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Abstract: The transport of hydrophobic compounds to recipient cells is a critical step in nutrient
supplementation. Here, we tested the effect of phospholipid-based emulsification on the uptake
of hydrophobic compounds into various tissue culture cell lines. In particular, the uptake of ω-3
fatty acids from micellar or nonmicellar algae oil into cell models for enterocytes, epithelial cells, and
adipocytes was tested. Micellization of algae oil did not result in adverse effects on cell viability in the
target cells. In general, both micellar and nonmicellar oil increased intracellular docosahexaenoic acid
(DHA) levels. However, micellar oil was more effective in terms of augmenting the intracellular levels
of total polyunsaturated fatty acids (PUFAs) than nonmicellar oil. These effects were rather conserved
throughout the cells tested, indicating that fatty acids from micellar oils are enriched by mechanisms
independent of lipases or lipid transporters. Importantly, the positive effect of emulsification was not
restricted to the uptake of fatty acids. Instead, the uptake of phytosterols from phytogenic oils into
target cells also increased after micellization. Taken together, phospholipid-based emulsification is a
straightforward, effective, and safe approach to delivering hydrophobic nutrients, such as fatty acids
or phytosterols, to a variety of cell types in vitro. It is proposed that this method of emulsification is
suitable for the effective supplementation of numerous hydrophobic nutrients.
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1. Introduction

The lipophilic nature of fatty acids and unsaponifiable lipids poses a major technological challenge
for the food industry. Lipophilic compounds relevant to food supplementation include fat-soluble
vitamins; secondary plant metabolites, such as polyphenols and phytosterols; and polyunsaturated
fatty acids (PUFAs), includingω-3 fatty acids [1].

It is generally accepted that ω-3 fatty acids exert numerous beneficial effects on human health.
Despite inconclusive evidence for the reduction of mortality,ω-3 fatty acids prevent hyperlipidemia [2],
exert anti-inflammatory properties [3], and are indispensable for brain development [4]. While fish oils
are rich in ω-3 fatty acids, there is increasing demand for alternative sources from environmentally
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sustainable and non-animal origins. Algae oils are an alternative and vegan resource of ω-3 fatty
acids—especially eicosapentaenoic acid (EPA) and docosahexaenoic acid DHA—and are superior over
fish oils in terms of sustainability as well as sensory properties [5]. In addition, algae oils were shown
to mimic the beneficial effects of fish oils. Specifically, oil of the marine alga Schizochytrium sp. has
been used to prevent abdominal fat accumulation in mice [6], mediate anti-inflammatory effects in
patients with rheumatoid arthritis [7], and improve learning in a canine model [8].

Phytosterols are plant-derived cholesterol analogs and are known to lower plasma low-density
lipoprotein (LDL)-cholesterol levels by competitive inhibition of cholesterol absorption [9]. In addition,
the anti-inflammatory properties of phytosterols have been proposed [10]. Indeed, phytosterol-fortified
beverages decrease the activity of pro-inflammatory signaling pathways in human subjects without
hyperlipidemia [11,12]. Furthermore, phytosterols were found to be beneficial in a murine model
of experimental colitis [13], altogether demonstrating that phytosterols have the potential to
modulate inflammatory diseases beyond LDL-cholesterol reduction. To deliver these and other
lipophilic compounds to desired target cells, various methods, including emulsification [14],
microencapsulation [15], and gelled emulsion [16], have been applied. For instance, soya lecithin
improved bioavailability of α-linolenic acid [17] in rats. Similarly, crude lecithin increased the
bioavailability of DHA from fish and vegetable oil in rats [18].

In this study, we investigated the efficacy of oil emulsification by phospholipid-based micellization
for the delivery ofω-3 fatty acids from algae oil derived from Schizochytrium sp. and phytosterols from
phytogenic oil to recipient cells using a variety of human cell models. Specifically, cell models for
enterocytes, epithelial cells, and adipocytes were chosen for this study with respect to their different
capabilities of processing and transporting lipophilic compounds. Our results provide evidence for
the increased uptake of fatty acids and phytosterols from micellar phytogenic oil compared to that of
nonmicellar phytogenic oil, which was largely independent of the respective cellular model system.

2. Materials and Methods

2.1. Cell Culture

Cells were maintained under standard conditions and routinely checked for mycoplasma infections.
Cell culture reagents were obtained from Biochrom GmbH (Berlin, Germany). Caco-2 cells (HTB-37;
ATCC, City of Manassas, VA, USA) were maintained in Minimum Essential Media with Earle’s
salts supplemented with penicillin/streptomycin and 10% FBS. For differentiation, cells were grown
until confluency and then incubated with Entero-STIM intestinal epithelium differentiation medium
supplemented with 0.1% MITO + serum extender (all from Corning, Wiesbaden, Germany) and
penicillin/streptomycin. Cells were used for experiments after five days of differentiation.

3T3-L1 cells (CL-173, ATCC) were maintained in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with penicillin/streptomycin and 10% FBS as previously reported [19]. For differentiation,
cells were grown until confluency and cultivated for another five days, and the media was exchanged
twice. Afterward, cells were incubated with differentiation media (DMEM containing 10% FBS
and penicillin/streptomycin supplemented with 0.25 µmol/L dexamethasone, 10 µg/mL insulin, and
500 µmol/L 3-isobutyl-1-methylxanthine (IBMX); all from Sigma-Aldrich, Schnelldorf, Germany)
for three days. Cells were grown in post-differentiation media (DMEM containing 10% FBS and
penicillin/streptomycin supplemented with 10 µg/mL insulin) for another seven days, and the media
was exchanged two times prior to use for experiments.

MDCK.2 cells (CRL-2936, ATCC) were maintained in Minimum Essential Media with Earle’s salts
supplemented with penicillin/streptomycin and 10% FBS.

OP9 cells (CRL-2749; ATCC) were maintained in Alpha Minimum Essential Medium without
ribonucleotides and deoxyribonucleotides supplemented with sodium bicarbonate (2.2 g/L),
penicillin/streptomycin, and 20% FBS. For differentiation, cells were grown until confluency and
cultivated in DMEM supplemented with 10% FBS and penicillin/streptomycin for another two
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days. Afterwards, cells were incubated in differentiation media (see above) for three days and in
post-differentiation media (see above) for another four days.

2.2. Uptake of Fatty Acids from Algae Oils

Cells were seeded into 15-cm dishes and differentiated as described above when indicated.
Micellar oil containing 10% algae oil derived from Schizochytrium sp. was emulsified in water with
glycerol and soy-phospholipids and was obtained from Bio-Gen (Montabaur, Germany) and diluted in
DMEM + 10% FBS to a final concentration of 1% or 0.5% for experiments using Caco-2 cells or 3T3-L1
and OP9 cells, respectively. Nonmicellar, pure algae oil (Bio-Gen) was diluted 1/10 in 70% ethanol
and was further diluted in DMEM + 10% FBS to a final concentration of 1% or 0.5% for experiments
using Caco-2 or 3T3-L1 cells, respectively. After 6 h of incubation, cells were washed four times with
PBS, detached using trypsin, and resuspended in DMEM + 10% FBS. Cells were centrifuged (4 ◦C,
200× g, 5 min), and cell pellets were washed with ddH2O followed by another step of centrifugation.
Cell pellets were dried in a vacuum centrifuge and further processed for fatty-acid methyl ester
(FAME) analysis.

2.3. FAME Analysis

For transesterification, samples were mixed with 200 µL methanolic sodium hydroxide (0.5 mol/L;
Sigma-Aldrich, St. Louis, MO, USA) and incubated at 60 ◦C for 45 min while shaking. Next, 300 µL
methanolic boron trifluoride solution (1.3 mol/L; Sigma-Aldrich, St. Louis, MO, USA) was added, and
incubation was continued for another 30 min. The reaction was stopped by the addition of 200 µL
saturated sodium chloride solution. FAMEs were extracted with n-hexane and subjected to GC-MS
analysis. Capillary GC-MS analysis was performed using a Trace 1300 GC with an ISQ QD mass
selective detector and a PTV injector (Thermo Fisher Scientific, Waltham, MA, USA). One microliter of
sample was separated using a DB-23 column (60 m × 0.25 mm, film thickness: 0.25 µm; Agilent, Santa
Clara, CA, USA) and a constant helium carrier gas flow of 1.5 mL/min. The injector temperature was
set to 240 ◦C. The oven temperature program was as follows: 130 ◦C for 5 min; heating to 170 ◦C at
6.5 ◦C/min; heating to 215 ◦C at 1.50 ◦C/min; 215 ◦C for 12 min; heating to 240 ◦C at 5.0 ◦C/min; and
240 ◦C for 10 min. The mass spectra were recorded over 40–500 m/z. Quantification was carried out
using external calibration with specific FAME standards in the range of 5–400 µg/mL. The amount of
individual fatty acids was determined relative to the total fatty acid content.

2.4. Cell Viability Assay

Cells were seeded into 96-well plates, and differentiation was initiated as described above. Cells
were treated with micellar and nonmicellar oils in the same concentrations as used for the uptake assays.
After 24 h, cell viability was assessed by measuring metabolically active cells using a resazurin-based
in vitro toxicology assay kit (Sigma-Aldrich, Schnelldorf, Germany).

2.5. Uptake of Phytosterol from Plant Oils

Caco-2 cells were seeded into 15-cm dishes and differentiated as described above. MDCK.2 cells
were seeded into 15-cm dishes and cultivated until confluency was achieved. Micellar phytogenic
oil containing 3% oil emulsified in water with glycerol and soy-phospholipids (Bio-Gen) as well as
nonmicellar phytogenic oil containing 3% oil and glycerol only (Bio-Gen) were diluted 1:4 in DMEM +

10% FBS, resulting in a final concentration of 0.75% oil. During incubation, cells were gently agitated
every hour. After 6 h of incubation, cells were washed four times with PBS, detached using trypsin and
resuspended in DMEM + 10% FBS. Cells were centrifuged (4 ◦C, 200× g, 5 min), and the cell pellets
were washed with ddH2O followed by another step of centrifugation. Cell pellets were dried in a
vacuum centrifuge and further processed for phytosterol analytics.
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2.6. Phytosterol Analytics

Dried cell pellets were weighed and incubated with 600 µL ethanolic sodium hydroxide (2 mol/L)
at 80 ◦C for 1 h to hydrolyze phytosterol-esters. After the addition of 300 µL ddH2O, phytosterols
were extracted with hexane, evaporated, dissolved in chloroform, and subjected to HPLC-MS analysis.
Analyses were carried out using a Surveyor HPLC (Thermo Fisher Scientific, Waltham, MA, USA)
attached to an Orbitrap Velos (Thermo Fisher Scientific, Waltham, MA, USA) mass spectrometer, which
was operated in ion trap mode as previously reported [20]. Ionization was achieved via an atmospheric
pressure chemical ionization (APCI) ion source in positive mode, and the m/z ratios of campesterol
(383.3 ± 0.5), stigmasterol (395.4 ± 0.5), and β-sitosterol (397.4 ± 0.5) were recorded in SIM mode.
Compounds were separated on an Accucore C18 column (150 mm × 3 mm, 2.6 µL; Thermo Fisher
Scientific, Waltham, MA, USA) at 40 ◦C using a ternary gradient of methanol/acetonitrile with 0.1%
formic acid/2-propanol (75/20/5 for 23 min; 20/70/10 for 4 min; and 75/20/5 for 3 min). Quantification
was carried out using external calibration with campesterol, stigmasterol, and β-sitosterol (Sigma
Aldrich, St. Louis, MO, USA), and the phytosterol concentrations were normalized to cell dry mass.

2.7. Statistics

Data are expressed as the mean ± SD. Statistical analysis was performed using GraphPad Prism
(GraphPad Software, San Diego, CA, USA; version 8.0.2). Two-sided t-tests were applied to compare two
experimental groups. ANOVA followed by Tukey’s multiple testing corrections was used to compare more
than two experimental groups. Significant p-values are indicated as * (≤0.05), ** (≤0.01), or *** (≤0.001).

3. Results

3.1. Analysis of Fatty Acid Composition of Algae Oil

To study the effect of micellization on the delivery of fatty acids to recipient cells, algae oils
were either used in their native, nonmicellar form (“oil”) or after micellization (“micellar oil”). Both
preparations were comparable in terms of their total fatty acid content (Table 1), with oleic acid, palmitic
acid, docosapentaenoic acid (DPA), and DHA quantitatively being the most important fatty acids.
Algae oils consisted of ~64% DHA.

Table 1. Total fatty acid composition of native and micellar algae oils.

Fatty acid Formula Configuration Oil Micellar Oil

Relative Content

lauric acid C12:0 n.a. 0.08% 0.05%
myristic acid C14:0 n.a. 0.35% 0.43%
myristoleic acid C14:1 Z 0.30% 0.42%
palmitic acid C16:0 n.a. 11.12% 12.08%
palmitoleic acid C16:1 Z 0.17% 0.25%
heptadecanoic acid C17:0 n.a. 0.05% 0.05%
heptadecenoic acid C17:1 Z 0.19% 0.17%
stearic acid C18:0 n.a. 1.10% 1.23%
oleic acid C18:1 n-9 Z 6.71% 5.85%
linoleic acid C18:2 n-6 all Z 1.54% 1.94%
alpha-linolenic acid C18:3 n-3 all Z 0.20% 0.23%
arachidic acid C20:0 n.a. 0.07% 0.08%
eicosenoic acid C20:1 n-9 Z 0.03% 0.03%
dihomo-gamma-linolenic acid C20:3 n-6 all Z 0.11% 0.08%
arachidonic acid methyl ester C20:4 n-6 all Z 0.09% 0.10%
eicosapentaenoic acid (EPA) C20:5 n-3 all Z 0.42% 0.51%
behenic acid C22:0 n.a. 0.11% 0.13%
decosapentaenoic acid (DPA) C22:5 n-3 all Z 13.95% 11.97%
decosahexaenoic acid (DHA) C22:6 n-3 all Z 63.41% 64.40%

n.a., not applicable.
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3.2. Uptake of Algae Oil into Cell Models of Enterocytes

Different cell models were incubated with the oil preparations, and the enrichment of fatty acids
in the target cells was analyzed. In initial experiments, palmitic acid, palmitoleic acid, stearic acid,
cis-9-oleic acid, linoleic acid, α-linolenic acid, arachidonic acid, EPA, DPA, and DHA were identified as
the most abundant relevant fatty acids in the cell lines used; therefore, the content of these fatty acid
species was analyzed in detail.

To mimic fatty acid uptake in the intestine, human Caco-2 cells were differentiated to resemble
enterocytes of the small intestine [21,22]. Figure 1a shows that incubation of cells with nonmicellar
bulk oil increased the content of cellular DHA. The micellar oil likewise increased the DHA content as
well as the linoleic and α-linolenic acid contents. Only the micellar oil augmented the total content of
cellular PUFAs (Figure 1b). Both oil preparations slightly decreased cell viability. This decrease was
more pronounced after incubation with micellar oil compared to that after incubation with nonmicellar
oil (Figure 1c).
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Figure 1. Uptake of fatty acids from algae oil into differentiated Caco-2 cells. Cells were incubated
with native or micellar oils at a final concentration of 1% for 6 h. Total fatty acid content was measured
by GC-MS. The relative fatty acid composition (a) and distribution of fatty acid classes (b) are shown.
The inset indicates an enlarged view on α-linolenic acid (α-LN) levels. Cell viability was assessed after
incubation with 1% oil or micellar oil for 24 h (c). Data are derived from three independent experiments.
Bars represent mean ± SD. Asterisks indicate statistically significant differences from untreated controls.
*** p < 0.001 and * p < 0.05.
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Differentiated Caco-2 cells are known to resecrete fatty acids after the formation of chylomicron-like
particles compared to native enterocytes. We therefore tested whether the observed increase in PUFAs by
micellar oil was a consequence of altered fatty acid uptake or resecretion. Therefore, nondifferentiated
Caco-2 cells cultivated under standard conditions, which do not secrete chylomicron-like particles [23],
were used as a model system.

Similar to differentiated Caco-2 cells, both the micellar and nonmicellar oils elevated relative DHA
levels, but only incubation with micellar oil increased linoleic and α-linolenic acid content (Figure 2a).
In contrast, micellar oil reduced the relative concentrations of palmitic and oleic acid. Again, only
the micellar oil increased the total PUFA content (Figure 2b). Cell viability was slightly reduced by
both oil preparations and did not differ between micellar and nonmicellar oil (Figure 2c). These data
indicate that micellar oils increase cellular PUFA content because of increased uptake rather than by
modifying resecretion.
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Figure 2. Uptake of fatty acids from algae oil into nondifferentiated Caco-2 cells. Cells incubated with
native or micellar oils at a final concentration of 1% for 6 h. The total fatty acid content was measured
by GC-MS. The relative fatty acid composition (a) and distribution of fatty acid classes (b) are shown.
The inset indicates an enlarged view on α-linolenic acid (α-LN) levels. Cell viability was assessed after
incubation with 1% oil or micellar oil for 24 h (c). Data are derived from three independent experiments.
Bars represent mean ± SD. Asterisks indicate statistically significant differences from untreated controls.
**** p < 0.0001, *** p < 0.001, ** p < 0.01 and * p < 0.05.
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3.3. Uptake of Algae Oil into Adipocyte Cell Models

We then aimed to analyze whether the uptake of micellar oil relies on extracellular lipase activity.
Caco-2 cells possess limited extracellular lipase activity [24]. In contrast, adipocytes express and
secrete lipoprotein lipase (LPL), which is capable of hydrolyzing free fatty acids from triglyceride-rich
particles [25]. Thus, 3T3-L1 cells were differentiated into adipocytes, which represents a widely used
adipocyte model that is known to express both LPL and its activator apolipoprotein C-II [26].

Experiments with 3T3-L1 adipocytes yielded results comparable to those obtained with the
enterocyte model: while the nonmicellar oil increased cellular DHA content only, the micellar oil
augmented the levels of DHA, α-linolenic acid, and linoleic acid (Figure 3a). In parallel, the micellar
oil decreased relative arachidonic acid levels. In contrast to the enterocyte model, however, both
oil preparations increased cellular PUFA content significantly, whereas the MUFA content declined
(Figure 3b). A slight reduction in cell viability was observed only after incubation with nonmicellar oil
(Figure 3c).
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Figure 3. Uptake of fatty acids from algae oil into 3T3-L1 adipocytes. Cells were incubated with
native or micellar oils at a final concentration of 0.5% for 6 h. Total fatty acid content was measured
by GC-MS. Relative fatty acid composition (a) and distribution of fatty acid classes (b) are shown.
The inset indicates an enlarged view on α-linolenic acid (α-LN) levels. Cell viability was assessed
after incubation with 0.5% oil or micellar oil for 24 h (c). Data are derived from three independent
experiments. Bars represent mean ± SD. Asterisks indicate statistically significant differences from
untreated controls. **** p < 0.0001, *** p < 0.001, ** p < 0.01 and * p < 0.05.
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In addition to 3T3-L1 cells, we investigated the uptake of micellar oil in another adipocyte cell
model: OP9 mouse stromal cells can be differentiated into adipocytes and are frequently used as a
model of adipogenesis [27]. Similar to 3T3-L1, OP9 cells express high levels of LPL [28]. As shown in
Figure 4, only the micellar oil increased cellular DHA, α-linolenic acid, and PUFA content significantly,
whereas the MUFA concentration remained unchanged. In contrast, the nonmicellar oil did not change
any of the aforementioned parameters significantly. No effect on cell viability was observed for either
micellar or non-micellar oil (Figure 4c).
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Figure 4. Uptake of algae oil into OP9 adipocytes. Cells were incubated with native or micellar oils at a
final concentration of 0.5% for 6 h. Total fatty acid content was measured by GC-MS. Relative fatty acid
composition (a) and distribution of fatty acid classes (b) are shown. The inset indicates an enlarged
view on α-linolenic acid (α-LN) levels. Cell viability was assessed after incubation with 0.5% oil or
micellar oil for 24 h (c). Data are derived from three independent experiments. Bars represent mean
± SD. Asterisks indicate statistically significant differences from untreated controls. **** p < 0.0001,
*** p < 0.001 and * p < 0.05.

3.4. Uptake of Phytosterols from Phytogenic Oil

Finally, we tested whether the effect of micellization is restricted to fatty acid uptake or if it is more
general in nature and likewise affects the cellular delivery of other lipophilic compounds. Therefore,
the uptake of phytosterols from phytogenic oil into recipient cells was analyzed using either native or
micellar phytogenic oil.
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In an initial analysis, β-sitosterol, campesterol, and stigmasterol were identified in the phytogenic
oil at relative ratios of ~100:50:1 by HPLC-MS. Subsequently, differentiated Caco-2 cells were incubated
with nonmicellar or micellar phytogenic oil, and the cellular content of β-sitosterol was quantitated.
While β-sitosterol was not detected in untreated cells, incubation with phytogenic oils led to an
increase in the β-sitosterol content. This effect was more pronounced after incubation with micellar
oil (Figure 5a). Cellular stigmasterol levels were beyond the detection limit of HPLC-MS analysis,
even after treatment with micellar or nonmicellar oil. Quantification of cellular campesterol levels
was hindered due to partial overlap with an endogenous compound at m/z = 383, which remains to be
identified. Neither the micellar oil nor nonmicellar oil interfered with cell viability (Figure 5b).

In MDCK.2 cells, a widely used model for epithelial cells, comparable effects were observed:
β-sitosterol increased to a higher extent after incubation with the micellar phytogenic oil than after
incubation with the nonmicellar oil, and neither of the oils interfered with cell viability (Figure 5c,d).
Altogether, this indicates that micellization favors the cellular uptake of lipophilic compounds and that
this effect is not restricted to fatty acids.
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Figure 5. Uptake of phytosterols from phytogenic oil. Differentiated Caco-2 cells (a) or MDCK.2 cells (c)
were incubated with native or micellar oils at a final concentration of 0.75% for 6 h. Cellular β-sitosterol
content was quantified by HPLC-MS and normalized to cell dry mass. Cell viability of Caco-2 (b) or
MDCK.2 cells (d) was assessed after incubation with 0.75% oil or micellar oil for 24 h. Data were pooled
from two independent experiments performed in duplicate. Bars represent mean ± SD. * p < 0.05.
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4. Discussion

We investigated the delivery of hydrophobic compounds from natural oils to target cells utilizing
different cellular models. Micellar and nonmicellar algae oil was tested in cell models of enterocytes
(Caco-2), epithelial cells (MDCK.2), and adipocytes (3T3-L1 and OP9). Micellization of the oil resulted
in increased uptake of DHA and PUFAs compared to that of nonmicellar oil, an effect that was
observed throughout the cell lines tested. This indicates that fatty acids from micellar oils are enriched
intracellularly by mechanisms independent of lipases, lipid transporters, or lipid export mechanisms.

The amphiphilic nature of molecules necessary for micellization is of potential concern regarding
adverse cytotoxic effects. Such effects were not apparent in the present study. Algae oils slightly
decreased cell viability in Caco-2 cells, but only if applied for 24 h. The fact that this effect was
comparable between the micellar and nonmicellar oils indicates that the reduction in cell viability is an
adverse effect of lipid loading rather than being caused by the micellization process itself. Indeed, no
adverse effect on cell viability was observed using micelles without algae oil alone (Supplementary
Figure S1).

Micellar oil not only led to increases in DHA but also of α-linolenic acid and linoleic acid.
However, the algae oil itself is low in these fatty acid species. DHA can be retro-converted to EPA via
β-oxidation [29]. EPA itself is likewise rapidly catabolized, which ultimately leads to the formation of
α-linolenic acid [30]. Therefore, the increase in α-linolenic acid in cell lines treated with micellar algae
oil is likely caused by the partial catabolism of DHA. The increase in linoleic acid after incubation
with micellar oil remains to be clarified because both algae oil preparations only contain 1–2% of this
fatty acid.

Interestingly, the application of micellar oil significantly decreased relative arachidonic acid (ARA)
levels in 3T3-L1 cells and tended to decrease relative ARA levels in Caco-2 cells. ARA is an ω-6 PUFA
consisting of a 20-carbon chain fatty acid and an integral constituent of cell membranes, conferring
it with fluidity and flexibility [31]. However, excess ARA is potentially harmful to human health
because its endoperoxidation leads to the formation of bioactive eicosanoids including prostanoids and
leukotrienes, which favor inflammatory processes [32]. In fact, high ARA intake has been shown to
inhibit the anti-inflammatory and inflammation-resolving effects ofω-3 fatty acids [33]. Therefore, the
observed increase inω-3 fatty acids accompanied by a decrease in ARA may be beneficial, especially
under pre-existing inflammatory conditions, such as cancer, cardiovascular disease, obesity, and
diabetes [34].

Physiological absorption of long-chain fatty acids includes dispersion by bile acids, hydrolysis by
pancreatic lipase, and absorption of monoglycerides and fatty acids. In healthy individuals, this process
guarantees the uptake of 95–100% of fatty acids from the human diet. Under pathophysiological
conditions of fat malabsorption, however, micellization of lipophilic compounds might become
especially important for supplementation with essential fatty acids. Fat malabsorption occurs due to
gastrointestinal diseases, such as Crohn’s disease [35], exocrine pancreatic insufficiency [36], cystic
fibrosis [37], or after gastric bypass surgery [38]. Similarly, the use of Orlistat, an anti-obesity drug
that limits fat absorption by inhibition of pancreatic lipase, leads to fat malabsorption [39]. Patients
under this condition might benefit from the improved bioavailability of emulsified lipophilic nutrients,
especially ω-3 fatty acids. Indeed, it was shown that emulsification increased the bioavailability of
PUFAs, including DHA, in human subjects [40].

In addition to stimulating the uptake of PUFAs into target cells, we showed that phospholipid-based
emulsification is also effective in increasing the uptake of phytosterols from phytogenic oils.
In enterocytes, phytosterol absorption is regulated via uptake by Niemann-Pick C1-like protein 1
(NPC1L1), a process that is counteracted by resecretion of phytosterols via an ATP-dependent
transporter heterodimer formed by ABCG5 and ABCG8 [41,42]. Both cell lines used in our study to
monitor phytosterol uptake express NPC1L1; however, its surface activity is much stronger in MDCK.2
cells than in Caco-2 cells [43]. While Caco-2 express ABCG5 and ABCG8 [44], their presence has not yet
been reported in MDCK.2 cells. In addition, a review of microarray data suggests that their expression
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is absent in MDCK.2 cells [45]. This implies that the cell lines tested in our study have strongly differing
capabilities to handle phytosterols. Despite this, the delivery of phytosterols from micellar oil was
equally effective in both Caco-2 and MDCK.2 cells, indicating that phospholipid-based emulsification
does not rely on specific cellular phytosterol transport mechanisms. Of note, a previous study reported
the successful emulsification of phytosterols using sucrose monolaurate, propylene glycol, and oleyl
lactate [46].

5. Conclusions

Taken together, we investigated phospholipid-based emulsification as an approach to deliver fatty
acids and phytosterols to a variety of cell types. We propose that this is a simple, effective, and safe
approach that is also suitable for the delivery of other lipophilic compounds of interest to the desired
target cells.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/1/150/s1,
Figure S1. Phospholipid-based micelles do not influence cell viability.
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