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Oxygen plays a central role in cellular metabolism, in both healthy and

tumour tissue. The presence and concentration of molecular oxygen in

tumours has a substantial effect on both radiotherapy response and

tumour evolution, and as a result the oxygen micro-environment is an

area of intense research interest. Multi-cellular tumour spheroids closely

mimic real avascular tumours, and in particular they exhibit physiologi-

cally relevant heterogeneous oxygen distribution. This property has

made them a vital part of in vitro experimentation. For ideal spheroids,

their heterogeneous oxygen distributions can be predicted from theory,

allowing determination of cellular oxygen consumption rate (OCR) and

anoxic extent. However, experimental tumour spheroids often depart

markedly from perfect sphericity. There has been little consideration of

this reality. To date, the question of how far an ellipsoid can diverge

from perfect sphericity before spherical assumptions break down remains

unanswered. In this work, we derive equations governing oxygen

distribution (and, more generally, nutrient and drug distribution) in

both prolate and oblate tumour ellipsoids, and quantify the theoretical

limits of the assumption that the spheroid is a perfect sphere.

Results of this analysis yield new methods for quantifying OCR in ellip-

soidal spheroids, and how this can be applied to markedly increase

experimental throughput and quality.
1. Introduction
Oxygen plays a seminal role in cancer treatment and patient prognosis. The

presence of molecular oxygen in a tumour markedly increases radio-sensitivity,

with well-oxygenated regions responding to radiotherapy by up to a factor of 3

relative to anoxic sub-volumes [1,2]. This oxygen enhancement ratio is also seen

in emerging modalities such as proton therapy [3,4], raising the tantalizing pro-

spect of dose painting, where dose is selectively boosted to hypoxic regions to

boost therapy response [5]. The basic idea underpinning dose painting has been

discussed for over a decade, but application has been hampered by difficulty in

non-invasive hypoxia imaging. Methods such as F-MISO PET (fluoromisonidazole

positron emission tomography) have a maximum resolution in the millimetre

regime, while oxygenation varies over a micrometre scale. As a consequence,

mathematical modelling is vital for bridging the resolution gap [6].

Aside from therapeutic considerations, oxygen has a marked impact on

patient prognosis. The pioneering work of Gray and colleagues in the early

1950s established that tumour oxygen concentration was correlated with prog-

nosis, and extensive hypoxia was a negative prognostic marker [7]. This finding

has been well replicated to present day [8–10] and is not solely due to hypoxia-

induced treatment resistance. Under severe hypoxia, tumour cells can respond

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2018.0256&domain=pdf&date_stamp=2018-08-15
mailto:d.r.grimes@qub.ac.uk
mailto:davidrobert.grimes@oncology.ox.ac.uk
mailto:davidrobert.grimes@oncology.ox.ac.uk
https://dx.doi.org/10.6084/m9.figshare.c.4183505
https://dx.doi.org/10.6084/m9.figshare.c.4183505
http://orcid.org/
http://orcid.org/0000-0003-3140-3278
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180256

2
to such pressure by activating oxygen-sensitive signalling

pathways [11,12]. Current biological thinking suggests that

these signalling pathways act to alter gene expression to pro-

mote cell survival under adverse conditions. Hypoxia is also

a major driver of angiogenesis, giving rise to new routes for

cells to travel along [13,14], endowed with the ability to

metastasize [15].

The extraordinary importance of oxygen in cancer treat-

ment and evolution has made it an important avenue of

study, with an urgent need for further research. Despite the

fundamental importance of molecular oxygen in tumours,

investigations have been complicated by the significant

experimental difficulty in ascertaining oxygen concentration

in situ [6]. Real tumours have highly heterogeneous oxygen

supply and complex tortured vasculature, and even well-

oxygenated regions are frequently inter-spaced with pockets

of anoxia [14,16]. Standard two-dimensional monolayers

of cells are not an ideal experimental model, typically exhibit-

ing an unrealistically homogeneous oxygen contribution.

There is however a more realistic experimental option in the

form of tumour spheroids. These clusters of cancer cells

grow in approximately spherical three-dimensional aggre-

gates, and exhibit signalling and metabolic profiles more

similar to real tumours than is observed in monolayer

approaches [17–19].

Like monolayers, spheroids are relatively easy to cul-

ture, and growing interest has seen them used for a

variety of purposes, including radiobiological application

as a means to test fractionation [20–23], as a model for

drug delivery [24–28], for investigation of the stem-cell

hypothesis [29] and for exploring FDG-PET (fludeoxyglu-

cose positron emission tomography) dynamics [30] for

hypoxia in solid tumours. Crucially, the non-homogeneous

oxygen distributions in tumour spheroids have been

well studied [31–33]. Research to date shows that cellular

oxygen consumption rate (OCR) has a known influence

on the oxygen concentration throughout a spheroid, and

directly influences the extent of central anoxia and the

viable rim thickness by known mathematical relationships

[32]; thus measuring these aspects allows an experimenter

to determine OCR with relative ease compared with other

methods [28].

Such methods and the underlying theory are exception-

ally important to understanding the factors that influence

tumour oxygen distribution, yet all these methods rely on

an implicit assumption of perfect sphericity. There is a clear

rationale behind this, as symmetry considerations simplify

the problem greatly. Yet in experimental conditions, imper-

fect spheroids are common, frequently growing as extended

ellipsoids. When the eccentricity of these shapes is extreme,

an experimenter may reasonably choose to discard them

from analysis. But this prompts a question: quite how

extreme do such deformations have to be before a spherical

assumption breaks down? Presumably small departures

from sphericity should not impact analysis, whereas highly

eccentric ellipsoids could reasonably be presumed to violate

the underlying theoretical assumptions. The question of

how such eccentricities might skew analysis of spheroids,

and how trustworthy results of such analysis might be, has

not yet been considered in the literature, despite its obvious

practical importance.

These questions are as of yet unanswered, and are of

paramount importance given the growing adoption of
spheroids for cancer research, and their utility in estimat-

ing OCR [31,32]. Knowing the acceptable limits of

eccentricity for spheroid analysis would be of considerable

benefit to experimenters, providing error estimates and

limits of reliability. A full analytic expression for ‘ellipsoi-

dals’ (analogous to the spherical case) would also be of

substantial benefit, allowing the analysis of eccentric

shapes and potentially increasing experimental throughput.

In this work, we seek to address these issues by deriving an

expression for oxygen diffusion in both prolate and oblate

geometries. This is contrasted to the spherical case to deter-

mine the limits of validity for experimental data, and the

implications of this are discussed. A schematic of this is

depicted in figure 1.
1.1. Spheroids and ellipsoids
The general equation of an ellipsoid is given by

x2

a2
þ y2

b2
þ z2

c2
¼ 1, ð1:1Þ

where a, b and c are the major axes’ lengths. For an ellipsoid

with azimuthal symmetry, a ¼ b. When all axes are equal

(a ¼ b ¼ c), the result is a perfect sphere. To date, this is the

only case which has been well studied from a theoretical

standpoint [31–33]. While the mathematical treatments to

date have assumed spheroids are perfect spheres, the

nomenclature ‘spheroid’ still applies to the more general

case, including prolate and oblate spheroids. In this work,

we broaden the mathematical framework to be applicable

to ellipsoids without full spherical symmetry, which

are namely

(1) Prolate spheroids. In the case where c . a, the resulting

ellipsoid is an ellipse rotated around its major axis, the

line joining its foci. This yields a rugby ball-type shape.

(2) Oblate spheroids. Where a . c, an oblate spheroid results,

equivalent to an ellipse rotated around its minor axes.

The resulting shape is discus-like.

Examples of these ellipsoids are shown in figure 2. To

avoid confusion, we use the term spheroid to refer to an ellip-

soidal collection of cells, although we do not limit this to

perfect spheres, qualifying with terms ‘prolate’ or ‘oblate’

as appropriate. We use the term ellipsoid to refer to surfaces

of iso-concentration of oxygen.
2. Model derivation
The full mathematical derivation for oxygen partial pressure in

prolate and oblate spheroids is rather involved, and here we

shall confine ourselves to stating results with a cursory outline

of how they are derived. A full mathematical outline is

provided in the electronic supplementary material, appendix,

S1. Essentially, we are concerned with solving a steady-state

reaction–diffusion problem for oxygen field P of the form

Dr2P ¼ aV, ð2:1Þ

where D is the oxygen diffusion constant in water (typically

D ¼ 2 � 1029 m2 s21) and aV is the oxygen consumption

rate in mmHg s21. This must be solved subject to two crucial

boundary conditions, namely that the surface flux and



spheroids for analysis

image analysis

determination of physical
dimensions/eccentricity

analysis algorithm
(code in the electronic supplementary material, S2)

if eccentricity is below threshold,
spherical assumptions are valid;
OCR and oxygen distribution
calculated assuming sphericity

if eccentricity is above threshold
and inner/outer shells are confocal,
oxygen distribution and OCR are
readily determined by methods

introduced in this work

if eccentricity is above threshold
and inner/outer ellipses are

not confocal, then the spheroid
is warped and should be

discarded from the analysis

Figure 1. Schematic analysis in this work. Below a calculated threshold for eccentricity, spheroids can be treated as having perfect sphericity without introducing
unacceptable error, and their OCR and oxygen distribution established by previously published methods [32]. At greater eccentricities, however, a spherical assump-
tion is no longer valid. If the inner and outer sections are concentric ellipses, these can be analysed by the methods outlined in this work to ascertain OCR and
oxygen distribution. If eccentricity is higher than a threshold value, and inner and outer ellipses are not concentric, this suggests the spheroid is severely warped or
the section is off the central axis, and should be discarded from analysis. See text for details. (Online version in colour.)

(a) (b)

Figure 2. (a) Prolate spheroid and (b) oblate spheroid. The anoxic central
core in both cases (e ¼ 0.75) is depicted in grey, and the hypoxic
extent in red, while well-oxygenated cells are shown in green. Both
ellipsoids have the same volume necrotic core, but their resultant oxygen
distributions are slightly different. See text for discussion.
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Figure 3. Geometry of a spheroid with outer semi-major axis length ro and
inner semi-major axis length rn. On the surface sn, both partial pressure and
oxygen flux are zero. On the outer surface p(so) ¼ po. In spherical coordi-
nates, a point p is specified by a radial distance from centre r and an angle u.
The focal length of the inner spheroid is f.
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oxygen partial pressure at the anoxic boundary must both be

zero. For simple geometries such as perfectly spherical spher-

oids and cylindrical vessels, symmetry can be exploited to

readily yield analytical solutions [33]. In elliptical geometry,

the problem is more involved but the basic premise remains

the same, and is outlined below. The geometry of the

problem is illustrated in figure 3.
2.1. Prolate spheroids
In a prolate spherical geometry, we employ the prolate

spherical coordinate system, using a geometrically intuitive

definition where curves of constant s are prolate spheroids,

while curves of constant t correspond to hyperboloids of

revolution [34]. This is outlined in detail in the electronic

supplementary material, text S1. This yields an analytical
solution, which can be converted directly into spherical

coordinates to yield

PP(r, u) ¼ aV
6D

r2 � r2
n þ f2 sin2 uþ f2 log

r2 � f2 cos2 u

r2
n � f2

� ��

þ r3
n

f

� �
log

(f þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ f2 sin2 u

q
)(f � rn)

(f �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ f2 sin2 u

q
)(f þ rn)

0
B@

1
CA
1
CA,

ð2:2Þ

where f ¼ ern is the distance from the ellipse centre to the foci.
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2.2. Oblate spheroids
In oblate spherical geometry, a similar geometrical definition

exists [35] and can be solved through similar methods, also

outlined in the electronic supplementary material, S1. The

full solution in spherical coordinates is

PO(r,u) ¼ aV
6D

r2 � r2
n þ f2 sin2 uþ 2f2 log

r2 þ f2 sin2 u

r2
n

� ��

þ 2(r2
n þ 2f2)(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

n � f2
p

)

f
arctan

fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � f2 cos2 u

p
 ! 

� arctan
fffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
n � f2

p
!! !

: ð2:3Þ

Both the prolate and oblate form can be alternatively cast in

terms of ro, the outer semi-major axis length, if preferable.

These forms are also given in the electronic supplementary

material, S1.
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2.3. Ellipsoidal confocality
Analogous to the perfect spherical case, confocal elliptical

surfaces in a spheroid are at the same oxygen partial

pressure. For confocal ellipsoidal shells, focal length is

constant, related to the eccentricity ec and semi-major axis

of the shell rc by

f ¼ ecrc: ð2:4Þ

It follows that the innermost (anoxic) and outermost ellipsoi-

dal shells are confocal, thus for a true spheroid eoro ¼ enrn.

Within the bounds of acceptable experimental error, this

relationship can be used to determine whether a given spher-

oid displaying apparent eccentricity is ellipsoidal or not. This

is important from an experimental perspective, as sectioning

can introduce serious distortions in fixed spheroid sections,

or can miss the central axis of the spheroid [32]. In these

cases, an ostensible ellipsoidal shape might be observed,

but may in fact be a sectioning distortion or off-centre cut.

Testing for confocality thus determines the underlying reality.
2.4. OCR estimation in spheroids
In the perfectly spherical case, OCR (in mmHg s21) is related

to the anxoic radius rn and outer radius ro [28,32] by

aV ¼ 6Dpo

r2
o þ 2r3

n=ro � 3r2
n
: ð2:5Þ

For a prolate tumour spheroid, it is possible to estimate OCR

in a manner analogous to the spherical case by re-arranging

the equations for PP to yield

aV ¼ 6Dpo r2
o � r2

n þ f2 log
r2

o � f2

r2
n � f2

� �
þ r3

n

f

� �
log

(f þ ro)(f � rn)

(f � ro)(f þ rn)

� �� ��1

:

ð2:6Þ

Similarly for oblate spheroids, OCR is given by re-arrange-

ment of PO to arrive at

aV ¼ 6Dpo r2
o � r2

n þ 4f2 log
ro

rn

� ��

þ2(r2
n þ 2f2)(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

n � f2
p

)

f
arctan

fffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o � f2
p

 !
� arctan

fffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

n � f2
p
 ! !!�1

:

ð2:7Þ

One complication that may arise is that it may be impossible

to ascertain whether an ellipsoidal spheroid is prolate or
oblate. In that case, one can produce a ‘combined’ expression

for average OCR by taking the average of equations (2.2)

and (2.3) and re-arranging to arrive at

aV ¼ 6Dpo r2
o � r2

n þ f2 log
r2

o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o � f2
p

r2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

n � f2
p

 !
þ r3

n

2f
log

(f þ ro)(f � rn)

(f � ro)(f þ rn)

� � 

þ (r2
n þ 2f2)(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

n � f2
p

)

f
arctan

fffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o � f2
p

 !
� arctan

fffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

n � f2
p

 ! !!�1

:

ð2:8Þ

An example of the implementation of these forms including

error analysis is included in the code given in electronic

supplementary material, S2.
2.5. Spherical error metrics
It is worthwhile introducing metrics to quantify how diver-

gent the estimated oxygen profile in a given ellipsoidal

spheroid is from a related perfectly symmetric spheroid.

A perfect spheroid has radial symmetry, and thus P(ro) ¼ po

at all points. Consider related prolate and oblate spheroids

with both semi-major axis ro and eccentricity e, nested

inside a sphere of radius ro. We can define the root mean

square error (RMSE) by contrasting the expected outer shell

partial pressure po with what would be measured for spher-

oids at PP(ro, u) and PO(ro, u), respectively. The RMSE for

prolate and oblate spheroids, respectively, is

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

ð2p

0

(PP(ro,u)� po)2 du

s
ð2:9Þ

and

RMSEO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

ð2p

0

(PO(ro,u)� po)2 du

s
: ð2:10Þ

These equations can readily be solved by numerical inte-

gration methods, and solutions are demonstrated in the

electronic supplementary material, code S2. Percentage

error is simply 100(RMSE/po), and thus the variation in

RMSE with eccentricity can be readily calculated. The other

instance when deviation from spherical assumptions must

be quantified is in OCR calculation; for example, when

the OCR in a spheroid is calculated assuming the perfectly

spherical form in equation (2.5) rather than a more appropri-

ate prolate or oblate form. This might occur when eccentricity

is low and the spheroid appears to be entirely symmetric to

a first approximation. The distance from the centroid of

a spheroid with semi-major axis r and focal length f to a

point on the spheroid at an angle u is given by

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2sin2u
p

, and thus the average values for outer radius

ro and anoxic radius rn are given by integrating this over a

full revolution, yielding

hroi ¼
2ro

p
Em

f2

r2
o

� �
ð2:11Þ

and

hrni ¼
2rn

p
Em

f2

r2
n

� �
, ð2:12Þ

where Em is the complete elliptic integral of the second kind.

Analogous to the discrete standard deviation, the distance

function can be integrated over a full rotation

(Dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=2p)

Ð 2p
0 (r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin2 u
p

� hri)2du
q

) to yield an



Table 1. Simulation parameters.

parameter simulation value

semi-major axis 500 mm

oxygen consumption rate (a) 20 mmHg s21

external partial pressure ( po) 100 mmHg
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expression for standard deviation across these spheroids of

Dro ¼ ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

2r2
o

� �
� 4

p2
E2

m
f2

r2
o

� �s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o �
f2

2
� hroi2

r
ð2:13Þ

and

Drn ¼ rn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

2r2
n

� �
� 4

p2
E2

m
f2

r2
n

� �s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

n �
f2

2
� hrni2

r
: ð2:14Þ

Applying the form in equation (2.5) for spherical OCR yields

an approximation (which is incorrect when e . 0) of

aVW ¼
6Dpohroi

hroi3 þ 2hrni3 � 3hroihrni2
: ð2:15Þ

The uncertainty calculation associated with this can be

calculated with the variance formula, in this case given by

DaVW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@(aV)

@ro

� �2

Dr2
o þ

@(aV)

@rn

� �2

Dr2
n

s
: ð2:16Þ

This is analytically tractable, and is given in the electronic

supplementary material, S1. An implementation in several

code languages is also provided in the electronic supplementary

material, S2.
3. Methods
3.1. Spheroid oxygen profiles
The models derived in this work were used to create oxygen

profiles for spheroids of both prolate and oblate classes, which

were contrasted to conventional perfectly spherical profiles.

3.2. Quantifying differences between prolate and oblate
cases

Prolate and oblate forms have some mathematical differences, as

can be seen by inspection of equations (2.2) and (2.3). Whether

this difference is experimentally significant is an important ques-

tion; from a single projection of a tumour spheroid it might be

impossible to ascertain whether an experimenter is dealing

with a prolate or oblate case. As an experimentalist might not

be able to determine whether a given spheroid is prolate or

oblate from a single section, quantifying differences in measured

OCR under each assumption is an important goal of this work.

This was simulated by producing prolate and oblate spheroids

with properties as outlined in table 1, and observing the differ-

ences in their profiles. In addition, OCR estimates under the

‘wrong’ assumptions were also calculated and inspected. Specifi-

cally, the ‘wrong’ assumption occurs when one applies oblate

equations for a prolate spheroid or vice versa. OCR was also

calculated with the combined assumption (equation (2.8)),

which can also be used when the underlying form is unknown.

These spheroids were produced with physical properties as per

table 1, with OCR given by equations (2.5)–(2.8).

3.3. Comparisons with the spherical case
As OCR from spheroids is estimated assuming spherical sym-

metry, a major aspect of this work was quantifying precisely

how close to perfect sphericity spheroids must be so that such
an assumption holds, and how departures from sphericity

impact estimates of OCR and oxygen profiles. To study this, spher-

oids with known OCR and varying eccentricity were simulated,

and analysed with equations (2.9)–(2.16).

3.4. Experimental proof of concept
To date, non-spherical tumour spheroids have been somewhat

neglected, and have been frequently discarded from analysis

due to their inherent uncertainty. It is thus difficult to find

non-spherical tumour spheroid data. A potential example was

taken from a previously analysed set of sectioned DLD-1

tumour spheroids [32], dual-stained with proliferation marker

Ki-67 and EF5. Spheroids from this set were experimentally

determined to have an OCR of 22.10+4.24 mmHg s21. The

sample spheroid was excluded from prior analysis because of

its high eccentricity (external eccentricity e � 0.66). This was

then analysed using methods outlined in this work as a proof

of concept to determine OCR, contrasting it with known values

and spherical estimates.
4. Results
4.1. Oxygen distributions in spheroids
Eccentric spheroids were simulated with properties shown in

table 1. Unlike the spherical case, oxygen profiles here are not

radially symmetric, so profiles were plotted along both the

semi-major and semi-minor axis for clarity. Examples of

these profiles are depicted in figure 4. Oxygen gradients

through spheroids are simulated in figure 5, for both prolate

and oblate cases with increasing eccentricity.

4.2. Quantification of differences in prolate and oblate
spheroids

From two-dimensional sectioning or imagining alone, it can

be experimentally difficult to ascertain whether a given

spheroid is either prolate or oblate. It is thus important to

quantify differences between the ellipsoids. Figures 4 and 5

suggest that prolate and oblate spheroids have broadly simi-

lar oxygen profiles until eccentricity approaches unity.

Figure 6 depicts internal anoxic radii with eccentricity.

These differ only slightly, typically less than or equal to 1%

for both major and minor axes for 0 , e , 0.9. More interest-

ing perhaps is the variation in OCR estimate with eccentricity

under the ‘wrong’ assumption (namely assuming oblate form

when the actual entity is prolate or vice versa) shown in

figure 7. This suggests strongly that OCR estimates arrived

at under the ‘wrong’ assumption are still accurate up until

high eccentricity. Even at very high eccentricity, an average

value of both incorrect OCRs was extremely close to true

OCR. This suggests that incorrectly specifying the type of

spheroid should not greatly impact OCR estimates. For

improved accuracy, employing the combined estimate in
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equation (2.8) yields even smaller errors, suggesting this

could readily be used by experimentalists without introdu-

cing major error even when the underlying form is unknown.
4.3. Comparisons with spherical case
Table 2 depicts the impact of assuming perfect sphericity on

derived OCR estimates for properties in table 1. At low e
(typically e � 0.3), treating spheroids as perfect spheres

yields acceptable accuracy for both OCR estimates. However,

as e! 1, the reliability of OCR estimates rapidly breaks

down, and errors become increasingly large and unreliable.
4.4. Experimental proof of concept
For this work, a simple image analysis algorithm was written

for the spheroid image, which found the ellipsoid centre

and cast best fit ellipses from this position. The analysis

algorithm was broadly similar to previously described

methods [32], yielding estimates of e � 0.66, ro ¼ 488.5 mm

and rn ¼ 400.15 mm. This analysis suggested the best-fit

inner and outer ellipses were approximately confocal to

within experimental error, as required by the confocality con-

dition in equation (2.4) (eoro � enrn to within an error of

1.13%). Uncertainty on the lengths of ro rn were taken from

this to be 5.53 mm and 4.52 mm, respectively. Results of this

analysis are depicted in figure 8 and table 3, and suggest

values in agreement with those previously measured when
considered as a prolate/oblate spheroid, and unrealistic

values if presumed perfectly spherical.
5. Discussion
Analysis of spheroids to date tends to pivot on the presump-

tion of sphericity, as symmetry arguments reduce the

complexity required. However, real spheroids tend to

depart from perfect sphericity to varying extents. In this

work, we provide a metric for determining how reliable the

simpler spherical assumption will be as eccentricity increases,

as outlined in table 2. The methods outlined in this work can

be employed to generate reliable estimates of OCR and

oxygen distribution. Another major benefit of this work is

that it allows an experimenter to determine OCR even in

non-spherical cases when high eccentricity might otherwise

render the spheroids in question ill-suited for analysis.

Provided the inner and outer ellipses are suitably confocal,

the analysis outlined in this work can be employed, and

thus should help increase experimental throughput.

As depicted in table 2, presuming sphericity with

eccentric sections yields acceptable accuracy when eccentri-

city is small, but rapidly begins to produce completely

unrealistic results for OCR and massive uncertainty. When

analysed as either prolate or oblate spheroids, however,

OCR estimates are in agreement with the previously

measured values. This suggests strongly that, for eccentricity
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greater than approximately e ¼ 0.3, spherical assumptions for

OCR cease to be appropriate and ellipsoidal analysis must be

employed. While data for this are currently sparse, we were

able to demonstrate the principle on the highly eccentric

spheroid illustrated in figure 8, determined by image analysis

to have f ¼ 318.89+2.57 mm. When analysed as a spheroid,

OCR estimates were completely unrealistic with huge uncer-

tainty, as seen in table 3. However, when considered as either
a prolate or oblate spheroid, OCR measurements were within

previously measured values. This is promising, but, as only a

single datum point is available, this should be interpreted

solely as a proof of concept.

It is worth noting that, from single section images or

microscopy, there is no obvious way to ascertain whether a

spheroid is prolate or oblate. As the mathematical forms for

these are slightly different, this adds an extra uncertainty
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Table 2. RMSE and OCR estimates assuming sphericity for spheroids of varying eccentricity e.

e
RMSE
( prolate)

RMSE
(oblate)

prolate OCR
(mmHg s21)

oblate OCR
(mmHg s21)

0 0% 0% 20.00+ 0.00 20.00+ 0.00

0.1 0.82% 0.82% 20.13+ 0.37 20.14+ 0.37

0.2 3.32% 3.33% 20.54+ 1.53 20.60+ 1.54

0.3 7.77% 7.78% 21.27+ 3.73 21.42+ 3.78

0.4 14.57% 14.60% 22.44+ 7.47 22.75+ 7.68

0.5 24.45% 24.55% 24.26+ 13.91 24.84+ 14.56

0.6 38.67% 38.94% 27.16+ 25.76 28.25+ 27.76

0.7 59.51% 60.17% 32.25+ 51.07 34.41+ 57.82

0.8 91.53% 93.12% 43.16+ 124.77 48.58+ 156.72

0.9 146.17% 150.33% 85.56+ 660.92 120.52+ 1291.81
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(a)
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(b)

Figure 8. (a) Eccentric DLD-1 spheroid (contrast enhanced for clarity). (b) Demonstration of analysis with a spheroid image analysis algorithm detecting best-fit
ellipses (blue ellipse best fit to outer boundary, red to inner). Calculated focal lengths from both are checked for confocality from equation (2.4) and OCR estimated.
See text for details.

Table 3. OCR estimates for sample spheroid.

assumption
estimated OCR
(mmHg s21)

previously measured for DLD-1

cell line

22.10+ 4.24

assumption of perfect sphericity

(true spheroid)

42.74+ 51.98

assuming prolate tumour spheroid 29.25+ 4.25

assuming oblate tumour spheroid 27.27+ 4.11

(c)ro(c)rn

rn

ro

sheared spheroid

Figure 9. The eccentricity of a sheared spheroid is the same for both anoxic
and outer ellipsoids (e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=c2

p
) and thus not confocal as f is not

constant. Sheared spheroids are not true spheroids, as the confocality con-
dition is not met. (Online version in colour.)
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and prompts the question about which form is preferable to

employ. The analysis in this work (figures 6 and 7) indicates

that, even if one incorrectly assumes the wrong form, OCR

estimates are still very good, with only minimal errors intro-

duced. This holds with only negligible errors until very high

eccentricity. The combined OCR form in equation (2.8) yields

only negligible error even when the underlying form is

unknown. Thus, an experimenter should opt to use this

form for OCR estimation when they have no other infor-

mation on whether the specimen is prolate or oblate, as this

does not introduce large errors even at high eccentricity.

While modelling of elliptical oxygen diffusion has the

potential to greatly extend experimental throughput, there

are a number of scenarios in which an ostensible eccentric

spheroid might not be what it appears. For fixed and sec-

tioned spheroids, the act of sectioning itself can be enough

to induce substantial deformations, stretching it along a par-

ticular axis. Ostensibly, the resultant shape might appear

ellipsoidal, but is in reality a warped spheroid, and cannot

be reliably analysed with the methods outlined. Such an

example is show in figure 9, for a spherical spheroid sheared

along an axis. From the mathematics established in this work,

we can distinguish between true spheroids and warped

spheroids—if the inner and outer ellipses are not confocal

(eoro=enrn) then the shape is a warped spheroid, and

should be discounted from analysis, as per figure 1. Crucially,

figure 9 demonstrates that warped spheroids can only satisfy

the ellipsoidal confocality condition under two circumstances:

either when its eccentricity is 0 (a perfect sphere), or the non-

physical situation when ro ¼ rn. Thus, a sheared spheroid in

one direction will never come close to satisfying the ellipsoidal
confocality condition. In practice, all experimental work comes

with inherent uncertainty, so eoro � enrn within the bounds of

image analysis uncertainty is sufficient to determine whether

a spheroid can be treated as an ellipsoidal case.

There is a more subtle issue with sectioned spheroids,

which becomes even more crucial with sectioned eccentric

spheroids. Analysis relies on a section through the central

axis of the spheroid. In the perfectly spherical case, if the sec-

tion is off-centre, the net result will be two concentric circles

but with a misleading ratio, rendering any OCR calculation

derived from this suspect. By contrast, any plane through

an ellipsoid produces an ellipse, but if these cuts are off the

central axis then the inner and outer ellipses will no longer

have a common centre, and will not be confocal. In this

regard, determining an off-centre ellipsoid section is rela-

tively straight-forward. A proof of this is provided in the

electronic supplementary material, S1.

The theoretical analysis outlined here presents biological

investigators with new methods for extending spheroid

analysis, and the means to interpret data which depart from

sphericity. It also establishes uncertainty bounds on existing

spherical analysis techniques, and methods for determining

OCR and oxygen distribution in tumour ellipsoids. The find-

ings of this work will increase experimental confidence with

tumour spheroids, and have the potential to substantially

increase experimental throughput, improving our insights on

everything from tumour hypoxia to drug delivery. Such an

approach is imperative if we are to fully exploit this unique
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experimental tool, and ultimately marshal the new insights

obtained towards better cancer treatment and diagnostics.

Data accessibility. All data are available with the paper. Mathematical
derivations and related theorems are contained in the electronic sup-
plementary material, S1. Sample implementations in Matlab, Octave,
Mathematica and Excel spreadsheet are included in the electronic
supplementary material, S2.
Authors’ contributions. D.R.G. and F.J.C. conceived the theory outlined in
this work; D.R.G. derived the model, performed the analysis and
wrote the manuscript. Both authors reviewed the manuscript and
authored supplementary texts.

Competing interests. We declare we have no competing interests.

Funding. The authors acknowledge Queen’s University Belfast for
funding the CAIRR initiative. D.R.G. also thanks Cancer Research
UK for its support.
 lishing.org
References
J.R.Soc.Interface
15:20180256
1. Grimes DR, Partridge M. 2015 A mechanistic
investigation of the oxygen fixation hypothesis and
oxygen enhancement ratio. Biomed. Phys. Eng. Express
1, 45209. (doi:10.1088/2057-1976/1/4/045209)

2. Hall EJ, Giaccia AJ. 2006 Radiobiology for the
radiologist, vol. 6. Philadelphia, PA: Lippincott
Williams & Wilkins.

3. Wenzl T, Wilkens JJ. 2011 Modelling of the oxygen
enhancement ratio for ion beam radiation therapy.
Phys. Med. Biol. 56, 3251 – 3268. (doi:10.1088/
0031-9155/56/11/006)

4. Grimes DR, Warren DR, Partridge M. 2017
An approximate analytical solution of the
Bethe equation for charged particles in the
radiotherapeutic energy range. Sci. Rep. 7, 9781.
(doi:10.1038/s41598-017-10554-0)

5. Bentzen SM, Gregoire V. 2011 Molecular
imaging-based dose painting: a novel paradigm
for radiation therapy prescription. Semin. Radiat.
Oncol. 21, 101 – 110. (doi:10.1016/j.semradonc.
2010.10.001)

6. Grimes DR, Warren DR, Warren S. 2017 Hypoxia
imaging and radiotherapy: bridging the resolution
gap. Br. J. Radiol. 90, 20160939. (doi:10.1259/bjr.
20160939)

7. Gray LH, Conger A, Ebert M, Hornsey S, Scott O.
1953 The concentration of oxygen dissolved in
tissues at the time of irradiation as a factor in
radiotherapy. Br. J. Radiol. 26, 638 – 648. (doi:10.
1259/0007-1285-26-312-638)

8. Vaupel P, Thews O, Hoeckel M. 2001 Treatment
resistance of solid tumors. Med. Oncol. 18,
243 – 259. (doi:10.1385/MO:18:4:243)
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