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Abstract 33 

Studies of longitudinal trends of depressive symptoms in young people could provide insight into 34 

aetiologic mechanism, heterogeneity and origin of common cardiometabolic comorbidities for 35 

depression. Depression is associated with immunological and metabolic alterations, but 36 

immunometabolic characteristics of developmental trajectories of depressive symptoms remain 37 

unclear. Using depressive symptoms scores measured on 10 occasions between ages 10 and 25 38 

years in the Avon Longitudinal Study of Parents and Children (n=7302), we identified four distinct 39 

trajectories: low-stable (70% of the sample), adolescent-limited (13%), adulthood-onset (10%) 40 

and adolescent-persistent (7%). We examined associations of these trajectories with: i) 41 

anthropometric, cardiometabolic and psychiatric phenotypes using multivariable regression 42 

(n=1709-3410); ii) 67 blood immunological proteins and 57 metabolomic features using empirical 43 

Bayes moderated linear models (n=2059 and n=2240 respectively); and iii) 28 blood cell counts 44 

and biochemical measures using multivariable regression (n=2256). Relative to the low-stable 45 

group, risk of depression and anxiety in adulthood was higher for all other groups, especially in 46 

the adolescent-persistent (ORdepression=22.80, 95% CI 15.25-34.37; ORGAD=19.32, 95% CI 12.86-47 

29.22) and adulthood-onset (ORdepression=7.68, 95% CI 5.31-11.17; ORGAD=5.39, 95% CI 3.65-48 

7.94) groups. The three depression-related trajectories vary in their immunometabolic profile, 49 

with evidence of little or no alterations in the adolescent-limited group. The adulthood-onset 50 

group shows widespread classical immunometabolic changes (e.g., increased immune cell 51 

counts and insulin resistance), while the adolescent-persistent group is characterised by higher 52 

BMI both in childhood and adulthood with few other immunometabolic changes. These findings 53 

point to distinct mechanisms and intervention opportunities for adverse cardiometabolic profile in 54 

different groups of young people with depression. 55 

 56 

 57 
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Introduction 59 

The first two decades of life represent a critical epoch for human neurodevelopment when most 60 

serious mental illnesses of adult life first emerge.1 Half of all lifetime cases of common mental 61 

disorders including depression and anxiety start by 14 years and 75% by 24 years.2 The first 62 

onset of clinically recognised depressive episodes typically occurs between the ages of 12 and 63 

15 years3 and the increase in new onset of depression peaks between the ages of 15 and 18 64 

years.4 Depressive symptoms in childhood and adolescence, including those below diagnostic 65 

thresholds, are associated with an elevated risk of depression and other psychiatric diagnoses 66 

subsequently in adulthood.2, 5-7 These findings highlight the need for studying depressive 67 

symptoms during early life. 68 

 69 

Characterisation of longitudinal profiles of depressive symptoms during development could help 70 

understand the pathogenesis and heterogeneity of later depression, as different individuals may 71 

arrive at the same destination via different routes. There is growing evidence to suggest 72 

characteristic depression trajectories in childhood and adolescence are differentially associated 73 

with risk factors and outcomes. Existing studies have reported associations of a ‘high’ or 74 

‘increasing’ depression trajectory with female sex, lower socioeconomic status, stressful life 75 

events, conduct issues, substance use, and parental psychopathology.3, 8, 9 Trajectories with 76 

higher symptom burden have been associated with subsequent depression and other psychiatric 77 

diagnoses, lower educational attainment, income and poorer psychosocial adjustment.8-10 78 

However, less is known about underlying biological correlates of depression trajectories, 79 

including blood-based biomarker signatures. A better understanding of the biological correlates 80 

may help uncover mechanistic insights and identify accessible predictive markers for depression. 81 

 82 

Existing literature suggests that depression and specific symptoms or symptom dimensions of 83 

depression are associated with immunometabolic dysfunction, but there is limited work on 84 

immunometabolic correlates of depression trajectories. Depression is associated with 85 

immunometabolic alterations such as chronic low-grade inflammation,11, 12 neuroendocrine 86 

dysregulations,13 as well as less favourable metabolic and lipid profiles.12, 14 Overall effect sizes 87 
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for some of these associations are inconsistent, which could be partly due to clinical or 88 

phenotypic heterogeneity within cross-sectional studies.12 For instance, immunometabolic 89 

alterations appear to be more pronounced or common in individuals endorsing atypical energy-90 

related symptoms of depression (e.g., hyperphagia, weight gain, hypersomnia, or leaden 91 

paralysis) as opposed to melancholic symptoms.12, 15 At the symptom level, inflammatory 92 

markers are particularly associated with somatic and neurovegetative symptoms of depression 93 

(e.g., fatigue, altered sleep and appetite) as opposed to psychological symptoms (e.g., 94 

hopelessness, excessive/inappropriate guilt).16, 17 Some of these findings are supported by 95 

Mendelian randomization analyses reporting a potentially causal link between inflammatory 96 

markers (e.g., C-reactive protein (CRP) or interleukin 6 (IL-6)) and fatigue, anhedonia, sleep 97 

problems, appetite and psychomotor changes.18, 19  98 

 99 

The accumulation of risk model for chronic diseases posits that cumulative exposures across the 100 

life course result in diverging health trajectories and widening health inequalities as people age.20 101 

By characterising depression trajectories, developmental windows when trajectories begin to 102 

diverge can be identified, and we can then examine potential factors driving such divergence and 103 

biological dysregulations linked to subsequent disease risk. By studying the biomarker signatures 104 

of depression trajectories, we may also gain further insight into the origins of higher levels of 105 

cardiometabolic multimorbidity in individuals with depression.21, 22 106 

 107 

The aims of the current study were threefold: (i) to model depression trajectories from childhood 108 

to early adulthood to classify individuals into more homogeneous subgroups, (ii) to examine 109 

associations between these subgroups and risk of psychiatric and cardiometabolic outcomes in 110 

early adulthood, and (iii) to examine associations of these subgroups with clinical and blood 111 

immunometabolic markers including proteomic, metabolomic and biochemical measures in early 112 

adulthood. By examining the broader biomarker signature across different domains including the 113 

immune proteome, metabolome, and clinical biochemistry, we aim to provide more 114 

comprehensive insights into biological pathways and systems possibly involved in the 115 

development and persistence of depressive symptoms in young people. 116 
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 117 

Materials and Methods 118 

Description of cohort 119 

This study uses data from the Avon Longitudinal Study of Parents and Children (ALSPAC). 120 

Pregnant women resident in the former county of Avon, United Kingdom (UK) with expected 121 

dates of delivery between 1st April 1991 and 31st December 1992 were invited to take part in the 122 

ALSPAC study. The initial recruitment enrolled 14541 pregnancies, which resulted in 14062 live 123 

births and 13988 infants still alive at 12 months. Further recruitment of eligible participants took 124 

place when the oldest children were approximately seven years of age; the total sample size for 125 

analyses using any data collected after the age of seven is therefore 15447 pregnancies; of 126 

these, 14901 children were alive at 12 months of age.23, 24 127 

 128 

The study website contains details of all the data that is available through a fully searchable data 129 

dictionary and variable search tool: http://www.bristol.ac.uk/alspac/researchers/our-data/ 130 

 131 

Data 132 

Sociodemographic and health variables 133 

Sociodemographic characteristics used to characterise the identified depressive symptom 134 

trajectories include sex, ethnicity, maternal education, maternal occupational social class, 135 

socioeconomic deprivation, and family adversity during pregnancy. Health characteristics 136 

examined include smoking, at-risk drinking, carotid intima-media thickness, carotid-femoral pulse 137 

wave velocity, metabolic syndrome and its components, obesity, and psychiatric outcomes and 138 

medications. Detailed description of these variables as well as those included as covariables in 139 

the biomarker analyses are presented in Methods S1. 140 

 141 

Depressive symptoms 142 

Self-reported depressive symptoms were assessed using the 13-item Short Mood and Feelings 143 

Questionnaire (SMFQ).25 We used data collected on 10 occasions between the ages of 10 and 144 

25 years (ages 10, 12, 13, 16, 17, 18, 21, 22, 23, 25), ending with the last questionnaire 145 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2024. ; https://doi.org/10.1101/2024.07.12.24310330doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.12.24310330
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

administered in 2017-2018, prior to the start of the COVID-19 pandemic (see Table S1). 146 

Questions were answered based on the two-weeks prior to completing the questionnaire. Each 147 

SMFQ item is scored as 0 = “not true”, 1 = “sometimes true” and 2 = “always true”, resulting in a 148 

total SMFQ sum score 0-26 (higher score reflects more symptoms). For individuals who had 149 

missing data on fewer than three questions, score was imputed to the median value for missing 150 

items. For each time-point, those with missing data on more than three questions had their total 151 

score recoded as missing.  152 

 153 

Circulating blood biomarkers 154 

For this analysis, blood biomarkers were assayed in blood samples collected at the face-to-face 155 

research clinic undertaken at 24 years. A total of 92 circulating inflammatory proteins were 156 

measured using the Olink Target 96 Inflammation panel (Olink Analysis Service, Uppsala, 157 

Sweden); proteins with ≥50% values below the limit of detection (LOD) were excluded leaving 67 158 

proteins to be included (Table S2). Over 220 metabolomic features (148 metabolites and 77 159 

ratios) were quantified using a high-throughput 1H-NMR spectroscopy-based platform 160 

(Nightingale Health, Helsinki, Finland) using a standardised protocol and parameters described 161 

elsewhere.26-28 Lipoprotein subclasses were excluded from the analysis to minimise redundancy 162 

of information, leaving a subset of 57 metabolomic features (9 cholesterol measures, 12 163 

apolipoproteins and lipids measures, 3 lipoprotein particle sizes, 16 fatty acids and saturation 164 

measures, 3 glycolysis-related metabolites, 8 amino acids, 3 ketone bodies, 2 fluid balance-165 

related measures and 1 inflammation-related measure) to be included in the analysis (Table S3). 166 

All 26 blood count and chemistry measures collected at the same clinic interaction were included 167 

(Table S4). Additionally, we computed the aspartate aminotransferase/alanine aminotransferase 168 

(AST/ALT) ratio and the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). 169 

Further information on data collection and processing of all blood biomarkers are presented in 170 

Methods S1. 171 

 172 

Covariables 173 
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Prior to statistical analysis, we plotted a directed acyclic graph (DAG) showing theoretical 174 

relationships between depression trajectories (independent variable), immunometabolic markers 175 

(dependent variables) and important covariables based on the literature (Figure S1). The 176 

minimum adjustment set of confounders included in models was sex at birth, maternal education, 177 

maternal occupational social class, and body mass index (BMI) at age 10. 178 

 179 

Statistical analysis 180 

Characterisation of depression trajectories 181 

Latent class trajectory modelling was performed using the lcmm R package29 to identify 182 

subgroups with distinct SMFQ trajectories. This type of modelling seeks to identify homogenous 183 

groups of individuals with similar trajectories within a heterogeneous population by combining a 184 

latent class model and a mixed model. Models are estimated within the maximum likelihood 185 

framework.29 The lcmm package distinguishes time of measurement and occasion, so individuals 186 

with missing data can still be included; we included those with at least three measurements for 187 

better modelling of non-linear trajectories. A multi-step approach adapted from the model 188 

selection framework suggested by Lennon et al.30 and van der Nest et al.31 was used, with the 189 

order of steps changed to address potential overextraction of latent classes from model under-190 

specification as reported in the simulation literature32, 33. The steps followed: 191 

1. Scope literature and inspect plots to inform polynomial order and potential number of classes. 192 

We modelled smfq ~ age + age2 and estimated models up to six latent classes. 193 

2. Estimate growth mixture models (GMM) with random intercepts and class-specific 194 

proportional random-effect variance-covariance matrix with increasing number of classes. 195 

Select the most appropriate number of classes k based on model convergence, model fit 196 

(Bayesian information criterion (BIC), Integrated Completed Likelihood (ICL), and relative 197 

entropy), smallest class size ≥5% and visual inspection of the trajectories. 198 

3. Test alternative model structures with k classes – GMM with random intercepts and common 199 

random-effect variance-covariance matrix, and group-based trajectory models (GBTM); 200 

compare model fit indices, smallest class size and visually inspect trajectories as above, and 201 
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assess model adequacy (average posterior probabilities ≥0.7 and odds of correct 202 

classification ≥5 for all classes). 203 

4. Refine trajectory shape by testing up to second-degree fractional polynomials including (-2, -204 

1, -0.5, 0, 0.5, 1, 2, 3) where 0 refers to log X and repeated polynomials refer to (Xi + Xi * log 205 

X). Select final model based on model convergence and model fit. 206 

 207 

Age (in years) was used as the time variable in all models. No covariables were included in these 208 

latent class mixed models as the aim is to describe the trajectories; covariables were accounted 209 

for in the next step when testing for associations with phenotypes of interest and biomarkers. For 210 

each model, an automatic grid search with 50 sets of random initial values and up to 10 iterations 211 

was run to reduce the odds of the model converging towards a local maximum and then up to 212 

500 iterations were allowed for the final estimation. Using the selected model, posterior 213 

probabilities for class membership were then estimated and individuals were assigned to the 214 

class of highest posterior probability in the entire sample using the predictClass function. We first 215 

performed the latent class mixed modelling on the subsample with three or more data points and 216 

then predicted class membership in the entire sample to reduce uncertainty in the modelling 217 

stage and to maximise sample sizes in the subsequent analyses. Additional information on the 218 

modelling is presented in Supplementary Methods S1, R scripts are provided in 219 

Supplementary Methods S2. The reporting of this study adheres to the Guidelines for Reporting 220 

on Latent Trajectory Studies (GRoLTS)34 (Table S5). 221 

 222 

Associations with clinical and sociodemographic variables 223 

Sociodemographic characteristics are stratified by trajectory class and summarised using mean 224 

(SD), median [interquartile range] or count (%) as appropriate, with differences between 225 

trajectories tested with chi-square or Kruskal-Wallis tests. Associations of trajectory membership 226 

with psychiatric or cardiometabolic outcomes of interest at age 24 or 28 years were tested using 227 

multivariable linear or logistic regressions, using the largest trajectory class as the reference 228 

group and adjusting for sex, maternal education, occupational social class and BMI at age 10. 229 

These variables are described in detailed in Supplementary Methods S1. 230 
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 231 

Associations with immunometabolic biomarkers 232 

For both proteomic and metabolomic data, associations between depression trajectories and 233 

markers were evaluated using multiple linear models fitted in the limma R package.35 Limma 234 

uses an empirical Bayes method to moderate the standard errors of the estimated log-fold 235 

changes by borrowing strength from linear models of the other analytes and allowing for different 236 

variability between analytes and between samples. Planned contrasts of each of the intermediary 237 

trajectories against the trajectory with the most individuals were conducted. With the blood count 238 

and clinical chemistry data, linear regressions were fitted with blood markers as dependent 239 

variables and SMFQ trajectory class as the independent variable. 240 

 241 

For each of these markers, the basic model included sex, maternal education and maternal 242 

occupational social class as covariables and the adjusted model further included BMI at age 10 243 

as a covariable. Correction for multiple testing was performed for each set of models using the 244 

Benjamini-Hochberg procedure, using a false discovery rate (FDR) q-value threshold of <0.1. 245 

This threshold was chosen due to the large number of biomarkers tested, a relatively small 246 

sample size and the exploratory nature of this work. R scripts for these analyses are provided in 247 

Supplementary Methods S2. 248 

 249 

Sensitivity analyses 250 

To address potential error carried over from the probabilistic latent class assignment into the 251 

association analyses, we performed two sets of sensitivity analyses, the first set by restricting the 252 

sample to individuals who had a modal posterior probability ≥0.7, and the second set by using 253 

the individuals’ posterior probabilities for each latent class as separate terms in the models. 254 

 255 

Data extraction and initial data cleaning was performed in StataMP version 17.36 Further data 256 

preparation and statistical analyses were conducted in R versions 4.1.1 and 4.2.1,37 using 257 

packages tidyverse (v2.0.0), lcmm (v2.0.2), LCTMtools (v0.1.3), tableone (version 0.13.2), knitr 258 
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(v1.43), kableExtra (v1.3.4), limma (v3.54.2), and broom (v1.0.5). Plots were generated using 259 

ggplot2 (v3.4.2), ggpubr (v0.6.0), and ggrepel (v0.9.3). 260 

 261 

Ethical approval 262 

Ethical approval for the ALSPAC study was obtained from the ALSPAC Ethics and Law 263 

Committee and the Local Research Ethics Committees. Consent for biological samples has been 264 

collected in accordance with the Human Tissue Act (2004). Informed consent for the use of data 265 

collected via questionnaires and clinics was obtained from participants following the 266 

recommendations of the ALSPAC Ethics and Law Committee at the time. 267 

 268 

Results 269 

Sample 270 

Latent class trajectory modelling was performed on data from 7302 participants who had SMFQ 271 

scores available from at least three time-points between ages 10 and 25 years. Once the best-272 

fitting model was identified, posterior probabilities and class membership were estimated in the 273 

entire sample, and 9595 individuals were assigned class membership. Of these 9595 individuals, 274 

2256 had sufficient biomarker and complete covariable data to be included in the biomarker 275 

analyses (Figure S2). 276 

 277 

Depressive symptom trajectories from childhood to early adulthood 278 

Following comparison of model fit and adequacy statistics and visual inspection of trajectory plots 279 

(Table S6 and Figures S2-S3), a four-class group-based trajectory model was identified as best 280 

describing the data. As shown in Figure 1, the four identified depressive symptom trajectories 281 

from childhood to early adulthood can be described as follows: low-stable – those who 282 

consistently had no or low levels of depressive symptoms (69.6%, n=6680), adolescent-limited – 283 

those who had elevated depressive symptoms in childhood/adolescence that decreased over 284 

time (13.3%, n=1280), adolescent-persistent – those who had elevated depressive symptoms in 285 

childhood/adolescence that remained high into adulthood (7.0%, n=672) and adulthood-onset – 286 
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those who started with low levels of depressive symptoms that increased in late 287 

adolescence/early adulthood (10.0%, n=973). 288 

 289 

Characteristics of depression trajectories 290 

Descriptive statistics for characteristics of these individuals, stratified by trajectory, are presented 291 

in Table 1 below. There were more women in all three depression-related trajectories: 292 

adolescent-limited (66.3%), adolescent-persistent (76.5%), and adulthood-onset trajectories 293 

(64.6%). Additionally, the adolescent-persistent trajectory was associated with lower maternal 294 

education and greater family adversity during pregnancy. Descriptive statistics for the same 295 

characteristics of the subset of individuals who were included in the biomarker analyses are 296 

presented in Table S7. 297 

 298 

[INSERT FIGURE 1 HERE]  299 
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Table 1. Characteristics of depressive symptom trajectories in the ALSPAC birth cohort.  300 

 Low-stable 

(n=6680) 

Adolescent-

limited 

(n=1280) 

Adolescent-

persistent 

(n=672) 

Adulthood-

onset 

(n=963) 

p 

Sex: Female 3064 (45.9%) 849 (66.3%) 514 (76.5%) 622 (64.6%) <0.001 

Ethnicity: Non-white 240 (4.1%) 44 (3.9%) 36 (6.2%) 40 (4.8%) 0.097 

Maternal education     0.026 

CSE or none 894 (15.1%) 159 (13.9%) 107 (17.9%) 120 (14.1%)  

Vocational 560 (9.5%) 91 (8.0%) 53 (8.9%) 64 (7.5%)  

O-level 2064 (34.9%) 406 (35.6%) 231 (38.6%) 293 (34.5%)  

A-level 1483 (25.1%) 308 (27.0%) 141 (23.6%) 230 (27.1%)  

Degree 911 (15.4%) 178 (15.6%) 66 (11.0%) 142 (16.7%)  

Maternal occupational social class 0.556 

I – highest 356 (7.0%) 63 (6.6%) 28 (5.5%) 45 (6.3%)  

II 1714 (33.8%) 335 (35.0%) 161 (31.8%) 250 (34.9%)  

III (non-manual) 2137 (42.2%) 392 (41.0%) 216 (42.7%) 302 (42.1%)  

III (manual) 350 (6.9%) 66 (6.9%) 34 (6.7%) 57 (7.9%)  

IV or V1 – lowest 509 (10.0%) 100 (10.5%) 67 (13.2%) 63 (8.8%)  

English IMD 2000 quintile 0.723 

1 – least deprived 1665 (32.1%) 355 (35.3%) 146 (30.7%) 242 (33.3%)  

2 1044 (20.1%) 188 (18.7%) 100 (21.0%) 143 (19.7%)  

3 956 (18.4%) 174 (17.3%) 84 (17.6%) 140 (19.3%)  

4 790 (15.2%) 153 (15.2%) 77 (16.2%) 115 (15.8%)  

5 – most deprived 739 (14.2%) 137 (13.6%) 69 (14.5%) 86 (11.8%)  

Family Adversity Index 1 [0, 2] 1 [0, 2] 1 [0, 3] 1 [0, 2] <0.001 

BMI at age 10 17.43 [15.97, 

19.73] 

17.63 [16.07, 

19.96] 

18.25 [16.24, 

21.00] 

17.43 [15.92, 

19.60] 

<0.001 

Number of SMFQ 

measurements 

4 [2, 7] 6 [3, 8] 5 [3, 7] 6 [4, 9] <0.001 

1 Categories have been collapsed due to small cell counts in subsequent analyses. 301 

Notes: Numbers presented as mean (SD), median [IQR], or n (%). Percentages are column percentages and 302 

computed based on the number of individuals with available data on each variable. Group comparisons were 303 

conducted using Chi-square tests for categorical variables and Kruskal-Wallis tests for non-normal continuous 304 

variables. 305 
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Abbreviations: BMI – body mass index; CSE – Certificate of Secondary Education; O-level – Ordinary level; A-306 

level – Advanced level; IMD – Index of Multiple Deprivation; SMFQ – Short Mood and Feelings Questionnaire 307 

  308 
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Table 2. Associations of depressive symptom trajectories with anthropometric and cardiometabolic 309 

outcomes at 24 years and psychiatric outcomes at 24 and 28 years 310 

  Adolescent-limited Adolescent-

persistent 

Adulthood-onset 

Outcomes assessed at age 24 n Adjusted unstandardised regression coefficient (SE) 

cIMT (continuous) 1565 -0.0002 (0.0033) -0.0099 (0.0050) -0.0003 (0.0036) 

cfPWV (continuous) 1708 -0.0578 (0.0708) -0.1429 (0.1109) 0.0108 (0.0790) 

  Adjusted odds ratio (95% CI) 

Smoking 2731 1.66 (1.32-2.09) 2.66 (1.93-3.67) 1.70 (1.32-2.17) 

AUDIT-C score ≥ 5 2704 0.97 (0.79-1.21) 0.65 (0.48-0.89) 0.79 (0.63-1.01) 

BMI ≥ 30kg/m2 2731 1.41 (0.99-2.01) 1.93 (1.19-3.06) 1.34 (0.89-1.99) 

Elevated waist circumference 2707 1.21 (0.93-1.56) 1.24 (0.84-1.80) 1.16 (0.86-1.54) 

Triglycerides ≥1.7mmol/L 2241 1.37 (0.86-2.11) 1.14 (0.53-2.23) 1.50 (0.93-2.33) 

HDL <1.0mmol/L 2241 0.86 (0.61-1.20) 1.13 (0.71-1.77) 1.34 (0.95-1.85) 

SBP ≥ 130mmHg 2751 0.85 (0.58-1.22) 0.60 (0.29-1.12) 0.96 (0.65-1.38) 

DBP ≥ 85mmHg 2751 1.32 (0.69-2.69) 0.73 (0.17-2.21) 1.32 (0.55-2.82) 

Fasting glucose ≥5.6mmol/L 2241 0.86 (0.65-1.14) 0.92 (0.58-1.42) 0.97 (0.72-1.31) 

Metabolic syndrome 2759 0.97 (0.59-1.55) 0.78 (0.35-1.54) 1.23 (0.75-1.96) 

ICD-10 depressive episode 2729 4.03 (2.73-5.95) 22.80 (15.25-34.37) 7.68 (5.31-11.17) 

ICD-10 GAD 2719 3.59 (2.41-5.33) 19.32 (12.86-29.22) 5.39 (3.65-7.94) 

Outcomes assessed at age 28     

Prescribed antidepressants in 

past 5y 

2792 3.02 (2.28-3.99) 7.29 (5.22-10.17) 5.12 (3.88-6.75) 

Prescribed anxiolytics in past 5y 2828 2.31 (1.25-4.16) 6.76 (3.74-12.05) 4.16 (2.39-7.18) 

 311 

Notes: Regression models were adjusted for sex, maternal education, maternal occupational social class, and 312 

BMI at age 10. Effect estimates presented are unstandardised regression coefficients for continuous outcomes 313 

and odds ratios (95% confidence intervals) for binary outcomes. The reference group for all analyses is the low-314 

stable trajectory. Text in bold indicates evidence for the association after FDR correction of p-values. 315 

Metabolic syndrome was defined based on the 2009 consensus definition from the International Diabetes 316 

Federation and the American Heart Association/National Heart, Lung, and Blood Institute, i.e. the presence of any 317 

three of the following five risk factors: elevated waist circumference (≥94cm for white men, ≥90cm for non-white 318 

men, ≥80cm for women); elevated triglycerides (≥1.7mmol/L), reduced high-density lipoprotein-cholesterol 319 
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(<1.0mmol/L), elevated blood pressure (systolic ≥130mmHg or diastolic ≥85mmHg), and elevated fasting glucose 320 

(≥5.6mmol/L). 321 

Abbreviations: AUDIT-C – Alcohol Use Disorders Identification Test for Consumption; BMI – body mass index; 322 

cfPWV – carotid-femoral pulse wave velocity; cIMT – carotid intima-media thickness; DBP – diastolic blood 323 

pressure; GAD – generalised anxiety disorder; HDL – high-density lipoprotein; ICD-10 – International 324 

Classification of Diseases 10th Revision; SBP – systolic blood pressure 325 

 326 

 327 

328 
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Adulthood cardiometabolic and psychiatric outcomes associated with depression trajectories 329 

Compared to the low-stable trajectory, after adjusting for sex, maternal education, maternal 330 

occupational class and BMI at age 10, all three depression-related trajectories were associated 331 

with ICD-10 diagnosis of depression, generalised anxiety disorder, being prescribed an 332 

antidepressant or anxiolytic at ages 24 and 28 years. However, the magnitude of association 333 

varied between the trajectories, with the risk for these outcomes being the highest for the 334 

adolescent-persistent trajectory (approximately 20-fold risk), followed by the adulthood-onset and 335 

adolescent-limited trajectories. The adolescent-persistent trajectory was additionally associated 336 

with obesity (Table 2). Unadjusted model results are presented in Table S8. 337 

 338 

Differentially abundant proteins associated with depression trajectories 339 

Relative to the low-stable trajectory, after adjusting for sex, maternal education, maternal 340 

occupational class and BMI at age 10, one protein (C-C motif chemokine 25 [CCL25]) was 341 

upregulated in the adolescent-limited trajectory; four proteins (fibroblast growth factor 21 [FGF-342 

21], hepatocyte growth factor [HGF], eukaryotic translation initiation factor [4E-BP1], and eotaxin-343 

1 [CCL11]) were upregulated in the adolescent-persistent trajectory; and five proteins (FGF-21, 344 

fibroblast growth factor 19 [FGF-19], CUB domain-containing protein 1 [CDCP1], HGF, CCL11) 345 

were upregulated in the adulthood-onset trajectory (Figure 2). Full model results are presented 346 

in Tables S9-10. 347 

 348 

Differentially abundant metabolites associated with depressive symptom trajectories 349 

Relative to the low-stable trajectory, after adjusting for sex, maternal education and occupational 350 

class, and BMI at age 10, creatinine was decreased in the adolescent-persistent trajectory. Three 351 

metabolite ratios (omega-3 to total fatty acids [omega-3/FA], docosahexaenoic acid to total fatty 352 

acids [DHA/FA], polyunsaturated fatty acids to total fatty acids [PUFA/FA] ratios) were decreased 353 

whereas the monosaturated to total fatty acids (MUFA/FA) and apolipoprotein B to apolipoprotein 354 

A1 (ApoB/ApoA1) ratios were increased in the adult-onset trajectory (Figure 3). Full model 355 

results are presented in Tables S11-12. 356 

 357 
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Blood count and clinical chemistry markers 358 

Relative to the low-stable trajectory, after adjusting for sex, maternal education and occupational 359 

class, and BMI at age 10, there was evidence for decreased AST levels in the adolescent-limited 360 

trajectory, and increased HOMA-IR, insulin, neutrophil and white blood cell (WBC) counts in the 361 

adulthood-onset trajectory (Figure 5). Full model results are presented in Tables S13-14. 362 

 363 

Sensitivity analyses 364 

The sensitivity analyses showed patterns of associations that are largely similar to those 365 

observed in the primary analyses, with consistent associations of depression-related trajectories 366 

with anthropometric, cardiometabolic and psychiatric outcomes, and top-ranking 367 

immunometabolic biomarkers with similar effect sizes in the same directions (Supplementary 368 

Methods S3). 369 

 370 

[INSERT FIGURES 2-4 HERE] 371 

 372 

Discussion 373 

Depression is a complex heterogeneous disorder, which poses a challenge for discovering 374 

biomarkers associated with disease onset and/or progression. We have taken a longitudinal 375 

approach to identifying blood-based biomarkers for depression by examining longitudinal 376 

patterns of depressive symptoms in the population during the critical developmental epoch of 377 

childhood, adolescence and early adulthood. Using data from a prospective birth cohort, we have 378 

identified four longitudinal population subgroups based on repeated measures of depressive 379 

symptoms over a 15-year period from ages 10 to 25 years. We show that majority of participants 380 

(approximately 70%) have little or no depressive symptoms (low-stable group). We identified 381 

three depression-related groups which comprise a group with higher symptom levels during 382 

childhood and adolescence which later decrease (adolescent limited group, 13%), a group with 383 

symptoms emerging during puberty which persist throughout adolescence through to adulthood 384 

(adolescent persistent group, 7%), and a group with symptoms emerging during late 385 

adolescence/early adulthood and increasing thereafter (adulthood onset, 10%). 386 
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 387 

We have examined health phenotypes and blood biomarkers associated with these subgroups 388 

for greater insight into the developmental course of depression and associated biomarkers. Our 389 

analyses show that compared to the low-stable group, risk of depression and anxiety in 390 

adulthood is higher for all three depression-related groups. However, such risk is particularly 391 

elevated risk for the adolescent-persistent group (19 to 23-fold risk) followed by the adulthood-392 

onset group (five to eight-fold risk). Interestingly, the group where higher levels of symptoms are 393 

mostly limited to adolescence, they still have a three-fold increased risk of depression in 394 

adulthood. 395 

 396 

Having examined health phenotypic and blood proteomic, immunological and metabolic 397 

biomarker associations for these three groups, we show that the adolescent-limited group is 398 

distinct from the other two depression-related groups as it showed little immunometabolic 399 

alterations. In contrast, both the adolescent-persistent and adulthood-onset groups are 400 

associated with immunometabolic changes, but the exact pattern of associations varies between 401 

the two groups. The adolescent-persistent group was associated with higher BMI in childhood 402 

and adulthood, whereas the adulthood-onset group did not show this, but rather more 403 

widespread alterations in blood-based metabolic parameters including insulin resistance, insulin 404 

levels and changes in fatty acid ratios. Blood proteomic changes were largely similar between 405 

the two groups and involved proteins that mainly act as growth factors, cytokines and 406 

chemokines. While immunometabolic associations persisted given adjustment for childhood BMI 407 

in the adolescent-persistent group, the presence or absence of this BMI adjustment had an 408 

impact on some association estimates in the adolescent-persistent and adulthood-onset groups. 409 

While this may relate to the apparent differences in BMI by trajectories, it is difficult to distinguish 410 

this as an artefact of adjustment or a true impact of BMI. 411 

 412 

Epidemiological studies consistently report a bidirectional relationship (both cross-sectionally and 413 

longitudinally) between obesity and depression,38 whereas Mendelian randomization studies 414 

support a causal role of BMI on major depressive disorder and depressive symptoms but not vice 415 
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versa.39, 40 The comorbidity between obesity and depression is generally associated with poorer 416 

prognosis, with studies reporting associations with a more chronic course of depression in 417 

adulthood41, 42 as well as poorer treatment response.43 Our findings add to this evidence by 418 

showing an association between higher childhood BMI and persistent depressive symptoms 419 

between adolescence and early adulthood. 420 

 421 

Many of the alterations observed in the adulthood-onset trajectory are already well studied 422 

markers of cardiometabolic disease risk. The ApoB/ApoA1 ratio is associated with cardiovascular 423 

diseases and metabolic syndrome,44, 45 and can be used to predict longer-term cardiovascular 424 

risk when measured in early life.46, 47 Higher values of HOMA-IR are associated with an 425 

increased risk of developing type 2 diabetes mellitus (T2DM), systemic arterial hypertension and 426 

non-fatal major adverse cardiovascular events.48 Lower blood omega-3 fatty acid concentrations 427 

are associated with poorer cardiovascular outcomes49, 50 and may also contribute to chronic 428 

systemic inflammation, whereas changes in MUFA, PUFA and DHA concentrations in early 429 

adulthood were associated with incident obesity, insulin resistance and elevated blood pressure 430 

10 years later.51 Since dietary intake and supplementation are the main predictors of blood levels 431 

of omega-3 fatty acids,52, 53 with lifestyle factors such as BMI, smoking and alcohol consumption 432 

also playing a role,54 this suggests that the adulthood-onset group may benefit from lifestyle 433 

intervention to prevent future cardiometabolic disease. 434 

 435 

The overlapping proteomic signals observed between the adolescent-persistent and adulthood-436 

onset trajectories potentially suggest shared underlying mechanisms (genetic or environmental) 437 

or shared biological responses to depression, which warrant further study for their roles in the 438 

pathophysiology of depression and cardiometabolic disease. FGF-21 is a novel regulator of 439 

glucose and lipid metabolism that mainly acts through an FGF receptor 1 (FGFR1)/β-klotho 440 

receptor complex and the Ras/Raf MAPK signalling pathway, which have been implicated in the 441 

pathophysiology of depression and therapeutic effects of antidepressants.55-57 Elevated 442 

circulating FGF-21 concentrations have also been shown to be associated with a range of 443 

cardiometabolic markers and diseases.58-62 HGF mediates inflammatory responses to tissue 444 
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injury and regulates cell growth and morphogenesis through the activation of the 445 

HGF/mesenchymal-epithelial transition factor (c-Met) signalling pathway, which has downstream 446 

effects on the Raf/MAPK and PI3K/Akt pathways. Altered HGF/c-Met signalling has been 447 

suggested to play a role in the pathogenesis of depression in adolescents through disrupting 448 

interneuron development.63 CCL11 is a chemokine involved in the selective recruitment of 449 

eosinophils into sites of inflammation and has been implicated in various allergic and 450 

inflammatory conditions.64 It can be transported across the blood-brain barrier65 and is an age-451 

related systemic factor associated with reduced synaptic plasticity and impaired hippocampal-452 

dependent learning and memory in mice.66 In humans, CCL11 levels increase with age,66 and 453 

there is emerging evidence to suggest that CCL11 levels are associated with psychiatric 454 

disorders.67-71 In summary, the overlapping proteomic signals between the adolescent-persistent 455 

and adulthood-onset trajectories highlight potential roles of physiological stress from lifestyle or 456 

environmental factors, disruptions in neurodevelopment, and neurogenesis and cellular 457 

senescence in the underlying vulnerability or biological response to depression, and may be key 458 

biomarkers relevant to illness pathogenesis. 459 

 460 

An advantage of our work is that by examining depressive symptoms longitudinally using a latent 461 

class trajectory approach, we can account for population heterogeneity and obtain better 462 

characterisation of subgroups and their changes over time. Existing literature shows that 463 

depression is associated with alterations in various immunometabolic biomarkers, including 464 

increased inflammatory cytokines,72, 73 WBC,74 neutrophils,74 T-lymphocytes and other immune 465 

cell counts,74 HOMA-IR,75 insulin,75 lipids and fatty acids.76, 77 Using longitudinal data from young 466 

people, we add to this evidence base by showing that classical immunometabolic changes are 467 

particularly associated with an adulthood-onset trajectory, rather than other developmental 468 

subgroups of depressive symptoms, including one with persistent symptoms since adolescence. 469 

 470 

This study has several limitations. Firstly, the approach of treating assigned class membership as 471 

discrete in assessing relationships with other variables has been shown to underestimate the 472 

strength of the relationships.78 However, as we are mainly interested in subpopulations with 473 
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different depressive symptom trajectories, this approach allows for easier interpretation and 474 

translation. Secondly, depression is episodic in nature and the use of polynomials cannot fully 475 

capture the dynamics of depressive symptom severity over time; however, this approach was 476 

chosen over other methods (e.g., splines) for model parsimony. 477 

 478 

Furthermore, the sample size in this study is relatively small and may be underpowered to detect 479 

differences after stratifying individuals into four separate trajectories. For this reason, we did not 480 

further stratify our analyses by sex or potentially relevant variables (e.g., BMI). While we have 481 

adjusted our biomarker analyses for several potential confounders, residual confounding could 482 

still be an issue. For instance, we have not accounted for medication use or chronic disease etc., 483 

but these are likely to be uncommon in young people. As the biomarkers were measured at age 484 

24, which is after the onset of depressive symptoms in many individuals, further research is 485 

required to assess the direction and causality of associations we have identified. 486 

 487 

In conclusion, we identified distinct developmental trajectories of depression from childhood to 488 

early adulthood, which show differential associations with cardiometabolic and psychiatric 489 

outcomes, and are characterised by distinct immunometabolic profiles. In particular, individuals 490 

with persistent depressive symptoms from childhood through to early adulthood were more likely 491 

to have higher BMI both in childhood and in adulthood and few other immunometabolic changes, 492 

whereas individuals who develop depressive symptoms towards early adulthood show classical 493 

immunometabolic alterations in immune cell counts, insulin resistance and fatty acid profiles. 494 

These findings point to distinct mechanisms and intervention opportunities for different groups of 495 

young people with depressive symptoms.  496 
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Figure Legends 863 

 864 

Figure 1. Predicted Marginal Mean Depressive Symptom Trajectories from Childhood to 865 

Early Adulthood in the ALSPAC Cohort 866 

Lines showing predicted marginal mean depressive symptom trajectories with shaded areas 867 

representing 95% confidence intervals. 868 

 869 

Figure 2. Volcano Plots Showing Differential Immune Protein Abundance Levels in 870 

Depressive Symptom Trajectories 871 

Panels a and b show results from basic and adjusted models respectively. The reference group 872 

for all analyses is the low-stable trajectory. 873 

Abbreviations: 4E-BP1 – eukaryotic translation initiation factor; CCL11 – eotaxin-1; CCL25 – C-C 874 

motif chemokine 25; CDCP1 – CUB domain-containing protein 1; FGF-19 – fibroblast growth 875 

factor 19; FGF-21 – fibroblast growth factor 21; HGF – hepatic growth factor 876 

 877 

Figure 3. Volcano Plots Showing Differential Metabolite Abundance Levels in Depressive 878 

Symptom Trajectories 879 

Panels a and b show results from basic and adjusted models respectively. The reference group 880 

for all analyses is the low-stable trajectory. Orange points indicate upregulation and blue points 881 

indicate downregulation. 882 

Abbreviations: ApoB/ApoA1 – apolipoprotein B to apolipoprotein A1 ratio, DHA/FA – 883 

docosahexaenoic acid to total fatty acids ratio, MUFA/FA – monounsaturated fatty acids to total 884 

fatty acids ratio, Omega-3/FA – omega-3 fatty acids to total fatty acids ratio, PUFA/FA – 885 

polyunsaturated fatty acids/total fatty acids ratio 886 

 887 

Figure 4. Differential Levels of Full Blood Count and Clinical Biochemistry Biomarkers in 888 

Different Depressive Symptom Trajectories 889 

Dot-and-whisker plots showing effect estimates and 95% confidence intervals for each biomarker. 890 

The effect estimates and 95% confidence intervals from the models have been back-transformed 891 
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into their original scale for ease of interpretation; effect estimates represent the percentage 892 

difference in mean levels of each biomarker for respective trajectory, in relation to the low-stable 893 

trajectory (reference group). Panels a and b show results from basic and adjusted models 894 

respectively. Asterisks indicate evidence for the association after FDR correction of p-values. 895 

Abbreviations: WBC – white blood count, RBC – red blood count, Hb – haemoglobin, Hct – 896 

haematocrit, MCV – mean cell volume, MCH – mean cell haemoglobin, MCHC – mean 897 

corpuscular haemoglobin concentration, HOMA-IR – Homeostatic Model Assessment for Insulin 898 

Resistance, HDL – high-density lipoprotein, LDL – low-density lipoprotein, VLDL – very low-899 

density lipoprotein, CRP – C-reactive protein, GGT – gamma-glutamyl transpeptide, ALT – 900 

alanine aminotransferase, AST – aspartate aminotransferase, P3NP – procollagen-3 N-terminal 901 

peptide 902 
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