two
groups, respectively. p value <0.05 was considered statistically
significant.

GSVA

GSVA was conducted on the gene profile through the “GSVA” R
package to compare the distinctions of the biological processes be-
tween low- and high-risk score groups. GSVA, a non-parametric
and unsupervised method, can evaluate the pathway variations or
biological processes through an expression matrix sample.33 The
“c2.cp.kegg.v7.1.symbols” gene sets, from the molecular signatures
database (https://www.gsea-msigdb.org/gsea/msigdb), was used as
the reference gene sets. FDR <0.05 indicated a statistically significant
enrichment pathway.

Characteristic comparisonbetween the low- andhigh-risk score

groups

pRRophetic R package was used to predict IC50 of 5-FU in each sam-
ple. IC50 indicates the effectiveness of a substance in inhibiting

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb
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specific biological or biochemical functions. ssGSEA was performed
using “GSEABase” and GSVA R packages to quantify the extent of
the immune-related infiltration of each sample in TCGA cohort.
The gene sets were collected for evaluation of immune-related char-
acteristics in TME from the previous study, including many different
types of human immune cell subtypes and immune-related activities,
such as CD8+ T cell, B cell, T cell co-stimulation, and so on (Table
S1).34,35 The enrichment scores calculated using the ssGSEA algo-
rithm indicated a relative degree of each immune-related character-
istic expression in each sample. The difference of enrichment scores
in the low- and high-risk score groups was compared. The correlation
between genes related to prognosis and immune cells was also evalu-
ated. Finally, TIDE (http://tide.dfci.harvard.edu/) and SubMap
(https://cloud.genepattern.org/gp) algorithms were used to predict
immune checkpoint response inhibitors of PD-1 and CTLA4 in the
low- and high-risk score groups. p value < 0.05 was considered statis-
tically significant.

PPI network

The RNA-seq data profiles of low- and high-risk score groups were
first compared via the limma R package. Genes with an adjusted p
value <0.05 were identified as DEGs. The analysis of the DEGs was
performed using the STRING online database (version: 11.0;
https://string-db.org/) to generate the PPI network data with an inter-
action score >0.40 (median confidence) (Table S2). The PPI network
data were then further processed and displayed using Cytoscape soft-
ware (version: 3.7.2). The cytoHubba (version: 0.1), a Cytoscape plug-
in, was used to search hub genes from all DEGs applying topological
algorithms. Genes with differential expression in the normal colorec-
tum tissue and CRC tissue were then collected. GO and KEGG
enrichment analyses were performed on the genes using clusterPro-
filer R package. Finally, all samples were classified into low- and
high-expression groups based on the median expression value of
the hub genes. Kaplan-Meier analysis was used to determine if there
was a difference in survival between the two groups. The comparison
of immune cell infiltration was conducted in hub genes related to
prognosis.

Development of a nomogram for predicting OS

A nomogram with age, gender, pathological stage, CEA level, and
prognostic risk score model was developed using “rms” package in
R based on TCGA cohort for OS prediction in CRC. Time-dependent
calibration curves were plotted to predict the accuracy of the nomo-
gram. Moreover, multivariate Cox regression analysis was used to
validate if the prognostic risk score model could serve as an indepen-
dent indicator for OS prediction in CRC. The AUC was then calcu-
lated to represent the prognostic value of the nomogram through
the online ROC curves.

Statistical analysis

Wilcoxon rank-sum test was used to compare the difference between
the two groups. K-W test was performed to compare three or more
groups. Kaplan-Meier analysis was used to evaluate the survival dif-
ferences between the low- and high-risk score groups. Multivariate
Cox regression analysis was conducted to determine independent in-
dicators for predicting OS in CRC. The ROC curves were plotted to
assess the predictive effectiveness of the prognostic risk score mode
and nomogram. All of the statistical analyses were conducted using
R 4.0.0 (p < 0.05).
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