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INTRODUCTION

Essential to a host’s immune responses to pathogens is dis-
crimination of non-self molecules from self molecules. The in-
nate immune system, which plays a pivotal role in the first line 
of host defense against infection, is equipped with pattern rec-
ognition receptors (PRRs) that recognize pathogen-associated 
molecular patterns (PAMPs) not found in the host and then 
activate the host’s immune response.1,2 Many PRRs have been 

identified since toll-like receptors (TLRs) were first identified 
as PRRs about two decades ago.3 Based on distinct genetic and 
functional differences, PRRs are currently classified into five 
families:4 TLRs, nucleotide-binding and oligomerization do-
main (NOD)-like receptors (NLRs), retinoic acid inducible 
gene-I (RIG-I)-like receptors (RLRs), C-type lectins (CTLs), 
and absent-in-melanoma (AIM)-like receptors (ALRs). TLRs 
and CTLs are located in the plasma membrane, while the 
NLRs, RLRs, and ALRs are intracellular PRRs.

The recognition by NLRs of PAMPs and damage-associated 
molecular patterns (DAMPs) from microbial structures or self- 
or environment-derived molecules leads to the induction of 
the innate immune response.5 In humans, there are 22 known 
NLRs,6 all of which are associated with many human diseases.7 
Readers who wish to know further basic aspects of NLRs should 
consult other excellent and recent reviews.4,7 In this review, we 
will provide a concise overview of the members of the NLR 
family and their role in infection, immunity, and disease, espe-
cially from clinical perspectives.
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CLASSIFICATION AND STRUCTURE  
OF THE NLR FAMILY

NLR proteins have a common domain organization with a cen-
tral NOD (NACHT: NAIP, CIITA, HET-E, and TP-2), N-terminal 
effector domain, and C-terminal leucine-rich repeats (LRRs) 
(Fig. 1).6 The NACHT domain (consisting of seven distinct con-
served motifs, including the ATP/GTPase-specific P-loop, the 
Mg2+-binding site, and five more-specific motifs) is involved in 
dNTPase activity and oligomerization.8 The C-terminal LRR 
domain is involved in ligand binding or activator sensing. The 
N-terminal domain performs effector functions by interacting 
with other proteins. There are four recognizable N-terminal do-
mains, which are used to classify NLRs into four subfamilies: 
the acidic transactivation domain (NLRA), the baculoviral in-
hibitory repeat-like domain (NLRB), the caspase activation and 
recruitment domain (CARD; NLRC), and the pyrin domain 
(NLRP) (Fig. 1).6 

The NLRA subfamily includes only one member, the MHC-II 
transactivator (CIITA). Similarly, the human NLRB subfamily 
has only one member, NAIP. The NLRC subfamily consists of 
six members: NLRC1 (NOD1), NLRC2 (NOD2), NLRC3, NLRC4, 
NLRC5, and NLRX1. NLRC3, NLRC5, and NLRX1 are classified 
as belonging to the NLRC subfamily due to their homology and 
phylogenetic relationship, although their N-terminal domains 
have not been named.4,6,9 The NLRP subfamily consists of 14 
members, NLRP1–14. No LRR domain is observed in NLRP10, 
which may indicate a role for this protein as a signaling adaptor 
rather than as an NLR sensor.7

FUNCTION OF NLRs

The NLRs recognize various ligands from microbial pathogens 
(peptidoglycan, flagellin, viral RNA, fungal hyphae, etc.), host 
cells (ATPs, cholesterol crystals, uric acid, etc.), and environ-
mental sources (alum, asbestos, silica, alloy particles, UV radia-
tion, skin irritants, etc.). Most NLRs act as PRRs, recognizing the 
above ligands and activate inflammatory responses. However, 
some NLRs may not act as PRRs but instead respond to cyto-
kines such as interferons. The activated NLRs show various 
functions that can be divided into four broad categories: inflam-
masome formation, signaling transduction, transcription activa-
tion, and autophagy (Fig. 2).4 Below, we describe each function.

Inflammasome formation
Inflammasome is a multimeric protein complex that activates 
caspase-1.10 Activation of caspase-1 results in the processing 
and maturation of proinflammatory cytokine interleukin (IL)-
1β and IL-18 as well as an inflammatory cell death termed py-
roptosis (Fig. 2).10 As IL-1β is a potent mediator of inflammatory 
responses, its overproduction is associated with many autoin-
flammatory syndromes, such as gout and periodic fever syn-
dromes, which include Familial Mediterranean fever (FMF) 
and cryopyrin-associated periodic fever syndromes (CAPS).11,12 
Pyroptosis is an inflammatory cell death that results in the re-
lease of DAMPs and reinforcement of the immune response. 
Inflammasomes are activated by eight members of NLRs 
(NLRP1, NLRP2, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4, and 
NAIP) and AIM2, which is not discussed in this review (Table 
1).7,10

Inflammasome formation is triggered by either pathogen-as-
sociated or sterile activators. Pathogen-associated activators of 
inflammasomes include various PAMPs derived from bacteria 
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Fig. 1. Classification and protein structure of human NOD-like receptor family (based on Ref. 6). AD, acidic transactivation domain; NACHT, for NAIP, CIITA, 
HET-T, and TP-1; BIR, baculovirus inhibitor of apoptosis repeat; CARD, caspase activation and recruitment domain; X, unidentified; PYD, pyrin domain, FI-
IND, function to find domain; , leucine-rich repeat; NOD, nucleotide-binding and oligomerization domain.
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[pore-forming toxins, lethal toxins, flagellin/rod proteins, mur-
amyl dipeptide (MDP), RNA, and DNA], viruses (RNA and M2 
protein), fungus (β-glucans, hyphae, mannan, and zymosan), 
and protozoa (hemozoin).10 Sterile activators include self-de-
rived DAMPs (ATP, cholesterol crystals, monosodium urate/
calcium pyrophosphate dihydrate crystals, glucose, amyloid β, 
and hyaluronan) and environment-derived stimulants (alum, 
asbestos, silica, alloy particles, UV radiation, and skin irri-
tants).10 When the eight NLRs detect these PAMPs and DAMPs 
(Fig. 2), NLRs recruit apoptosis-associated speck-like protein 
containing a CARD (ASC) via a pyrin-pyrin domain interac-
tion.13 Subsequently, pro-caspase-1 binds to ASC through 
CARD-CARD domains, which completes the formation of in-
flammasome.13 NLRP1 contains the CARD domain that can in-
teract directly with procaspase-1 and can thus form inflamma-
somes without ASC.14 NLRC4, which has no pyrin domain, can 
form two types of inflammasomes. The recruitment of ASC to 
the NLRC4 inflammasome results in IL-1β and IL-18 produc-
tion, while NLRC4 inflammasome formed without the recruit-
ment of ASC results in pyroptosis.15

NAIP and NLRC4 form NAIP-NLRC4 inflammasomes upon 
recognition of bacterial flagellin and the bacterial type III secre-
tion system.16-18 Therefore, NAIP and NLRC4 are linked to sus-

ceptibility to bacterial infections.7,19 NLRP1 inflammasomes are 
activated by MDP,14 a common peptidoglycan motif in both 
Gram-positive and Gram-negative bacteria, and by anthrax le-
thal toxin.20 NLRP3-inflammasome activation is triggered by 
various PAMPs and DAMPs including alum, silica, ATP, and 
uric acid.4 NLRP7 can recognize bacterial lipopeptide.21

Signaling transduction
NOD1 recognizes γ-D-glutamyl-meso-diaminopimelic acid 
(iE-DAP), which is a peptidoglycan component found only in 
Gram-negative bacteria.22 NOD2 recognizes MDP from both 
Gram-positive and Gram-negative bacteria.23 Both NOD1 and 
NOD2 activate the nuclear factor kappa B (NF-kB) signaling 
pathway, which plays an important role in regulating the host 
immune response (Fig. 2). Specifically, recognition of cytosolic 
peptidoglycan ligands allows NOD1/NOD2 to interact with a 
common downstream adaptor molecule, receptor interacting 
protein 2 (RIP2), which is a serine/threonine kinase that can 
activate NF-kB.24 Activated NF-kB can move to the nucleus and 
enhance transcription of proinflammatory cytokines.22,25 In 
contrast to NOD1/NOD2, NLRC3, and NLRP2/4 act as negative 
regulators of the NF-kB pathway by modifying tumor necrosis 
factor (TNF) receptor-associated factor 6 (TRAF6) (Fig. 2).26-29 

Fig. 2. Functions of NOD-like receptors. The NLRs activities can be divided into four broad categories; autophagy, signal transduction, transcription acti-
vation, and inflammasome formation. NOD2 induces autophagy to remove pathogens by recruiting ATG16L1 to the plasma membrane at the site of bacte-
rial entry. NOD1 and NOD2 recognize γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) and muramyl dipeptide (MDP) respectively; thereafter they acti-
vate the NF-kB and MAPK signaling pathways. NLRP2 and NLRP4 act as negative regulators of NF-kB pathway by modifying TRAF6. CIITA and NLRC5 
are transactivators of major histocompatibility complexes (MHC). Inflammasome-forming NLRs (orange circle) convert procytokines to active IL-1β and 
IL-18 by activating caspase-1. NOD, nucleotide-binding and oligomerization domain; NLRs, NOD-like receptors; NF-kB, nuclear factor kappa B; MAPK, 
mitogen-activated protein kinase; TRAF, tumor necrosis factor (TNF) receptor-associated factor; IL, interleukin; INF-γ, interferon-γ.
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NLRP6 and NLRP12 are also suggested as negative regulators.30,31

In addition to activating the NF-kB pathway, NOD1/NOD2 
activate the mitogen-activated protein kinase (MAPK)-signal-
ing pathway, which results in proinflammatory cytokine secre-
tion (Fig. 2).32,33 NOD2 can also sense viral ssRNA, after which it 
activates interferon production and antiviral defense.34

Transcription activation
Antigen presentation by major histocompatibility complex 
(MHC) class I and II molecules is central to the function of the 
adaptive immune system. Therefore, the regulation of these 
MHC genes and their accessory molecules is crucial for the 
adaptive immune response. In 1993, NLRA (CIITA) was found 
to function as a transactivator of MHC class II gene expression. 
Complementary experiments showed that the NLRA fully cor-
rected the MHC class II regulatory defect of cells from patients 
with bare lymphocyte syndrome. This rare genetic disorder is 
characterized by severe combined immunodeficiency and a 
complete lack of the expression of MHC class II molecules in all 
tissues.35 Recent studies have shown that NLRC5 plays a crucial 
role in the expression of the MHC class I gene. NLRC5 induced 
by interferon-γ acts as a transactivator of the MHC class I gene 
by assembling regulatory factor X (RFX), cAMP-responsive-ele-
ment-binding protein 1 (CREB1), activating transcription factor 
1 (ATF1), and nuclear transcription factor Y (NFY) on the SXY 
module in the MHC class I promoter.36,37 Although MHC-I and 
-II expression depends on several transcription factors such as 
NF-kB, the IFN regulatory factor family, RFX, CREB1, ATF1, and 
NFY, MHC expression requires the presence of the NLRA and 
NLRC5.4,37

Autophagy
Autophagy is a fundamental cellular homeostatic mechanism 
in which cells autodigest parts of their cytoplasm for removal or 
turnover. Based on the target of degradation, autophagy has 
been described as mitophagy, reticulophagy, and pexophagy 
for autodigestion of the mitochondria, endoplasmic reticulum, 
and peroxisomes, respectively. In contrast to autophagy, xenoph-
agy refers to an autophagic pathway that targets intracellular 
bacteria and viruses.38 Autophagy is mediated by unique organ-
elles called autophagosomes, which fuse with lysosomes and 
allow lysosomal enzymes to degrade the sequestered cytoplas-
mic materials in autolysosomes.38 Autophagosome formation 
involves many autophagy-related (ATG) proteins.38

NOD1 and NOD2 can induce autophagy to remove patho-
gens by recruiting ATG16L1 to the plasma membrane at the site 
of bacterial entry (Fig. 2).39 NLRX1, located in mitochondria, 
regulates virus-induced autophagy by interacting with the Tu 
translation elongation factor of mitochondria (TUFM) that 
then interacts with ATG5–ATG12 and ATG16L1.40 NLRP4 is 
known as a negative regulator of autophagic processes through 
an association with beclin1, one of the key initiators of the au-
tophagic process.41Ta
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CLINICAL RELEVANCE OF NLR

In addition to NLRs playing a crucial role in defending against 
pathogens as a pattern recognition receptor, they also have oth-
er functions unrelated to pathogen detection, such as apoptosis 
and playing a role in early development. Therefore, their abnor-
malities are linked to various diseases associated with infec-
tions, inflammation, and cancer. Understanding their roles in 
the pathogenesis of certain diseases may help us develop new 
drugs or new approaches to prevent and treat these diseases. 
Genome-wide association studies have shown a significant as-
sociation of polymorphisms of NLR genes with various diseas-
es.7,10 NLR-associated diseases are summarized in Table 1. De-
scribed below are several examples of NLR studies that have 
shed new insights into disease mechanisms.

Autoinflammatory diseases and NLRs
Autoinflammatory diseases are self-directed inflammatory dis-
eases involving innate immune cells without autoantibodies or 
autoreactive T cells, whereas autoimmune diseases involve dys-
functional adaptive immune systems producing autoreactive B 
or T cells.42 Reflecting the important roles of NLRs in inflamma-
tion, abnormalities of NLRs have been associated with several 
(but not all) autoinflammatory diseases. Based on the genes in-
volved, autoinflammatory diseases can be classified into mono-
genic and polygenic diseases.11,42 Monogenic autoinflammato-
ry diseases are caused by abnormalities of a single gene and 
include FMF (MEFV), CAPS (NLRP3), deficiency of interleu-
kin-1 receptor antagonist (IL1RN), TNF receptor-associated 
periodic syndrome (TNFRSF1A), hyperimmunoglobulinemia 
D with periodic fever syndrome (MVK), and Blau syndrome 
(NOD2).11,42 Polygenic autoinflammatory diseases include gout 
and Crohn’s disease.11,42 Most autoinflammatory diseases can 
be explained by the overproduction of IL-1, which occurs as a 
consequence of inflammasome activation.11 For example, FMF 
is the most prevalent hereditary autoinflammatory disease in 
the world and is characterized by recurrent one- to three-day 
attacks of fever, serositis presenting as abdominal or pleuritic 
chest pain, and arthritis.11,12 FMF is caused by mutations of the 
MEFV gene, which encodes pyrin.12 Although the association 
between FMF and pyrin mutations is well established, how 
pyrin mutation develops into FMF has not been explained. The 
MEFV gene does not belong to the NLRs family; however, the 
mutation of the MEFV gene leads to dysregulation of caspase-1, 
which is similar to the result of NLRP3 (NLR family, “pyrin” do-
main containing 3) activation.11 Nevertheless, the involvement 
of NLR genes with some autoinflammatory diseases reflects 
their important roles in inflammation.

Diseases associated with inflammasome-forming NLRs
Although several NLRs can form inflammasome,7,10 the NLRP3 
inflammasome has been the most studied. Studies found that 
NLRP3 can recognize a wide range of endogenous and exoge-

nous DAMPs such as uric acid, alum, silica, and asbestos.10 Be-
low are descriptions of how NLRP3 is associated with gout, sili-
cosis, asbestosis, and CAPS and how it is related to the role of 
alum as a vaccine adjuvant.

Gout is a common metabolic disease described from 2600 
BC as podagra, although today it is understood as uric acid ar-
thropathy.43 It is characterized by recurrent, sudden, and severe 
attacks of pain, redness, and tenderness in joints due to deposi-
tion of monosodium urate, a crystallized form of uric acid. 
However, it was unclear how uric acid could cause inflamma-
tory events until uric acid was found to activate the NLRP3 in-
flammasome.44 The NLRP3 inflammasome becomes activated 
in response to uric acid, and its activation induces the forma-
tion of IL-1, which leads to the development of gouty arthropa-
thy. Several randomized controlled trials have shown that IL-
1-blocking therapy results in significant relief of pain and a 
reduction in the occurrence of acute flare-ups in gouty pa-
tients.11

Silicosis, an occupational disease related to mining and con-
struction work, is characterized by pulmonary fibrosis after in-
halation exposure to silica. Asbestosis is a similar pulmonary fi-
brotic disorder following inhalation of asbestos. A recent study 
showed that silica and asbestos can cause alveolar macro-
phages to activate NLRP3 inflammasome and produce IL-1β, 
which leads to the development of pulmonary fibrosis.45

CAPS are rare autoinflammatory diseases, which include fa-
milial cold autoinflammatory syndrome, Muckle-Wells syn-
drome, and neonatal-onset multisystem inflammatory dis-
ease.46 Patients with CAPS usually present to physicians with 
overlapping symptoms such as fever, urticarial skin rash, vary-
ing degrees of arthralgia/arthritis, and neutrophil-mediated in-
flammation.46 CAPS are associated with gain-of-function muta-
tions in the NLRP3 gene,46-48 with these mutations inducing an 
overproduction of IL-1β, which causes CAPS.46-48 When IL-
1-blocking therapy was given to CAPS patients, significant clini-
cal responses were reported.49

Aluminum hydroxide (alum) has been used as a vaccine ad-
juvant since the 1920s; however, its mechanism of action was 
unknown. However, recently, a link has been reported between 
alum and the NLRP3 inflammasome.50 Alum promotes local 
necrosis in vaccinated muscle tissue, which leads to the release 
of DAMPs such as uric acid. DAMPs as well as the alum itself 
activate NLRP3 inflammasome, which enhances the immune 
response to vaccine.50 Gaining a better understanding of the 
role that alum adjuvant plays in the immune response may 
lead to the development of new vaccine adjuvants.

Single nucleotide polymorphisms (SNPs) in the NLRP3 gene 
are associated with many disorders such as type 1 diabetes,51 
celiac disease,51 psoriasis,52 increased susceptibility to human 
immunodeficiency virus (HIV)-1 infections,53 and inflammato-
ry bowel diseases.54 NLRP3 is also associated with type 2 diabe-
tes in obese individuals.55 NLRP3 inflammasome in adipose tis-
sue macrophages senses ceramides generated from free fatty 
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acids in obese patients, which can cause obesity-induced in-
flammation and insulin resistance.55 The development of an ef-
fective inhibitor of the NLRP3 inflammasome could, thus, pro-
vide a potential therapeutic agent for these NLRP3-associated 
diseases.56

In addition to the NLRP3 inflammasome, the other NLR in-
flammasomes are also associated with many diseases. NLRP1 
polymorphisms are significantly associated with vitiligo,57,58 ce-
liac disease,59 Addison’s disease,60,61 type 1 diabetes,60 autoim-
mune thyroid disorders,62 systemic lupus erythematosus,63 sys-
temic sclerosis,64 giant cell arteritis,65 congenital toxoplasmosis,66 
rheumatoid arthritis,67 Alzheimer’s disease,68 and corneal in-
traepithelial dyskeratosis.69 NLRP2 gene mutations are associ-
ated with Beckwith-Wiedemann syndrome, which is a congen-
ital overgrowth syndrome associated with developmental 
abnormalities and a predisposition to embryonic tumors.70 
NLRP6 expression is predominantly localized in intestinal tis-
sue and is associated with increased susceptibility to colitis and 
colon cancer in a mouse model.71 Mutations in the maternal 
gene NLRP7 are associated with recurrent hydatid moles,72 and 
increased NLRP7 gene expression is observed in testicular 
seminoma73 and endometrial cancer.74 NLRP12 mutations are 
associated with atopic dermatitis75 and hereditary periodic fe-
ver syndrome.76 NAIP gene mutations are associated with spi-
nal muscular atrophies that are characterized by autosomal re-
cessive disorder and spinal cord motor neuron depletion.77 

Diseases associated with non-inflammasome-
forming NLRs
Crohn’s disease is a chronic inflammatory disease in the gas-
trointestinal tract. Mutations of the NOD2 gene are associated 
Crohn’s disease, although many patients with Crohn’s disease 
do not have NOD2 mutations.25,78 Most NOD2 mutations (93%) 
in Crohn’s disease patients are located in the leucine-rich-repeat 
region,4,78 which is responsible for ligand binding. Loss-of-func-
tion mutation of NOD2 prevents responses to bacterial MDP in 
the gut, which might lead to proliferation of commensal or 
pathogenic gut microbiota in the crypts and disruption of mu-
cosal integrity.4

Mutations and SNPs of the NOD2 gene are also associated 
with Blau syndrome, which is characterized by familial granu-
lomatous arthritis, uveitis, and skin granulomas.79 Atopic ec-
zema,80 atopic dermatitis,75 and susceptibility to leprosy81 and 
tuberculosis82 are associated with NOD2 gene mutations. 
Polymorphisms of the NOD1 gene are linked to asthma83 and 
inflammatory bowel diseases.84

Bare lymphocyte syndrome type II, also called hereditary 
MHC class II deficiency, is a severe combined immunodefi-
ciency that results from a lack of expression of MHC class II 
molecules in all tissues.35 Patients with this disease suffer from 
multiple infections and frequently die at an early age.35 Loss-of-
function due to NLRA mutations leads to reduced expression of 
MHC class II genes that affect CD4+ T cell function, which in 

turn causes immune deficiency. Therefore, bare lymphocyte 
syndrome is an attractive candidate for gene therapy.

Breaks in the NLRA gene were found to occur in B-cell lym-
phomas, such as primary mediastinal B-cell lymphoma and 
classical Hodgkin’s lymphoma. In addition, NLRA gene altera-
tions have been associated with decreased survival in primary 
mediastinal B-cell lymphoma.85

CONCLUSION

NLRs are important in the recognition of PAMPs and DAMPs; 
they also play a crucial role in immune response and pathogen 
detection. However, NLRs are also important in basic biologic 
processes, such as apoptosis and embryonic development. 
Many human NLRs remain poorly characterized and under-
stood. Thus, as we learn more about the function of human 
NLRs, we will find their pathogenic roles in more diseases and 
develop novel strategies for treating and/or preventing these 
diseases.
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