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Abstract: With the steady growth of CO2 emissions embedded in trade, the driving forces of emissions
have attracted extensive attention. Most of the literature has verified a bundle of the influential
factors; however, further analyses are necessary to understand the predominant and heterogeneous
driving factors in different economies and/or industries. Accordingly, by applying the multiregional
input–output (MRIO) model, this article firstly evaluates the embodied carbon emissions of China’s
export from 1992 to 2020 in total volumes and by 14 industries. Then, the Least Absolute Shrinkage
and Selection Operator (LASSO) estimations allow us to discover that urbanization, technology
update and gross domestic product (GDP) are the leading three prioritizing factors in generating
China’s export emissions. Interestingly, this paper discovers that raising the proportion of female
parliamentarians contributes to an abatement of emissions. Furthermore, the empirical results suggest
that the heterogeneities of those factors do exist among industries. For example, the percentage of
females in parliaments turns out to have a larger effect among labor-intensive industries only. In
facing with rapid globalization and economic development of China, this paper provides important
policy implications towards specific industries in terms of mitigating trade emissions. It guides
policy-makers to achieve “carbon neutrality” by avoiding carbon leakage in net-export countries
such as China.

Keywords: embodied carbon emissions; export; gender; female parliamentarians; China; LASSO
model

1. Introduction

The rapid growth of international trade has promoted the global demand for energy
consumption, which in turn has contributed to greenhouse gas (GHG) emissions. Over
the past two decades, about 25% of global carbon emissions generated from embodied
emissions in export [1]. Hence, identifying the main driving factors of the trade emissions,
particularly from the perspective of export, has crucial implications in terms of facilitating
cooperation among countries to tackle climate change [2–4].

China, the largest global carbon emitter, aims to alleviate the dual pressures from
international climate negotiations and domestic environmental degradation [5]. It has
taken actions and set ambitious goals in regard to declining emissions, which puts forward
higher requirements for carbon emission reduction [6]. For example, China has pledged
to reach peak carbon dioxide emissions before 2030 and achieve carbon neutrality before
2060 [7]. In academia, a growing body of literature examined the trade carbon emissions in
China [8,9].

China also generates the most carbon emissions embodied in its export in the world [4].
The evidence suggests that from 1995 to 2007, embodied carbon emissions in exports from
the US, the UK and Japan accounted for 5–13%, 12–29%, and 6–22% of their total carbon
emissions, respectively, while the percentage for China grew from 10% to 45% in the same
period of time [10]. In 2013, approximately 29% of China’s carbon emissions were caused
by the consumption of foreign customers [11], and hence, China is more likely to trap in the

Int. J. Environ. Res. Public Health 2021, 18, 10423. https://doi.org/10.3390/ijerph181910423 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0003-4852-8042
https://orcid.org/0000-0001-8706-9681
https://doi.org/10.3390/ijerph181910423
https://doi.org/10.3390/ijerph181910423
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph181910423
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph181910423?type=check_update&version=1


Int. J. Environ. Res. Public Health 2021, 18, 10423 2 of 18

so-called “Pollution Haven” and even experience carbon leakage [12,13]. In order to tackle
climate change, carbon reduction strategies should be implemented in China’s export by
assessing its embedded carbon emissions and the driving forces in depth.

The driving factors of embedded carbon emissions in trade have been explored in
the literature; see, for example, Islam et al. [2]; Kim and Tromp [14]; Deng and Xu [15],
among others. Fewer studies realized the heterogeneity and priority of those driving
factors embedded in trade among different regions and industries. In particular, China
is a country with substantial industry differences in energy and economic structures [16],
along with its large amounts of emissions in export. Thereby, it is particularly necessary
to advance the understanding of export carbon emissions and their trend, and further,
explore the priority and heterogeneity of the influencing factors both at the country and
industry levels. On this basis, this article attempts to figure out the following research
concerns: first, this article will evaluate the trends of the total and sub-industry embodied
carbon emissions in China’s export over the past three decades. Second, it will examine
the predominant driving factors of the total emissions in export and their heterogeneities
across the industries and high-/low-carbon sectors accordingly. Based on the above results,
policy designs are tailored to different industries and for different periods of time.

In practice, this paper estimates the embodied carbon emissions of export in total
amount and by 14 industries from 1992 to 2020 in China by employing the multiregional
input–output (MRIO) method. Then, we apply the Fully Modified Ordinary Least Squares
(FMOLS) model as a benchmark regression estimation to examine the driving factors of
the export carbon emissions at the country and industry level, respectively. Afterwards,
we employ the LASSO model to identify the leading driving factors of the emissions and
analyze the industrial heterogeneity of the driving factors. Additionally, following Fu
and Zhang [17], we divide 14 industries into low- and high-carbon sectors (the mining,
petroleum and coal products, chemical products, mineral products and metal products
are regarded as a high-carbon sector, while the agriculture, food and tobacco products,
textile, timber and furniture, rubber and plastic products, electronic equipment, machinery
equipment, and transportation equipment belong to low-carbon sector). We also explore
the predominant and heterogeneous driving factors of the emissions in export for the low-
and high-carbon sectors.

The main contributions of this paper are mainly three-fold. First, this study covers
29-year data which are relatively longer in a period of time with the latest records. The
dataset allows us to observe the trends of export emissions covering all the 14 industries,
and then tailor the trade emissions mitigation strategies accordingly. Thereafter, it sheds
light on policy designs in terms of forging a pathway for carbon neutrality. Second, this
study innovatively adopts the LASSO model to explore the predominant and heterogeneous
driving factors of China’s carbon emissions embedded in the export of total volume and
by industry. Third, the findings of this article contribute to the literature in the aspect
of verifying the environmental spillover effect of females, particularly focusing on the
positive role of women’s political participation. According to the empirical results, females
in parliament reduce the export emissions across the industries. It is worth noting that
the coefficient of the variable turns out a larger effect in labor-intensive industries, which
encourages policy-makers to pay extra attention to females in positions of advanced
technology, which are promising to further mitigate the export emissions.

The remainder of the paper is organized as follows: Section 2 overviews literature.
Section 3 describes the data in use, embedded carbon emissions calculation and shows
the econometric models. The results and the relative discussions are reported in Section 4.
Eventually, Section 5 summarizes the conclusions and provides policy implications.

2. Literature Review

Embodied carbon emissions in trade have far-reaching implications in the division
of regional emission reduction responsibilities [18]. Most of the earlier studies focused on
developed countries; see, for example, Wyckoff [19]. Comparatively, studies on trade em-
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bedded carbon emissions in China and other developing countries have gradually received
attention in recent decades due to the significant growing emissions in trade [20,21].

A large body of literature has explored the driving factors of embodied carbon emis-
sions in trade. Economic growth is widely proved to be the most important factor of the
growth in embodied carbon emissions [22]. Carbon intensity is another crucial factor [15].
In addition, a couple of studies suggested that urbanization stimulates the demand for
production and consumption [23], which lead to extra embodied carbon emissions in
export [9]. On the contrary, a larger amount of R&D expenditures decline the emissions in
trade [24]. Furthermore, some other factors, such as trade openness [2], trade structure [14],
foreign direct investment (FDI) [25] have been well discussed. In particular, some other
studies investigated the effects of factors on the embodied carbon emissions of China’s
export, such as population size, energy intensity, accession to the World Trade Organization
(WTO) and educational level [4,9,26].

Besides the economic and demographic factors, social issues have received close
attention. In particular, the literature stated that gender-related factors show environmen-
tally friendly effects, and have potential effects on embodied carbon emissions. Existing
evidence suggested that female politicians or CEOs tend to be more active in mitigating cli-
mate change, turning out to make environmentally friendly decisions [27,28]. For example,
Ergas and York [27] proved that countries with the higher political status of women turn out
lower CO2 emissions per capita. Additionally, Li et al. [29]; Liobikiene et al. [30] confirmed
that gender equality enhances environmental behaviors. The theoretical explanations
for the above statements are, on the one hand, women have stronger pro-environmental
behavior than men [31,32]; on the other hand, women are more vulnerable and become
the main victims of climate change [33–36]. Furthermore, based on the theory of gender
socialization, gender differences link to differences in values and social expectations. No-
tably, those differences are relevant to climate change actions which are more emphasized
in females than in males [37,38]. Mavisakalyan and Tarverdi [39]; Wang et al. [40] used
records of the proportion of females in parliament to verify the low-carbon role of women
in determining carbon emissions. The two articles empirically discovered results of the
low-carbon role of women in mitigating carbon emissions in trade among developed and
developing economies.

It is worth noting that the driving factors of carbon emissions might exist priority,
and are heterogeneous across regions and industries. For example, Bibi and Jamil [41]
found that the impact of financial development on carbon emissions is positive in Europe,
Central Asia, East Asia and the Pacific. On the other hand, this article verified that financial
development reduced carbon emissions in Latin America and the Caribbean. Similarly,
Li et al. [9] discovered that the technological decline embodied carbon emissions in trade
for China, but had no effect on the emissions of Germany. In addition, due to different
production materials and consumer demand, factors affecting carbon emissions in different
industries might be also heterogeneous [42]. However, there is less literature to explore
the heterogeneous factors in influencing carbon emissions among different industries, and
examine the heterogeneities by applying models.

Regarding the methodologies of investigating the driving factors of the embodied
emissions in trade, Liu et al. [43] applied the Log-Mean Divisia Index (LMDI) method,
and decomposed the emissions into technology effect, structural effect and scale effect.
Zhao et al. [3] used the structural decomposition analysis (SDA) to quantify the changes
in the scale and structure of embodied carbon in China–US trade. The above-mentioned
SDA and LMDI models are well suited in investigating the main drivers of the embodied
carbon emissions in trade [44,45]. However, both of the two models have drawbacks in
understanding the driving factors in terms of priority and heterogeneity. Specifically, the
SDA model is likely to obtain non-uniqueness of decomposing results [46]. Moreover, the
LMDI method shows a limited decomposition path [45]. Comparatively, the LASSO model
is based on the thought of machine learning which has shown great potential for variable
selection by the data instead of arbitrarily choose the factors, and it has been applied to the
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driving factors of carbon emissions [47,48]. Chen and Xu [49] also used the LASSO model
to verify the main factors affecting carbon emissions of China.

In sum, the aforementioned studies have extensively explored the various driving
factors of carbon emissions embedded in trade and export across different countries and
regions, which contributed to a comprehensive understanding of the causes of the growth
of carbon emissions in international trade. However, the literature mainly focused on
the driving factors of the trade embodied carbon emissions for country-level data. The
analyses of the priority and/or heterogeneity of the driving factors in determining the
carbon emissions embedded in traded at the industry-level of China are rare. Therefore,
this article attempts to fill the gap.

3. Data and Methodology
3.1. Data

The carbon emissions embedded in export from 1992 to 2020 are calculated based
on the following three data sources: multiregional input–output tables of China which
were extracted from the World Input–Output Data (WIOD (Data access from: http://
www.wiod.org/database/wiots16, accessed on 4 December 2019)), the export volumes
by industry of China were collected from UNCOMTRADE (Data access from: https:
//comtrade.un.org/, accessed on 2 May 2021), and energy consumptions by different
types for China were gathered from the Statistic Yearbooks of China (Data access from:
http://www.stats.gov.cn/tjsj/ndsj/, accessed on 4 December 2019).

The other main independent variables include urbanization, R&D intensity, GDP per
capita, the proportions of females in parliaments of China, which were collected from the
World Bank (Data access from: https://data.worldbank.org/, accessed on 2 May 2021).
First, Following Li et al. [9], we involve in the variable of urbanization in order to examine
its effect on embodied carbon emissions in exports. Following the literature of Ouyang
and Lin [50], economic growth leads to larger energy demand, which enhances carbon
emissions; thus, we add GDP per capita as a proxy variable for the economic growth in
the empirical model. On the contrary, the R&D intensity represents the technology level of
a country in a certain period of time, and it contributes to the declining of the embodied
emissions [24]. In addition, Mavisakalyan and Tarverdi [39] suggested that females in the
parliaments are beneficial for the countries to promote climate change policies, which could
reduce carbon dioxide emissions as well.

Some other control variables are as follows: the dummy variables of China’s accession
to the WTO (in the year 2001) and China’s proposal of the Belt and Road Initiative (in the
year 2013). The two issues could stimulate international trade, and consequently, lead to
the change of the embodied carbon emissions [9]. In addition, the exchange rate of RMB
against the U.S. dollar is also included in the empirical models for the corresponding years.
Fluctuation of the exchange rate will not only affect the marketing and production decisions
of international enterprises, but also affect the investment of domestic and foreign investors,
which will be associated with the embodied carbon emissions of China’s export [51]. Table 1
describes the main variables and shows the descriptive statistics of those variables.

Table 1. Definition and descriptive statistics of the main variables.

Variable Definition
Descriptive Statistics

Mean Std. Dev Min Max Obs.

CO2

Logarithm of the total carbon emissions
embedded in export of China (Abbreviated
as “Total emissions” in the tables)

11.82 0.86 10.44 12.73 29

CO2,s

Logarithm of the low-/high-carbon sectors’
carbon emissions embedded in export of
China (Abbreviated as “Low-carbon” and
“High-carbon” in the tables)

11.08 0.87 9.63 12.26 58

http://www.wiod.org/database/wiots16
http://www.wiod.org/database/wiots16
https://comtrade.un.org/
https://comtrade.un.org/
http://www.stats.gov.cn/tjsj/ndsj/
http://www.stats.gov.cn/tjsj/ndsj/
https://data.worldbank.org/
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Table 1. Cont.

Variable Definition
Descriptive Statistics

Mean Std. Dev Min Max Obs.

CO2,i
Logarithm of the industrial carbon
emissions embedded in export of China 8.56 1.45 5.43 11.19 406

WTO China’s participation in the WTO (equals to
1 if t > 2001; 0 otherwise) 0.65 0.48 0 1 29

BRI
China’s implement the Belt and Road
Initiative (equals to 1 if t > 2013;
0 otherwise)

0.28 0.45 0 1 29

Tech R&D intensity (Number of technicians per 1
million people) of China 1.34 0.66 0.26 2.27 29

Rate The exchange rate of RMB against the
U.S. dollar 6.59 0.13 6.31 6.76 29

Urban Logarithm of the urbanization of China 3.76 0.24 3.34 4.12 29
GDP Logarithm of China’s GDP per capita 7.97 0.69 6.79 9.02 29

Female Logarithm of the proportions of seats held
by women in national parliaments of China 3.1 0.07 3.01 3.22 23

Note: The descriptive statistics for CO2,CO2,s and CO2,i are based on the calculations of the MRIO method which will be shown in
Section 3.2.

3.2. Carbon Emission Calculation

First, this article calculates the direct carbon emission coefficients for 14 industries
in China. According to the Intergovernmental Panel on Climate Change (IPCC) and the
existing studies [9], eight major energy sources are extracted to form the carbon emissions.
Afterwards, we can obtain the direct carbon emission coefficients matrix Ri,t.

Second, following Gao et al. [52], this article uses the input–output method to calculate
the domestic direct consumption coefficient matrix AD according to Equation (1). The input–
output method is an analytical technique that reflects the quantitative dependence of inputs
and outputs among the parts of an economic system, which was researched and created by
Wassily Leontief in the 1930s.

Xt = (I − Ai,t)
−1Yt (1)

where Ai,t is the direct consumption coefficient matrix, also known as the technology
coefficient matrix, which is composed of the direct consumption coefficient aij (the output
value of the product or service of the i-th sector directly consumed by the total output of
the j-th sector) and reflects the production links between the various product sectors of the
national economy.(I − Ai,t)

−1 is the inverse Leontief matrix. Xt represents the total social
output column vector in year t. Yt is the social final product column vector containing
other final products. I is the unit matrix.

Thereafter, we can calculate the carbon emission intensity (Fi,t) by multiplying the
direct carbon emission coefficients matrix Ri,t and the Leontief matrix (I − Ai,t)

−1 (see
Equation (2)).

Fi,t = Ri,t × (I − Ai,t)
−1 (2)

The carbon emission intensity of 14 industries in China from 1992 to 2020 is obtained
(see Table A1 in Appendix A), which refers to the sum of the direct and indirect carbon
emissions coefficients of each industry. For the past 29 years, the embodied carbon emission
intensity of all 14 industries has decreased. The declining trend suggests that China has
made progress in energy saving and emission reduction. Industries with the lowest
embodied carbon emission intensities include agriculture, food manufacturing and tobacco
processing industry and textiles industries. The industry of petroleum and coal products
experienced the greatest decline in carbon emission intensity, from 1.316 tons/million USD
in 1992 to 0.394 tons/million USD in 2020.

Forth, by dividing the 14 industries into high-carbon and low-carbon sectors according
to the threshold of the average carbon intensity of the industries, with those above the
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average value being high-carbon sector and those below being low-carbon sector [17].
Comparing with the literature, our obtained emission intensity is close to Ma et al. [53].
Furthermore, the low- and high-carbon sectors classifications of this article are almost the
same as Fu and Zhang [17]. This evidence suggests the reliability of the carbon emission
intensity in this article.

Finally, Ci,t can be well calculated, which represents the embodied carbon emissions
in export for industry i (see Equation (3)).

Ci,t = Fi,t × Mi,t = Ri,t ×
(

I − AD
)−1

× Mi,t (3)

where Fi,t is the carbon emission intensity that was calculated in Equation (2). Mi,t is the
export volume of industry i for year t, which is downloaded from UNCOMTRADE.

3.3. Empirical Models

This section establishes a series of econometric models in terms of exploring in depth
the driving factors, and their priority and heterogeneity, of China’s embodied carbon
emissions in export by industry.

We use the FMOLS model as a baseline regression model to empirically examine the
driving factors of embodied carbon emissions from export of China (see Equations (4)–(6)).
The FMOLS model, as refined by Pedroni [54], is able to correct for serial correlations and
bias problems, which is appropriate for the date in use.

CO2,t = α0 + α1GDPt + α2Techt + α3Urbant + α4Femalet + α5Ratet + α6WTOt + α7BRIt + εt (4)

CO2,st = γ0 + γ1GDPt + γ2Techt + γ3Urbant + γ4Femalet + γ5Ratet + γ6WTOt + γ7BRIt + µst (5)

CO2,it = δ0 + δ1GDPt + δ2Techt + δ3Urbant + δ4Femalet + δ5Ratet + δ6WTOt + δ7BRIt + θit (6)

where CO2,t represents the logarithm of total carbon emissions embedded in export of China
in year t. GDPt denotes China’s gross domestic product per capita in year t. Techt is tech-
nology update, represented by the number of R&D technicians per 100,000 people. Urbant
is the level of urbanization. Femalet denotes the proportions of females in parliaments of
China in year t. Ratet symbolizes the exchange rate of RMB against the U.S. dollar in year
t. WTOt is a dummy variable indicating whether China is a member of the World Trade
Organization. BRIt is a dummy variable and it equals 1 after China implements the Belt
and Road Initiative. α0 is the constant; εt is the error term. Similarly, CO2,st in Equation (5)
represents the logarithm of low-/high-carbon sectors’ carbon emissions embedded in
export of China in year t; γ0 is the constant; µst is the error term. CO2,it in Equation (6)
represents the logarithm of embodied carbon embedded in export of industry i in year t; δ0
is the constant; θit is the error term.

Then, we apply the LASSO model to further analyze those factors in determining the
embedded emissions. The LASSO model was applied to time-series data, and this allows
for efficient variable selection [55]. The reasons for using the LASSO model for this article
are as follows. Generally, the LASSO model can solve the over fitting, multicollinearity
problems and overcome the drawbacks of the general regression [56]. Second, it can
identify the leading influential factors that affect the embedded carbon emissions and rank
their importance according to the estimations and the data. Therefore, it provides greater
flexibility of the models [47,57]. By applying the LASSO models, this article is capable of
further analyzing the predominant factors and identifying industrial heterogeneities in
determining the export embodied carbon emissions of China.

Particularly, the objective function of the LASSO model is to find the minimum number
of independent variables, which is different from other traditional regression approaches
(see Equation (7)). By setting the adjustment parameter λ, we can achieve an acceptable
level of information loss and retain only those variables which are the most valuable in the
model [57]. When the distribution of the independent variables is unknown, the common
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methods for solving the adjustment parameters are the Cross-validation method and the
Generalized Cross-validation method [47]. This article uses Cross-validation to determine
the adjustment parameter λ. Thereafter, the coefficients β with little correlation are reduced
or even compressed to zero.

β = agr min

{
n

∑
i=1

(Ui −
m

∑
j=1

β jzij)
2}

,
m

∑
j=1

∣∣β j
∣∣ ≤ λ (7)

In Equation (7), n is the total number of the observations. Ui is the dependent variable.
zij are the independent variables. m represents the number of the independent variables. λ
is the adjustment parameter, and β j are the other parameters. Similarly, we estimate the
LASSO model based on Equations (4)–(6).

4. Results
4.1. Embedded Carbon Emissions in Export

Based on the subsection of 3.2, by applying the MRIO method to estimate the embed-
ded carbon emissions in export, China’s total export volumes and their embodied carbon
emissions from 1992 to 2020 are shown in Figure 1. The graph illustrates the specific trends
of China’s exports and the embodied carbon emissions in the last three decades. Broadly
speaking, it is clear that although the overall export volumes and their embodied carbon
emissions were increasing in the past 29 years, the growing rate of the carbon emissions
embedded in export was slower than that of China’s export volumes. This trend suggests
that China made a progress towards low-carbon export. Specifically, from 1992 to 2001, the
export volumes and embodied carbon emissions were increasing in parallel; however, since
2002, due to China’s accession to the WTO, the export volumes boosted significantly, and
the embodied carbon emissions even sharply increased. Afterwards, the export volumes
and embodied carbon emissions dropped significantly in 2009 partly due to the global
financial crisis in 2008, and then maintained an upward trend until 2013. Since 2013, the
exports and their embodied carbon emissions showed a slight fluctuation. Surprisingly,
with the growing export volume during the period of 2019–2020, the carbon emissions
embedded in export showed a slightly declining trend.
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Table 2 shows China’s embodied carbon emissions generated from exports over the
period of 1992–2020 by industry. The embodied carbon emissions are calculated according
to Equations (1) and (2). In general, with the rapid growth of China’s exports, the embodied
carbon emissions of various industries are rising over time. In particular, the largest increase
is the electronic equipment industry (from 21.8 million tons in 1992 to 668 million tons in
2020), followed by machinery equipment, metal products and chemical products. On the
contrary, the embodied carbon emissions in exports for the textile industry, petroleum and
coal products and transportation equipment have decreased in recent years rather than
increased consistently.

Table 2. The embodied carbon emissions in export by industry from 1992 to 2020.

Industry 1992 1996 2000 2004 2008 2012 2016 2020

Agriculture 18.3 20.1 17.4 26.1 22.1 24.0 28.0 25.2
Mining 4.7 6.1 4.3 7.0 12.2 7.3 5.9 8.0

Food and Tobacco Products 6.6 6.7 4.7 8.8 13.7 11.3 12.9 11.9
Textile Industry 88.1 108.8 116.1 213.5 362.7 286.5 291.5 264.1

Timber and Furniture Products 6.2 10.6 14.5 34.7 70.8 76.5 86.0 95.9
Paper and Paper Products 2.3 3.7 4.6 9.9 24.7 28.7 33.8 35.6
Petroleum, Coal Products 61.8 64.5 64.7 125.0 215.7 134.3 120.0 124.1

Chemical Products 7.0 14.0 19.1 42.6 96.0 119.4 124.7 158.2
Rubber and Plastic Products 8.5 14.3 16.7 40.2 88.3 99.8 110.0 120.6

Mineral Products 39.7 69.1 85.9 226.7 545.0 535.7 481.2 460.1
Basic metals 21.0 48.4 80.9 330.4 642.1 585.1 519.5 565.3

Electronic Equipment 52.4 70.4 43.3 95.7 242.8 234.7 250.4 388.2
Machinery Equipment 21.8 44.5 77.0 226.9 572.2 535.9 601.6 668.0

Transportation Equipment 6.4 10.6 17.8 42.2 130.6 120.7 97.5 100.1
sum 344.8 491.8 566.9 1429.8 3038.8 2800.1 2763.1 3025.2

Note: (1) The unit is million tons; (2) Due to the layout limitation, we only report eight-year data of the emissions to reflect the trend of the
embodied carbon emission for various industries.

In 2020, electronic equipment, machinery equipment and basic metals are three in-
dustries with the most embodied carbon in exports. Thus, these industries are with larger
pressures to reduce the carbon emissions embedded in export. In particular, the industry
of the basic metals belongs to the high-carbon and resource-intensive sector. The export
volume of the basic metals is not among the top three, but it has a high level of embodied
carbon emissions due to its high carbon emission intensity. Therefore, policy-makers
should pay particular attention to such industries and develop corresponding policies for
embodied carbon reduction in exports.

4.2. The Baseline Results

Before the estimation regressions, we apply the Dickey–Fuller Generalized Least
Squares (DF-GLS) test and the Phillips–Perron (PP) test to check the stationarity of the
variables in the empirical models. All the estimation models pass the unit root test (see
Table A2 in Appendix A). In addition, we use the Johansen–Juselius method [58] to analyze
the cointegration relationship among the variables, and all the regression models pass the
cointegration test as well (see Table A3 in Appendix A).

We first report the FMOLS results for China’s exports embedded in carbon emissions,
low-carbon sector emissions and high-carbon sector emissions, respectively. The results of
urbanization, R&D intensity, GDP per capita, the proportions of females in parliaments,
the exchange rate of RMB against the U.S. dollar, China’s participation in WTO and its
implementation of the Belt and Road Initiative on the impact of embodied carbon emissions
in export are shown in Table 3.
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Table 3. The FMOLS regression results for total emissions, low- and high-carbon sectors.

Variable Total Emissions Low-Carbon High-Carbon

Urban 6.748 ** 7.813 ** 5.203 **
(8.381) (7.623) (5.122)

Tech −2.763 *** −2.610 *** −3.047 ***
(0.658) (0.599) (0.795)

GDP 1.373 *** 0.899 * 2.113 ***
(0.551) (0.320) (1.081)

Female −6.536 *** −6.102 *** −6.338 ***
(1.151) (1.047) (1.390)

Rate −1.131 ** −1.148 −1.1257
(0.932) (0.848) (1.125)

BRI 0.458 ** 0.418 ** 0.531 **
(0.156) (0.142) (0.189)

WTO 0.129 0.153 0.354
(0.177) (0.161) (0.213)

Cons 5.962 ** 5.208 * 5.199 **
(2.274) (2.288) (2.993)

Adj-R2 0.996 0.996 0.991
Note: (1) The numbers in parentheses are standard errors; (2) *, **, *** denotes significant at the 10%, 5%, and 1%
levels, respectively.

For China’s total embodied carbon emissions in export, all the variables are significant
in the FMOLS model, except for WTO. As expected, Urban, GDP and BRI are significantly
positive with the total emissions. On the contrary, Tech, Female and Rate have negative sig-
nificance, which suggests that an increase in these variables will release the total embodied
carbon emissions from exports.

For the results of the low-carbon and high-carbon sectors of China, the factors affect-
ing embodied carbon emissions in export are mainly robust to the first column of total
emissions. The only difference is that the exchange rate has an impact on the total carbon
emissions, but not on the carbon emissions embedded in the export of the low-carbon and
high-carbon sectors. It is worth noting that technology update plays a larger role in the
high-carbon sector than in the low-carbon one. On the contrary, urbanization shows a
greater impact on the low-carbon sector than the high-carbon sector.

Owing to the differences in energy consumption and product demand among different
industries, the factors that affect embodied carbon emissions may be different across the
industries. Therefore, we establish the FMOLS regression estimations by industry. Table 4
presents the results, and it illustrates that the GDP per capita and China’s participation in
the Belt and Road Initiative increase the carbon emissions embodied in most of the indus-
tries’ exports. By contrast, the improvement of the R&D intensity reduces the embodied
carbon emissions among the industries, which is in line with the literature, see, Wang
and Hu [24] for example. Furthermore, larger proportions of females in the parliaments
promote a reduction in the embedded emissions across the 12 industries except for the
following two industries: the mining industry and petroleum and coal products industry.

Additionally, the level of urbanization has a significant positive effect on some partic-
ular industries, which is consistent with the result of the total embodied carbon emissions.
However, it can be observed in Table 4 that the effect of urbanization on the emissions of
agriculture, food and tobacco products, timber and furniture products, paper products,
chemical products, mineral products, basic metals, electronic equipment and transportation
equipment are not significant. Most of the industries with significant coefficients of Urban
belong to the sector with high carbon emission intensity. The reason for this might be
that the growth of the urbanization level stimulates the demand for high energy intensity
products the most.
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Table 4. The FMOLS regression results by industry.

Industry Urban Tech GDP Female Rate BRI WTO Cons Adj-R2

Agriculture −13.459 −0.421 5.538 ** −5.592 *** 2.849 *** 0.673 *** 0.178 12.672 *
0.706(6.311) (0.496) (1.921) (0.867) (0.702) (0.118) (0.133) (6.230)

Mining 5.546 ** −1.821 −2.336 ** 2.213 −5.720 ** 0.818 * −0.0622 7.672 *
0.971(3.951) (1.398) (8.886) (2.909) (2.212) (0.451) (0.306) (3.654)

Food and Tobacco Products
1.988 −2.374 *** 2.078 −4.401 *** −0.022 0.461 *** 0.195 6.735

0.967(5.580) (0.438) (1.699) (0.767) (0.620) (0.104) (0.118) (5.509)
Textile Industry 3.246 *** −2.438 *** 1.652 ** 0.518 *** −1.002 * 0.5181 *** 0.136 12.044 *

0.987(6.579) (0.516) (2.002) (0.903) (0.731) (0.122) (0.138) (6.495)

Timber and Furniture Products
4.716 −2.033 *** 1.432 −6.075 *** −0.938 0.582 *** 0.137 6.373

0.994(2.969) (0.626) (2.426) (1.095) (0.886) (0.149) (0.128) (3.867)
Paper and Paper Products −1.612 −2.033 *** 3.677 * −5.471 *** −0.633 0.413 *** 0.155 7.050

0.997(7.140) (0.561) (2.173) (0.981) (0.794) (0.133) (0.151) (7.049)
Petroleum, Coal Products 2.876 ** −3.259 *** −5.537 −2.092 −1.168 −0.025 −0.114 −11.703 **

0.973(1.171) (0.877) (3.400) (1.534) (1.242) (0.208) (0.235) (5.028)
Chemical Products −1.711 −2.810 *** 4.291 * −3.966 *** −0.731 0.295 * 0.209 2.007 *

0.997(8.058) (0.633) (2.453) (1.107) (0.896) (0.150) (0.170) (0.955)

Rubber and Plastic Products
1.856 −1.773 ** 3.610 * −5.442 *** −0.385 0.471 ** 0.129 8.064

0.991(0.629) (0.678) (2.627) (1.185) (0.959) (0.161) (0.182) (4.519)
Mineral Products 1.908 ** −1.957 *** 2.303 * −5.509 *** −1.242 0.502 *** 0.173 10.348 *

0.995(0.486) (0.588) (2.279) (1.028) (0.832) (0.140) (0.158) (7.390)
Basic metals −0.421 −3.402 *** 4.414 * −9.378 *** −1.242 0.854 *** 0.102 9.430 *

0.997(0.240) (1.056) (2.091) (1.846) (1.494) (0.251) (0.283) (5.267)
Electronic Equipment 14.231 −2.931 *** −0.679 −6.253 *** −1.864 * 0.380 ** 0.084 −2.705

0.997(8.565) (0.673) (2.607) (1.177) (0.952) (0.160) (0.181) (1.455)
Machinery Equipment 5.46 * −2.869 *** −1.256 −7.606 *** −1.483 0.37 ** 0.253 1.175 **

0.891(2.492) (0.667) (0.585) (1.167) (0.944) (0.158) (0.179) (0.384)
Transportation Equipment 8.753 −3.247 *** 1.391 ** −6.421 *** −2.261 ** 0.137 0.039 3.400 *

0.992(3.900) (0.620) (0.405) (1.085) (0.878) (0.147) (0.167) (7.799)

Note: (1) The numbers in parentheses are standard errors; (2) *, **, *** denotes significant at the 10%, 5%, and 1% levels, respectively.

4.3. The LASSO Results

Table 5 shows the LASSO regression results for export carbon emissions reporting in
the order of total emissions, low- and high-carbon sectors’ emissions. Generally, all the
main explanatory variables have significant effects across the three regression models.

Table 5. The LASSO regression results for total emissions, low- and high-carbon sectors.

Variable Total Emissions Low-Carbon High-Carbon

Urban 2.756 2.996 2.047
Tech −2.193 −1.936 −2.507
GDP 0.697 0.142 1.758

Female −0.575 −0.528 −0.627
Rate −0.279 −0.262 −0.289
BRI 0.181 0.151 0.229

WTO 0.032 0.040 0.012
Cons 0.236 0.281 0.191

Out-of-sample R2 0.936 0.942 0.920

Specifically, by ranking the coefficients of the explanatory variables, urbanization
is the largest positive factor in affecting the total emissions, and it is followed by the
variable of Tech and GDP. The urbanization process promotes carbon emissions through
infrastructure establishment and the increase in residential energy consumption, which
in turn stimulates the production and consumption of many other sectors. Consequently,
urbanization significantly increases the embodied carbon emissions in export. The findings
are aligned with the observations of Li et al. [9] and Ge et al. [23].

The coefficients of GDP, WTO and BRI are also positively significant, which confirm
that the effects of these factors increase the embodied carbon emissions in export. On the
contrary, the coefficients of the exchange rate and R&D intensity are negatively significant
with the total emissions in export. In sum, the results of the LASSO model are mainly
robust with the FMOLS model shown in Table 4.

Similar to the results of the total emissions, the coefficients for low-carbon and high-
carbon sectors are in line with the expectations (see Columns (2) and (3) in Table 5).
Again, Urbanization is the largest factor in affecting the embodied carbon emissions
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of the low-carbon sector. However, among the high-carbon sector, the R&D intensity
takes the position of the largest effect on the embodied carbon emissions, which suggests
that technology is more helpful in reducing the emissions for the high-carbon sector.
Furthermore, although GDP per capita has a significant impact on embodied carbon
emissions in total emissions and the high-carbon sector, it is less important in determining
the embodied carbon emissions for the low-carbon sector. Therefore, heterogeneities do
exist among different sectors.

It is notable that the coefficients of Female are also significantly negative as the results in
Table 4. The growth of female parliamentarians leads to stricter climate change policies [39].
Interestingly, although the proportion of females in parliaments is significantly negative in
both high-carbon and low-carbon sectors, the role of women in the high-carbon sector is
larger than that of the low-carbon sector. The reason for this heterogeneity could be that
the high energy intensity industries also belong to the high-carbon sector. This sector has a
higher potential to enhance emissions performance regarding pro-environmental policies
with females’ political participation.

Comparing with the FMOLS regression results, the WTO accession turns out a signifi-
cant positive effect on embodied carbon emissions across all the columns. Moreover, the ex-
change rate has a significant positive effect in both the low-carbon and high-carbon sectors.

Table 6 shows the estimation results of the LASSO model of the factors in determining
the emissions by industry. Urbanization, GDP per capita and R&D intensity are the
leading three prioritizing factors among the industries. Specifically, for those industries,
including mining, timber and furniture products, petroleum and coal products, electronic
equipment, machinery equipment and transportation equipment, urbanization is the most
important factor in affecting the embodied carbon emissions. However, the coefficient of
urbanization is not significant in agriculture, paper products, chemical products and basic
metals. Figure 2 illustrates the ranking of coefficients for urbanization, GDP, technology
and female among industries. Figure 2 suggests that urbanization contributes the most
to the following three industries, namely, mining, machinery equipment and electronic
equipment. Comparatively, the leading three industries, including chemical products, food
and tobacco products and the Basic metals) are different when the driving force is GDP.
Therefore, the heterogeneity of the driving factors in determining the carbon emissions
embedded in export exists among the industries as well.

Table 6. The LASSO regression results by industry.

Industry Urban Tech GDP Female Rate BRI WTO Cons Out-of-Sample
R2

Agriculture −1.117 2.585 −1.078 −0.725 0.592 −0.654 0.712
Mining 5.584 −5.362 1.255 −0.930 0.265 −0.051 −0.072 0.529

Food and
Tobacco Products 0.725 −3.010 3.525 −0.709 0.312 0.145 −0.112 0.905

Textile Industry 1.703 −2.785 2.113 −0.836 −0.320 0.321 0.074 0.394 0.887
Timber and
Furniture
Products

1.626 −1.178 0.633 −0.447 −0.177 0.183 0.033 0.245 0.953

Paper and Paper
Products −1.102 2.242 −0.386 −0.142 0.125 0.030 0.121 0.967

Petroleum, Coal
Products 1.134 −0.297 0.086 0.133 −0.123 0.662

Chemical
Products −2.502 3.610 −0.370 −0.241 0.132 0.060 0.049 0.922

Rubber and
Plastic Products −0.881 1.905 −0.355 −0.101 0.128 0.021 0.199 0.960

Mineral Products 1.284 −1.287 1.014 −0.397 −0.263 0.159 0.041 0.284 0.964
Basic metals −1.637 2.681 −0.649 −0.194 0.242 0.015 0.317 0.914

Electronic
Equipment 2.425 −1.332 −0.376 −0.198 0.093 0.027 0.287 0.945
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Table 6. Cont.

Industry Urban Tech GDP Female Rate BRI WTO Cons Out-of-Sample
R2

Machinery
Equipment 2.503 −1.198 −0.514 −0.097 0.138 0.106 0.333 0.940

Transportation
Equipment 2.328 −1.877 0.647 −0.419 −0.345 0.03 −0.002 0.438 0.943

Note: The blank space suggests that the according variable is recognized by the LASSO model as a relatively unimportant factor for the
corresponding industry, which means that the variable has no impact on this industry’s embodied carbon emissions in export.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 2. The ranking of coefficients for driving factors including (1) urbanization, (2) GDP, (3) technology update and (4) 

female parliamentarians across the industries. Note: The horizontal axis represents the coefficient of each driving factor. 

5. Conclusions and Policy Implications 

In response to climate change, China has taken actions by participating in interna-

tional climate treaties to mitigate carbon emissions, and has committed to peak CO2 emis-

sions by 2030 and achieve carbon neutrality by 2060 [7]. Embodied carbon emissions in 

export is a significant sector of generating carbon emissions for China [12]. It is therefore 

necessary to estimate the embodied carbon emissions for China’s export and further ex-

amine the predominant and heterogeneous driving factors at the country level and indus-

try level, respectively. The analyses will not only guide for further low-carbon policies for 

international trade of China, but also provide specific evidence in terms of declining the 

emissions for other net export economies. 

By using the MRIO method, this paper firstly calculates the total carbon emissions 

and 14 sub-industries from 1992 to 2020 embedded in China’s export. Then, we apply the 

FMOLS model as a baseline model to estimate the driving factors of embodied carbon 

emissions in export, and the models in use pass various robustness tests, including the 

DF-GLS test and the PP unit root test. Afterwards, by employing the LASSO model, the 

 

(1)                                                         (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          (3)                                                         (4) 

Figure 2. The ranking of coefficients for driving factors including (1) urbanization, (2) GDP, (3) technology update and
(4) female parliamentarians across the industries. Note: The horizontal axis represents the coefficient of each driving factor.

Furthermore, we find that the GDP per capita has no effect on the embodied carbon
emissions of export in petroleum and coal products, electronic equipment, and machinery
equipment. Additionally, Except for the petroleum and coal products, the coefficients of
R&D intensity are negatively significant in all the other 13 industries, which indicates that
technology update plays an important role in curbing embodied carbon emissions. In
Figure 2, we observe the large impacts of R&D intensity on various industries, and the
leading three industries are: mining, food and tobacco products, and textiles.
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It is worth noting that the proportions of females in parliaments affects 14 industries
with different extents, and it is the only factor that has a significant impact on embodied
carbon emissions in all industries. The literature also generally supports the above results.
Some scholars pointed out that females are vulnerable to the consequences of climate
change [59,60]. Since females have greater concerns about climate change than males
do [61], female representations guide countries to adopt more stringent climate change
policies, which in turn mitigates the emissions. According to Figure 2, the larger proportions
of female parliamentarians tend to encourage politicians to take environmentally friendly
actions in agriculture, mining and textile industries the most, which is similar to the results
of Wang et al. [40]. Comparatively, the role of females in parliaments show smaller effect in
some technology-intensive industries. The results are robust compared with the coefficients
of Female in low-carbon and high-carbon sectors.

Comparing with the FMOLS model results at the industry level, the amount of the
industries with significance are more than the results of the LASSO model. For example, in
the FMOLS regression results, urbanization is positively significant in only five industries,
namely: mining, textile industry, petroleum and coal products, mineral products, and
machinery equipment; while in the LASSO regression results, in addition to the above five
industries, the urbanization is also positively significant in food and tobacco products, tim-
ber and furniture products, electronic equipment and transportation equipment. Similarly,
in the FMOLS regression results, China’s accession to WTO is not significant among all the
industries, while in the LASSO regression results, the variable is positive in all industries
except for agriculture. In sum, the results of FMOLS and LASSO are generally robust,
however, the LASSO models are capable to explore the predominant and heterogeneous
driving factors among the industries. Therefore, the LASSO estimations are a priority to
the basic FMOLS models in this article.

5. Conclusions and Policy Implications

In response to climate change, China has taken actions by participating in international
climate treaties to mitigate carbon emissions, and has committed to peak CO2 emissions by
2030 and achieve carbon neutrality by 2060 [7]. Embodied carbon emissions in export is a
significant sector of generating carbon emissions for China [12]. It is therefore necessary
to estimate the embodied carbon emissions for China’s export and further examine the
predominant and heterogeneous driving factors at the country level and industry level,
respectively. The analyses will not only guide for further low-carbon policies for interna-
tional trade of China, but also provide specific evidence in terms of declining the emissions
for other net export economies.

By using the MRIO method, this paper firstly calculates the total carbon emissions
and 14 sub-industries from 1992 to 2020 embedded in China’s export. Then, we apply the
FMOLS model as a baseline model to estimate the driving factors of embodied carbon
emissions in export, and the models in use pass various robustness tests, including the DF-
GLS test and the PP unit root test. Afterwards, by employing the LASSO model, the driving
factors are ranked in terms of their importance. Notably, we examine the heterogeneity of
the factors among the 14 industries. In addition, this paper classifies the 14 industries into
low-carbon and high-carbon sectors and explores the priorities and heterogeneities in the
driving factors for the two sectors as well. Several conclusions are drawn as follows.

This article discovers that the embodied carbon emissions in export show an upward
trend from 1992–2020. Specifically, electronic equipment, machinery equipment and metal
products are the three industries that increased the embodied emissions the most. The
results of the FMOLS model and LASSO model are mainly robust. However, the results
of the LASSO models take one step further by identifying that urbanization, technology
update and GDP are the leading three prioritizing factors in influencing China’s export
embodied carbon emissions in recent decades. Furthermore, heterogeneities do exist
among industries. Specifically, urbanization explains the largest effect in the industries
such as Mining and electronic equipment, whereas it does not show any significance
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in the agriculture industry. In addition, we find that the driving factors of embodied
carbon emission also differ between low-carbon and high-carbon sectors. For example, the
emissions of the high-carbon sector are largely influenced by technology updates, while
urbanization has the most significance among the low-carbon ones. Interestingly, this paper
discovers that raising the proportion of females in parliaments contributes to an abatement
of the emissions, which turns out to have a larger effect among labor-intensive instead of
technology-intensive industries.

The above results shed light on the following policy implications:
(1) Industry differences should be emphasized in the process of reducing the embodied

carbon emissions for China’s export. Energy intensity industries, such as petroleum and
coal products, basic metal products and mineral products [62], should take corresponding
measures to adjust their trade structure, reduce exports of energy-intensive products and
shift to low-carbon intensive exports [15,52].

(2) Optimizing the energy structure and improving energy efficiency are crucial in
terms of declining the emissions embedded in export. By using the MRIO method, this
article finds out that although China’s carbon intensities across the industries have declined
significantly in recent decades, there is still a gap compared with developed countries [63].
The government should strengthen technologies, particularly in the low-carbon sector,
while reducing solid fuel consumption such as coal by transferring to clean energy use [64].

(3) Similar to Mavisakalyan and Tarverdi [39]; Wang et al. [40], our results show
that women’s political empowerment contributes to the reduction in embodied carbon
emissions. Therefore, it is necessary to involve women and let their voices be heard in
political designs so as to address climate change. In addition, as women’s environmental
spillover effect is larger in labor-intensity industries, governments should facilitate and
encourage women to take high technology positions, and hence they have the potential to
play a larger positive role so as to further reduce the emissions embedded in exports.

The limitations of this article are mainly the following two aspects: first, as the main
focus of this paper is to estimate export carbon emissions and explore the driving factors,
it does not forecast the carbon emissions embedded in export for the following decades,
and hence this article cannot quantify the roadmap of achieving carbon neutrality in due
course. Second, this paper applies the LASSO model based on macro-level data, further
applications are in need to target the company-level data, and examine the heterogeneous
driving factor to obtain more in-depth evidence.
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Appendix A

See Tables A1–A3.

Table A1. The embodied carbon emission intensity by industry from 1992 to 2020.

Industry 1992 1996 2000 2004 2008 2012 2016 2020

Low-carbon

Agriculture 0.24 0.198 0.161 0.158 0.083 0.06 0.055 0.051
Food and Tobacco

Products 0.227 0.187 0.151 0.149 0.112 0.069 0.063 0.058

Textile Industry 0.27 0.223 0.18 0.177 0.155 0.094 0.085 0.080
Timber and

Furniture Products 0.251 0.207 0.168 0.165 0.141 0.097 0.089 0.082

Paper and Paper
Products 0.436 0.359 0.29 0.285 0.257 0.189 0.168 0.131

Rubber and Plastic
Products 0.384 0.317 0.256 0.252 0.233 0.165 0.154 0.14

Electronic
Equipment 0.267 0.22 0.178 0.175 0.167 0.115 0.109 0.098

Machinery
Equipment 0.369 0.305 0.247 0.242 0.207 0.134 0.125 0.113

Transportation
Equipment 0.306 0.253 0.205 0.201 0.187 0.114 0.105 0.096

High-carbon

Mining 0.513 0.424 0.343 0.336 0.258 0.206 0.182 0.174
Petroleum, Coal

Products 1.316 1.087 0.879 0.863 0.680 0.465 0.447 0.394

Chemical Products 0.594 0.49 0.397 0.389 0.362 0.28 0.265 0.237
Mineral Products 0.658 0.543 0.439 0.431 0.393 0.265 0.249 0.224

Basic metals 0.717 0.592 0.479 0.47 0.358 0.29 0.273 0.245

Note: (1) The unit is 10,000 tons/million USD; (2) Due to the input-output tables not available since 2015, we follow the approach of
Ma et al. [54], and regard the year 2014 as the basic year to estimate the carbon emissions intensity for the following years (2015–2020);
(3) Due to the layout limitation, we only report eight-year data of the intensity to reflect the trend of the carbon emission intensity for
various industries.

Table A2. Results of unit root tests.

DF-GLS PP

Variable Level First Difference Level First Difference

Total emissions −1.4475 −2.9601 *** −1.7329 −3.1884 **
Low-carbon −1.5283 −3.5618 ** −0.7534 −3.5895 *
High-carbon −1.2415 −4.2670 *** −1.1398 −4.5771 ***

Tech −1.5671 −4.3924 *** −1.1345 −5.2318 ***
Urban −0.1622 −3.7705 *** 1.1841 −3.8256 **
Rate −1.2688 −2.3801 ** −1.1267 −2.3122 *
GDP −1.4576 −2.6857 *** −1.3916 −3.2344 ***

Female −1.5246 −4.9278 *** −1.4513 −5.0519 ***
WTO −1.8887 −5.0094 *** −1.6698 −5.3556 ***
BRI −1.9695 −4.6927 *** −1.9536 −4.4403 **

Note: (1) **, **, and * denote the significance levels at 1%, 5%, and 10%, respectively; (2) All variables are stable at
a significance level of 10% with the first difference in DF-GLS test and PP test, indicates time series are considered
stable with the first difference.
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Table A3. The Johansen cointegration test results.

Hypothesized
No. of CE(s) Eigenvalue Trace

Statistic
0.05 Critical

Value p-Values

Total
emissions

None * 0.9967 464.7592 159.5297 0.0000
At most 1 * 0.9586 310.6253 125.6154 0.0000
At most 2 * 0.9284 224.6307 95.7537 0.0000
At most 3 * 0.8885 153.4322 69.8189 0.0000
At most 4 * 0.7733 94.1903 47.8561 0.0000
At most 5 * 0.6550 54.1153 29.7971 0.0000
At most 6 * 0.4707 25.3809 15.4947 0.0012
At most 7 * 0.2621 8.2051 3.8415 0.0042

Low- carbon

None * 0.9947 447.7813 159.5297 0.0000
At most 1 * 0.9476 306.5223 125.6154 0.0000
At most 2 * 0.9261 226.9235 95.7537 0.0000
At most 3 * 0.8810 156.5996 69.8189 0.0000
At most 4 * 0.8540 99.1190 47.8561 0.0000
At most 5 * 0.5478 47.1603 29.7971 0.0002
At most 6 * 0.4514 25.7348 15.4947 0.0010
At most 7 * 0.2972 9.5225 3.8415 0.0020

High-carbon

None * 0.9921 446.0433 159.5297 0.0000
At most 1 * 0.9804 315.2918 125.6154 0.0000
At most 2 * 0.9484 209.1466 95.7537 0.0000
At most 3 * 0.8406 129.1340 69.8189 0.0000
At most 4 * 0.7161 79.5514 47.8561 0.0000
At most 5 * 0.6045 45.5502 29.7971 0.0004
At most 6 * 0.4878 20.5030 15.4947 0.0081
At most 7 0.0864 2.4410 3.8415 0.1182

Note: (1) CE(s) denote the co-integrating equation(s); (2) * denotes rejection of the hypothesis at the 0.05 percent
significance level, indicates there exists a long-term equilibrium relationship among the variables; (3) Due to
the layout limitation, we only report the Johansen cointegration test results of Total emissions, Low-carbon and
High-Carbon. The regression models by industry also pass the cointegration test.
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