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Abstract

Individuals can be characterized in a population according to their brain measurements and

activity, given the inter-subject variability in brain anatomy, structure-function relationships, or

life experience. Many neuroimaging studies have demonstrated the potential of functional

network connectivity patterns estimated from resting functional magnetic resonance imaging

(fMRI) to discriminate groups and predict information about individual subjects. However, the

predictive signal present in the spatial heterogeneity of brain connectivity networks is yet to

be extensively studied. In this study, we investigate, for the first time, the use of pairwise-rela-

tionships between resting-state independent spatial maps to characterize individuals. To do

this, we develop a deep Siamese framework comprising three-dimensional convolution neu-

ral networks for contrastive learning based on individual-level spatial maps estimated via a

fully automated fMRI independent component analysis approach. The proposed framework

evaluates whether pairs of spatial networks (e.g., visual network and auditory network) are

capable of subject identification and assesses the spatial variability in different network pairs’

predictive power in an extensive whole-brain analysis. Our analysis on nearly 12,000 unaf-

fected individuals from the UK Biobank study demonstrates that the proposed approach can

discriminate subjects with an accuracy of up to 88% for a single network pair on the test set

(best model, after several runs), and 82% average accuracy at the subcortical domain level,

notably the highest average domain level accuracy attained. Further investigation of our net-

work’s learned features revealed a higher spatial variability in predictive accuracy among

younger brains and significantly higher discriminative power among males. In sum, the rela-

tionship among spatial networks appears to be both informative and discriminative of individ-

uals and should be studied further as putative brain-based biomarkers.
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1. Introduction

Studies have investigated variability in human brain structure via standard assessment mea-

sures such as cortical thickness, sulcal depth, and cortical folding across individuals [1–4].

Later studies discovered the existence of relatively unique patterns in the human brain’s func-

tional organization. In particular, significant variability in functional connectivity patterns

(i.e., temporal dependence among brain network timecourses) between groups of subjects

(e.g., controls and patients) has been reported in the past decade [5–7]. Other studies have

shown that functional connectivity patterns can be used to predict individual traits [8]. Despite

these findings, it is still unclear whether spatial relationships among functional networks in the

brain can be linked to individuals uniquely. Motivated by that, we investigate the spatial maps

of functional networks in this study and evaluate if the relationship between any two network

spatial maps can predict whether or not the maps come from the same subject.

Brain neural activity can be indirectly recorded by functional magnetic resonance imaging

(fMRI) based on the ensuing fluctuations in blood oxygenation level dependent (BOLD) sig-

nals [9, 10]. Whole-brain resting-state fMRI (rs-fMRI) measures BOLD fluctuations while an

individual is at rest, i.e., subjects are not performing an explicit task [11]. There has been sig-

nificant interest in resting-state fMRI due to its lower design complexity and ease of acquisi-

tion (relative to task fMRI, where an individual needs to be able to perform a certain task) [12].

This advantage of rs-fMRI imaging renders it a widely used technology leading to many stud-

ies, including those of patients with particular conditions (e.g., comatose individuals or Alzhei-

mer’s patients) [13]. Multiple studies have also shown rs-fMRI data can be used to estimate

subject-level differences [14]. Various model- and data-driven methods (such as seed-based

correlation analysis [15], independent component analysis (ICA) [16, 17], graph methods [18],

and clustering algorithms [19]) analyze whole-brain rs-fMRI scans to identify spatially distinct

but functionally correlated regions, also called resting-state networks (RSNs). Compared to

other methods, ICA can identify maximally statistically independent RSNs with less prior

information. Also, it is able to capture artifacts and noise while separating these from the RSNs

[9]. These advantages have led to the widespread use of ICA to analyze rs-fMRI data.

Studies that utilize ICA for processing rs-fMRI data often analyze temporal patterns of

brain activity, such as the pairwise correlation between RSN-specific timecourses [7, 20–22].

Despite the predominance of studies on temporal characteristics of rs-fMRI data, the spatial

characteristics of functional networks also carry remarkable information and possess distinc-

tive patterns for characterizing subjects [23–25]. Recent studies have reported that ICA pat-

terns can be used to classify group membership (e.g., patients versus controls) [26]. In this

article, we shed more light on a newer and yet more challenging problem, namely, the discrim-

ination of subjects solely from their underlying spatial map networks by learning inter-net-

work relationships in a verifiable way. To the best of our knowledge, this problem has not been

studied before, yet it has important implications for future studies of brain-based biomarkers

and distributed networks.

The majority of studies that analyze resting-state connectivity rely on comparing functional

patterns between groups of people in some way. Some of these studies have tried to distinguish

unaffected control subjects from symptomatic ones, such as those with Alzheimer’s disease [7,

27], schizophrenia [8, 28, 29], language-impairment [5], and autism [30, 31]. In comparison,

others have provided models to classify subjects according to their sex [32, 33] or age [34]

using functional connectivity. Altogether, although these studies attain individual-level predic-

tions, they are ultimately focused on the use of group-level (dis)similarity. However, as men-

tioned above, there has been much less focus on individual-level spatial heterogeneity in brain

functional interactions.
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A few studies have shifted the focus to link such patterns to individuals [6, 8, 14, 35]. More

specifically, Finn and colleagues [6] identify subjects based on their whole-brain and network-

based functional connectivity. They scanned the brain of 126 subjects over six sessions when

performing working memory, motor, language, and emotion tasks as well as at resting state.

Then, for each subject, the functional connectivity derived from each session was compared

(using Pearson correlation) to the set of functional connectivity of all subjects from other ses-

sions. Another study [14] computed the variability in the intrinsic functional connectivity of a

small rs-fMRI dataset of 23 healthy subjects collected over six months with five scan sessions

per individual. The individual variability in some brain regions was evaluated, including fron-

tal, temporal, and parietal lobes, and shown to be higher than in other regions. In a quite dif-

ferent approach, a linear model was proposed in [35] for the prediction of a region of interest

(ROI) time series from another ROI time series. A model was fit to assess if the prediction is

unique for each subject, i.e., the prediction pattern was distinctive between 27 individuals. One

of the key concerns in these works is the concept of test-retest reliability where we investigate

the consistency of our predictions across all sessions corresponding to the same subject as the

image of brain in longitudinal experiments can vary due the factor of time (which is not a con-

cern in our study). Such models suffer from a few fundamental shortcomings. First, they usu-

ally require multiple scans from each subject for proper training, which is costly and time-

consuming; for instance, it took over six months for the authors in [14] to complete the data

acquisition phase. Second, due to the lack of high-sample-sized datasets for such longitudinal

models, it is hard, if not impossible, to train the high-capacity models that are typically better

at capturing complex features and, thus, such models are not otherwise generalizable due to

overfitting [36]. Furthermore, all these studies disregard the spatial maps of functional brain

networks in their analysis, while several studies have shown such information can be used as

biomarkers to characterize individuals [37–39].

Here we use a large resting-state fMRI dataset to identify discriminative features of brain

activity between unaffected individuals to address the shortcomings above. Our goal is to char-

acterize individuals based on high-level features learned from their functional brain network

spatial patterns and from pair-wise comparisons between subjects given a pre-selected network

pair. We are also interested in observing which specific networks are more informative for

such task. Accordingly, we develop a deep neural network-based framework that can detect

subjects based on high-level difference features in the spatial patterns of their functional net-

works, when those networks are different (e.g., auditory and visual networks) for each subject.

Our assumption is that there exists some high-level spatial pattern that underlies all such func-

tional networks but is unique to each person. Thus, we hypothesize that subjects can be differ-

entiated from each other by contrasting such a pattern if it can be extracted and represented in

a latent feature space where the distances make biological sense. In other words, our aim is to

learn a functional brain pattern that 1) is unique to the individual brain and 2) can be mapped

to a unified feature space where differences in subject labels translate, by design, to L1 dis-

tances. In that respect, it does not matter which network of the brain we are selecting from an

individual as long as we can infer the latent feature(s) from it, which can then be used to cap-

ture differences. Given the possibly nuanced complexity and unpredictable nature of such spa-

tial (dis)similarity features, it is fair to conjecture they may be successfully learned via deep

neural network model representations.

Our approach of characterizing brain samples using a pair of functional brain networks is

different from the few previous studies in several ways. First, we develop a framework to cap-

ture complex functional patterns in the brain and do so in a region agnostic manner (i.e.,

regardless of the selected brain network pair). Second, we transform the problem of subject

identification into subject comparison by taking advantage of the Siamese architecture [40,
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41], thus reducing the original multiclass problem into a binary classification problem (class 1

(or positive) if two input spatial maps are from the same subject, class 2 (or negative) other-

wise), which is moderately easier to train. Third, we leverage the nature of this task to obtain a

relatively large augmented dataset of pairs of subjects, effectively boosting the predictive power

of our end-to-end trained models. Furthermore, our models do not require multiple scans per

subject, which is a limitation in some previous studies. Finally, as will be discussed, each

trained model works on a preselected pair of functional networks and, thus, can capture rela-

tionships between brain regions, contrary to previous work that is limited in this regard.

This paper is organized as follows. In section 2, we describe the data and the procedure

underlying data collection and preprocessing and subsequently introduce our model in more

detail. In section 3, we evaluate our model on a held-out test set using the Monte Carlo cross-

validation approach and shed more light on age and sex differences in its performance. Section

4 reflects on our observations and the model’s performance. Finally, section 5 concludes our

paper and suggests future directions to continue this line of research.

2. Materials & methods

2.1. Participants

We retrieved the resting-state fMRI dataset from the UK Biobank [42]. At the time of retrieval,

this dataset included 19831 subjects, out of which 13668 were self-reported as healthy (unaf-

fected) adult participants. The subject fMRI scans underwent quality control, and subjects

were excluded if the scans met the following criteria: marked as unusable by UK Biobank,

visual inspection of mean maps for gross anomalies, absolute framewise displacement (FD)

higher than 0.3mm, Matthews correlation coefficient (MCC) between the binarized study-spe-

cific mask and the subject mask lower than 0.8, and failure to complete ICA estimation. 11754

subjects were finally retained for the analysis after quality control, with the included partici-

pants’ ages ranging from 45 to 80 (62.56±7.38) years. The dataset was well balanced in terms of

the participants’ sex (c.f. Table 1).

2.2. Data acquisition & preprocessing

All participants were scanned once by a 3-Tesla (3T) Siemens Skyra scanner with a 32-channel

receive head coil, all acquired in one site. A gradient-echo echo planar imaging (GE-EPI) para-

digm was used to obtain resting-state fMRI scans. The EPI-based acquisition parameters

include multiband acceleration factor of 8 (i.e., eight slices were acquired simultaneously), no

iPAT, fat saturation, flip angle (FA) = 52˚, spatial resolution = 2.4×2.4×2.4mm, field-of-view

(FOV) = (88×88×64 matrix), repeat time (TR) = 0.735s, echo time (TE) = 39 ms, and 490 vol-

umes. Subjects were instructed to stare at a crosshair passively and remain relaxed, not think-

ing about anything, during the six-minute and ten-second resting-state scanning period.

The preprocessing steps performed by UK Biobank are as follows. An intra-modal motion

correction tool, MCFLIRT [43], was applied to minimize the distortions due to head motion.

Grand-mean intensity normalization was used to scale the entire 4D dataset by a single

Table 1. Subjects’ demographics.

Population Number Age (years)

Mean SD Min. 25% 50% 75% Max.

All 11754 (100%) 62.56 7.38 45 57 63 68 80

Male 5772 (49%) 63.08 7.54 45 57 64 69 80

Female 5982 (51%) 62.07 7.19 46 56 62 68 80

https://doi.org/10.1371/journal.pone.0249502.t001
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multiplicative factor to compare brain scans between subjects. The data were filtered by a

high-pass temporal filter (Gaussian-weighted least-squares straight-line fitting, with σ = 50.0 s)

to remove residual temporal drifts. Geometric distortions of EPI scans were corrected by using

the FSL’s Topup tool [44]. EPI unwarping is followed by a gradient distortion correction

(GDC) unwarping phase. Finally, structured artefacts are removed by ICA+FIX processing

(Independent Component Analysis followed by FMRIB’s ICA-based X-noiseifier [45–47],

with no lowpass temporal or spatial filtering up to this point. More details on the UK Biobank

imaging protocol and preprocessing steps can be found in [42]. In addition, the data were then

normalized to an MNI EPI template using FLIRT followed by SPM12, old normalization mod-

ule. Finally, the data were smoothed using a Gaussian kernel with FWHM = 6mm.

2.3. Group independent component analysis

We applied fully automated spatially constrained ICA using the NeuroMark approach [48] on

the 4D preprocessed UK Biobank rs-fMRI data from Section 2.2. In the Neuromark approach,

a template of replicable independent components (ICs) was constructed after spatially match-

ing correlated group-level ICs between two healthy control fMRI datasets—genomics super-

struct project (GSP) and human connectome project (HCP). The estimated network template

was then used as a prior for a spatially constrained ICA algorithm applied to each UK Biobank

subject individually. This identified 53 functionally relevant resting-state networks (RSNs) for

each individual that are maximally spatially independent (see S1 Fig and S1 Table). Each sub-

ject-specific RSN is represented by a spatial map of size 53×63×52 voxels and its associated

time course of 490-time points. RSNs are grouped into seven domains, namely subcortical

(SC), auditory (AU), sensory-motor (SM), visual (VI), cognitive control (CC), default mode

(DM), and cerebellar (CB), by functional similarity (see Fig 1). This work used the subject-spe-

cific spatial maps (henceforth referred to as networks) as input to our model and a basis for all

subsequent analyses.

2.4. Generating input pairs

We split our preprocessed data by subjects into training, validation, and test sets with a propor-

tion of 60%, 20%, and 20%, respectively (see S2–S4 Tables for the statistics of subjects in each

set). The number of same-subject pairs created for each set was equal to the total number of

subjects in each set, and all these pairs were labeled ‘class 1.’ Likewise, an equal number of dif-
ferent-subjects pairs (labeled ‘class 2’) were created for each set by randomly selecting subjects

from the corresponding set (for a total of N pairs out of N
2

� �
possible pairs, where N is the total

number of subjects in each set). As discussed before, input pairs are comprised of two net-

works instead of one. This is important as, otherwise, instead of learning patterns that govern

the relationships within networks, the model gradually (i.e., within the course of training)

tends to learn to make an elementwise comparison of the input voxels. We trained one model

for each pair of the 53 functional networks using the TReNDS high-performance computing

GPU cluster. In total, 53

2

� �
¼ 1378 models were trained.

2.5. Model architecture

We provide an end-to-end trainable deep learning model for learning a non-linear dissimilar-

ity metric based on patterns of spatial relationships in functional networks that characterize

each subject. We use balanced (i.e., same-subject vs. different-subject) preprocessed input-

pairs for training, and the objective is to adjust network weights such that input pairs that

belong to the same subject produce a low dis-similarity score whereas those pertaining to
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different subjects generate a large score. Our proposed framework comprises two major build-

ing blocks, one based on the convolutional neural networks (CNNs), which are superior in

capturing high-level features from imaging data modalities [49], and the other based on a Sia-

mese network that can efficiently generate features for differentiating inputs [40, 41]. In the

following sub-sections, we shed more light on the architecture of each module.

2.6. Convolutional Neural Networks (CNNs)

2D CNNs and, more recently, 3D CNNs have gained attention in various domains that involve

image processing. CNNs can pick up high-level and yet subtle, task-specific features if trained

on task-appropriate loss functions. For our analysis, the desired set of features stem from pat-

terns of functional brain relationships that can help characterize subjects, yet in a relatively

network-agnostic way. In other words, these features should be comparable between different

subjects, even if they are derived from different spatial maps. This is indeed a crucial compo-

nent of our design since using spatial maps from the same networks drives the training course

towards a point in the parameter space that corresponds to a voxel-to-voxel verbatim compari-

son. In other words, instead of learning a pattern that characterizes brain activities, the model

will tend to see if the two images are identical voxel-wise. We therefore prevent this by utilizing

network spatial maps as input and two CNN-based child networks that can generate informa-

tive features linked to each other via a Siamese architecture, as will be discussed shortly.

Fig 2 depicts the architecture of the employed 3D ConvNet that extracts features from a

supplied spatial map with a resolution of 53×63×52 voxels. We used three convolutional layers

with 16, 32, and 64 filters, respectively, and used kernels of 3×3×3 for each of the layers. We

Fig 1. Group ICA-derived spatial maps. Spatial maps are grouped into seven domains, subcortical (SC), auditory

(AU), sensory-motor (SM), visual (VI), cognitive control (CC), default mode (DM), and cerebellar (CB), each of which

contains 5, 2, 9, 9, 17, 7, and 4 networks, respectively.

https://doi.org/10.1371/journal.pone.0249502.g001
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used ReLU activations for both convolutional and later fully connected layers. Furthermore,

we augmented the convolutional layers with max-pooling layers (with a kernel size of 2×2×2

and stride of 2) to reduce the feature maps dimensionalities. The features in the last feature

map are flattened and then fed into a single fully-connected layer with a ReLU of size 128 neu-

rons. We used 3D and 1D batch-normalization as a regularization for all layers. This is espe-

cially important due to the large dimensionality and complexity of the model. The DL

encodings (i.e., final feature values) serve as a summary of the input 3D spatial map, capturing

the non-linear pattern of functional relationships underlying the input brain network pair

when trained based on a loss that quantitatively factors in our goal, as discussed in the next

section.

2.7. Siamese architecture

For our brain-network classification task, we use a modified Siamese-based CNN model, seek-

ing to map input image pairs to a shared target space in which both spatial map images are

comparable. In other words, we learn separate mappings that transform the (spatial) input

spaces of two different functional brain network maps into a shared high-level space. In that

space, the distance between subjects (irrespective of the brain network region) represents how

closely related their corresponding functional networks are. By training specifically on different
brain network pairs, we ensure that closely related network representations learned by the

model are not merely driven by spatial similarity but, rather, by having their origin on the

same subject. Fig 3 shows the block diagram of our proposed model. It is comprised of two

CNN-based child networks with identical architectures (referred to as sub-networks hereon),

but not sharing weights. Each sub-network takes a different functional brain map network

image, namely X1 and X2 (e.g., visual network and auditory network), to generate consistent

and comparable representations R1(X2) and R2(X2), respectively. Then, optimizing for a Sia-

mese-based architecture using the binary cross-entropy loss drives parameters of the CNN

sub-networks towards a point in the parameter search space where projections lie in distant

locations when subjects are different. Our experimentation suggests that this is more easily

attained with independent, rather than tied, weights for each child network (see Fig 4C). This

choice is also driven by the problem at hand. Using shared weights is a common approach if

the objective is to learn a generic representation for both input data modes (here, brain net-

work spatial maps), whereas using independent weights is more suitable if learning mode-spe-

cific representations instead. Thus, the use of separate weights is more appropriate for our

Fig 2. CNNs architecture. The CNNs block consists of three 3D convolutional layers, with kernels of sizes 3×3×3,

each of which is followed by a max-pooling layer with a kernel of size 2×2×2.

https://doi.org/10.1371/journal.pone.0249502.g002
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objective of training models that learn if two modes (i.e., brain network spatial maps) corre-

spond to the same subject or not. Additionally, we assume that a softmax-normalized L1 dis-

tance, trained through the binary cross-entropy loss, will induce both sub-networks to

converge into a shared feature space.

We train this network for 200 epochs using stochastic gradient descent with a binary cross-

entropy loss and a learning rate of 0.001. The model is given by loss = −t log(S)−(1−t)log(1−S)

where t is the true label, S = sigmoid(∑widi), di = |R1(X2i)−R2(X1i)|, and i is the dimensionality

index of the feature space. The training is stopped using the early-stopping strategy of no

improvement in validation accuracy after 14 consecutive epochs. Furthermore, we repeat the

training course three times and select the best validation model (i.e., the one with the highest

validation accuracy) for testing on the held-out test data.

3. Experiments

In this section, we evaluate the performance of the proposed model when trained on different

pairs of functional brain networks, on unseen (held-out) test datasets. In section 3.1, we com-

pare and contrast the accuracy achieved when we select networks from different domains. In

addition, we discuss and analyze the prediction performances across three held-out test set

sample cohorts according to the class labels we attempt to predict: network pairs from the

same subjects, network pairs from different subjects, and the entire (aggregate) set of all net-

work pairs (same and different subject pair samples together). Using these cohorts enables us

Fig 3. High-level architecture of the proposed model. Siamese networks take two images, X1 and X2, and learn a

distance function between the two vector representations of the input images. The model outputs distance score close

to one if the two inputs are from two different objects (in this case, different subjects) and close to zero otherwise. The

weights of the CNN child networks are updated independently and are not tied/shared.

https://doi.org/10.1371/journal.pone.0249502.g003
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to evaluate our model architecture’s performance under different scenarios and provides

insight into brain function. In sections 3.2 and 3.3, we analyze the relationship between cogni-

tive features, age and sex, and model performance.

3.1. Analysis of performance in different functional network domains

To investigate potential variation in model performance by network pairs, we evaluated the

proposed model on the entire held-out test set (i.e., the cohort containing all subject pair sam-

ples), which is comprised of an equal number of same-subject and different-subject network-

pair samples. Fig 4A shows a heatmap of the mean model accuracies between domains (see the

fine-grained brain network connection-level accuracies in S2 Fig). According to the heatmap,

Fig 4. (A) Mean domain accuracy heatmap. Each cell shows the mean accuracies of all models trained on spatial networks belonging to the

indicated domain-domain pair. The resulting mean accuracies show that domains have different predictive power for characterization of

subjects based on brain activity. A comparison of SC to the other domains reveals that its underlying networks yield the most discriminative

features. On the other hand, the AU domain appears to produce the least discriminative features relative to other regions in the brain. (B)

Boxplot for the accuracies derived from the MCCV evaluation. The results show low variation across the five repeats for pairs of networks

that fall under SC-SC and AU-AU domain pairs, which provides supporting evidence for the generalizability of the proposed model. Green and

red boxes represent SC and AU network pairs, respectively. The dots are the results of MCCV for each network pair. The X-axis indicates the

Neuromark network ids. (C) A Comparison between our proposed model, and two baseline models. We randomly selected 20 network pairs

and compared our proposed model to a Siamese model with shared weights, and a depth-wise separable CNN. The results show that the

proposed model is doing consistently better than other baselines both in terms of accuracy and performance variance.

https://doi.org/10.1371/journal.pone.0249502.g004
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there exist spatial network relationship patterns with strong prediction capability stemming

from SC-SC, SC-CC, SC-DM, SC-VI, VI-VI, and DM-DM domain-pairs. On the other hand,

network pairs including an auditory network appear to contain less discriminative (yet still sig-

nificant) features. Overall, it turns out that the amount of discriminative information that can

be captured from a given network pair is at least partly domain-dependent (see S5 Table for a

two-sided two-sample t-test of the mean prediction accuracy between domains and the corre-

sponding p-values). Furthermore, to assess the reproducibility and generalizability of the

results, we repeat our training-testing approach using the Monte Carlo cross-validation

(MCCV) approach with five repeats (the held-out test set changes for each repeat). Fig 4B

shows a boxplot of the corresponding accuracies for each pair of networks that fall under

SC-SC and AU-AU domain pairs (i.e., the highest and the lowest performant domain pairs

according to Fig 4A, respectively). From the figure, it is evident that our results are reproduc-

ible up to a negligible variation in model performance.

Furthermore, we compared our proposed model to two baseline models: a Siamese network

with shared weights, and a depth-wise separable CNN (where each channel -i.e., original input

modalities- is treated with a separate set of convolutional kernels) [50]. Where applicable, we

used the same architecture as well as model configurations so that the results remain compara-

ble. Furthermore, in our depth-wise separable CNN model, we need to augment the model with

a point-wise convolutional layer with a kernel of size 1x1x1. Each input channel in the resulting

network will be a spatial map from one single network. We treated each network pair as a single

image input and fed it into the first depth-wise convolutional layer with two channels in the

depth-wise separable CNN model to predict if they are from the same subject or not.

Fig 4C compares the prediction accuracy achieved by each of the three models for 20 ran-

dom pairs of networks. According to the figure, the proposed model is doing consistently bet-

ter than other baselines both in terms of accuracy and performance variance. This is because

the Siamese learning pattern offers some level of robustness with respect to the bias that exists

between the network pairs. This bias is due to the correlation between voxel intensities that

stand out when the two networks belong to the same brain. While the depth-wise CNN tries to

address this bias through segregation of convolutional kernels that are applied to each input

modality, it falls short to succeed in all cases. The proposed model on the other hand, addresses

this shortcoming by learning comparable patterns through using the independent weights for

each daughter network. The independent (i.e., untied) weights lead to representations for each

input modality in the same latent space which is hopefully free of irrelevant information and

bias. This is corroborated by the fact that the same architecture but with tied weights is doing

often worse than our model, while mostly doing better than the other baseline.

We were also interested in investigating whether any network pairs were more feature-rich

for either of the same- vs. different-subject cohorts in the classification task. This is an impor-

tant question as significant differences can serve to support recommendation guidelines for

optimally choosing certain network pairs for different goals. In light of that, we experimented

by partitioning the test samples into a cohort of network pairs from the same subjects and a

cohort of pairs with different subjects. Fig 5A and 5B depict the spatial connectograms of the

top 2% network pairs with the highest sensitivity (we treat same-subject samples as the positive

class) and specificity, respectively (see S3A and S3B Fig for the full results). We grouped con-

nectograms based on their functional domains, i.e., SC, AU, SM, VI, CC, DM, and CB, which

contain n = 5, 2, 9, 9, 17, 7, and 4 networks, respectively. Specifically, Fig 5A shows that the

highest sensitivities are mostly from brain regions in the subcortical and cognitive control

domains. While according to Fig 5B, brain regions in the visual domain exhibit the highest

specificities. Thus, comparing the two connectograms suggests that different domains offer

distinct patterns of contribution towards identifying same- vs. different-subject pairs.
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3.2. Impact of sex on performance

We also evaluated the role of sex on the prediction performance separately for the same- and

different-subject cohorts. First, we considered the same-subject cohort and compared male vs.

female subcohorts within it. We observed that the model’s sensitivity when two networks are

selected from male subjects is larger than when they are selected from female subjects, which

was the case for 71% of network pairs (and reliably so for network pairs showing largest differ-

ences; see S4A Fig). This suggests that male functional networks have more uniquely identify-

ing individual patterns, especially in the cerebellar domain (see S6A Fig), compared to females.

This finding is consistent with studies of brain structure that maintain males’ brains have

more variability than females [52, 53]. Indeed, higher variability in brain structure is conducive

to the existence of more distinct patterns in males that help characterize male subjects’ identi-

ties more accurately.

To better visualize the difference in performance, we subtracted the female cohort’s sensi-

tivity scores from that of males for each network pair and selected the network pairs corre-

sponding to the highest (positive) and lowest (negative) 1% score difference, as illustrated in

Fig 6A. According to the figure, from the pairs in which males have higher sensitivity (i.e., the

red arcs), the superior parietal lobule (SPL) network (indicated as SM27) shows more outgoing

arcs in the connectogram. This may suggest that the SPL network activity varies more (or, is

more uniquely identified) in males than females. To the best of our knowledge, this is the first

time such a pattern has been identified. Studies have shown that the SPL network is linked to

spatial processing tasks, especially in mental rotation [54, 55]. Another interesting research has

reported stronger activity of these networks among males [56]. Altogether, these observations

seem to generally indicate that while men might do better at spatial orientation tasks than

women, there is more variation to their brain functional engagement in this task than women.

Hence, the significance of SM27 as a functional brain activity biomarker for classification of

males from females should be considered. Likewise, among networks with the lowest (most

Fig 5. Spatial connectogram of sensitivity (A) and specificity (B) highlighting the top 2% network pairs. Sensitivity

and specificity show the percentage of network pair samples correctly identified as the same- or different-subject

cohorts, respectively. Fig 5A suggests that networks from the subcortical (green) and cognitive control (red) domains

are among the most useful for characterizing same-subject samples, both intra- and inter-domain. On the other hand,

the high specificity of VI-VI network pairs (orange) in Fig 5B indicates better characterization of different-subject

samples. The numbers shown on the connectograms represent the specific Neuromark RSN network indices (See S1

Table for a list of the network names). The connectograms were generated using the Circos tool [51].

https://doi.org/10.1371/journal.pone.0249502.g005
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negative) sensitivity difference between males and females (i.e., the blue arcs in Fig 6A), CC70

presents the most outgoing arcs, suggesting this network is more discriminative in females.

Finally, we considered the set of different-subject samples. This set naturally splits into

same-sex (male-male or female-female pairings) and different-sex (male-female pairings) sub-

cohorts, for which we conducted assessments analog to those shown in the male vs. female dis-

cussion above. Interestingly, we observed higher specificity in the different-sex cohort for 86%

of network pairs (and reliably so for network pairs showing largest differences; see S4B and

S6B Figs). According to the results of this assessment, the model performs better (higher speci-

ficity) when samples belong to different sexes, for most network pairs. This is likely because

our model is capable of learning sex-rich features from the network spatial map patterns, even

though sex has not been used as an input to our model. The corresponding highest and lowest

Fig 6. Spatial connectogram of difference in sensitivity (A) as well as the difference in specificity (B) between sex-

based groups highlighting the top 1% positive (top row) and negative (bottom row) differences. Fig 6A: scores are

calculated by subtracting sensitivities of the female subcohort from the male subcohort. SM27, when paired with other

domains, produces higher specificity in males, while CC70 yields higher specificity in females. Fig 6B: scores are

calculated by subtracting specificities of different-sex from same-sex subcohorts. The SM and CB networks produce

higher sensitivities for different-sex samples, whereas the CC networks predict better in the same-sex subcohort. Blue

and red color lines represent the two ends of the difference spectrum. Numbers represent indices for the ICA-derived

Neuromark RSNs. The connectograms were generated using the Circos tool [51].

https://doi.org/10.1371/journal.pone.0249502.g006
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1% specificity differences are visualized in Fig 6B. For the most negative differences (same-sex

specificity lower than for different-sex), we observed that network pairs including either the

default mode (especially DM32 and DM51) or the cognitive control networks had the most

outgoing links, suggesting more unique variations in the different-sex cohort. For those net-

work pairs with positive specificity differences, on the other hand, the CC networks, especially

CC84, appear more frequently in the connectogram, suggesting that more unique patterns

occur in the same-sex cohort when network pairs include a CC network.

Furthermore, we assessed the previous experiments’ results from a statistical perspective

(see S6 Table). We performed a two-sided two-sample t-test which shows the significance of

the mean sensitivity or specificity difference between the two sub-cohorts of each sex-based

assessment. Accordingly, we observed that the mean sensitivity in the male sub-cohort is sig-

nificantly different in the female sub-cohort, and the mean specificity in the different-sex sub-

cohort is significantly different from the same-sex sub-cohort. These seem especially true for

the cognitive control domain.

3.3. Impact of age on performance

Next, we analyzed the relationship between age and model performance. Similar to experi-

ments in the previous section, we divided the test set into same- and different-subject cohorts.

We computed the sensitivity of subjects of ages below 52 and above 72, which make cohorts of

size 260 and 268 subjects, respectively. Our results revealed that the younger cohort’s predic-

tion performance is higher than that of the older cohort for 66% of network pairs (and reliably

so for network pairs showing largest differences; see S5A and S6C Figs). This is especially the

case for the cognitive control (p<2e−22, see S7 Table), sensory-motor (p<6e−18), and default

mode (p<1e−11). In a similar experiment, we computed the specificity for all pairs of networks

within the different-subject cohort for 139 and 158 subjects with age below 57 and above 69

years old, respectively (see S5B and S6D Figs). For most domains, the model performance for

younger brains appears to be stronger than older ones, especially for the cognitive control

(p<4e−8) and cerebellar (p<2e−8) domains.

To shed more light on the role of age on our model performance, we computed pairwise

sensitivity and specificity differences between the young-old cohorts and then picked the high-

est and lowest 1% of the resulting scores. Fig 7A and 7B show these differences for the sensitiv-

ity and specificity metrics, respectively. Based on these figures, from the pairs with the largest

sensitivities (the arcs colored in red) networks CC61, CC79, and SC69 when paired with a

number of other networks appear to be more discriminative. On the other hand, among the

networks with the lowest sensitivity difference score (arcs colored in blue) networks CB18 and

SC98 are linked with many outgoing arcs suggesting that these networks contain more unique

patterns within the cohort of old subjects. Altogether, the aforementioned networks can be

used in age-related tasks where we are interested in comparing intra-subject networks. Like-

wise, considering Fig 6B, networks from the CC and SM domains when linked with other net-

works (Fig 7B, bottom row) along with the (CC70, VI5) network pair (Fig 7B, top row) are

well suited for age-related tasks using patterns of networks between subjects (e.g., classifying

younger vs. older individuals).

4. Conclusion

In this study, we showed for the first time that pairwise-relationships between ICA-based spa-

tial maps can predict whether or not two networks belong to the same subject. As such, we

proposed a Siamese-based model that extracts individualized patterns by pairwise comparison

of spatial network maps (e.g., an auditory and a visual network). In our model, we combined a
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Siamese architecture with convolutional neural networks to learn high-level features describ-

ing 3D functional brain network maps suitable for the downstream comparison of subjects in

our prediction task. Using the features extracted from the CNN networks, our model gener-

ated a non-linear distance metric representing the chance the two networks are from same or

different subjects. Our results of training the proposed model for all possible network pairs

showed that different pairs of functional networks contributed differently to the network pre-

diction task. This was especially true when networks were selected from the subcortical

domain (with the highest accuracy) or the auditory domain (with the lowest accuracy). The

model’s high performance in subcortical networks suggested the superiority of such networks

being used for future end-point tasks, such as age classification, brain fingerprinting, etc.,

under the proposed framework.

We also provided guidelines for neuroimaging-based prediction tasks by investigating

which network pairs were more feature-rich in each of the same-subject and different-subject

Fig 7. Spatial connectogram of difference in sensitivity (A) as well as the difference in specificity (B) between young

and old groups with the highest (top row) and lowest (bottom row) 1% values. All the connectograms show the

difference scores computed from deducting old subjects from young subjects. Fig 7A suggests CC61 and CC79, and

SC69 networks contain more discriminative features in young subjects. On the other hand, networks of CB18 and

SC98 perform better when subjects are old. Fig 7B shows the network pair CC70-VI5 has the largest specificity

difference between young and old subjects. In contrast, the combination of the CC and SM networks can better predict

the dis-similarity metric when subjects are older. The connectograms were generated using the Circos tool [51].

https://doi.org/10.1371/journal.pone.0249502.g007
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cohorts. We observed that networks from the subcortical and cognitive control domains, and

especially their combinations, demonstrate more variability in the cohort of same-subject sam-

ples. Therefore, we suggest such pairs of networks are well suited for analyzing spatial interac-

tions, for example, for predicting diseases. On the other hand, in the different-subject cohort,

network pairs from the visual domain resulted in more accurate models and can later be used

for a task that scrutinizes networks between subjects, e.g., for identifying same-sex samples.

Further analysis of our results revealed that the performance of our model depends on sub-

jects’ age and sex. From the sex-based assessments, we observed in most cases (71%) the model

performed better in males corroborating the previous studies’ findings, which showed that

males’ brain networks have larger variability (i.e., more distinct patterns) than females’ [52,

53]. Especially for the first time, we showed functional activity in the SPL network varies more

within males than females. Future assessment and study of potential sex bias in these findings

is warranted, and approaches such as [57] could be easily adapted to our framework for such

purposes. Moreover, for 86% of network pairs, we observed higher specificity among differ-

ent-sex subjects than same-sex subjects. This suggests higher discriminative patterns between

networks of different sex compared to networks of the same sex. When it comes to the impact

of age, our results showed that the prediction performance among the younger cohort is higher

than that of the older cohort for most network pairs. Overall, our age and sex-related findings

showed that our model could learn sex and age-rich features from the spatial maps, even

though sex and age have not been explicitly used as an input to our model.

Overall, despite the widespread use of timecourse-derived information (i.e., functional con-

nectivity) in prediction-focused neuroimaging studies, spatial maps are feature-rich data

sources that can serve as surrogates to timecourse data or even be used as complementary

source input. As future works, we think there is room for further research in at least two differ-

ent respects. First, in this study, we tried to show that single scan datasets are sufficient to learn

features that characterize functional patterns. However, one interesting direction would be to

see how we can adapt such a model to leverage multi-scan longitudinal datasets for more

robust predictions. Aggregation techniques such as boosting, or its derivatives can be poten-

tially used for that purpose. Second, we encourage researchers to utilize our approach and

investigate whether similar patterns exist among diseased and healthy cases. Moreover, we

hypothesize that our model can serve as the first step towards brain fingerprinting through dis-

covering unique functional patterns that can characterize people in a unique way.

Supporting information

S1 Fig. ICA-driven spatial maps (the Neuromark templates).

(PDF)

S2 Fig. Accuracy heatmaps. Each entry in the heatmap indicates the accuracy of a network

pair on the entire test set. The heatmap is grouped according to their functional domains, i.e.,

SC, AU, SM, VI, CC, DM, and CB which contain 5, 2, 9, 9, 17, 7, and 4 networks, respectively.

The results suggest that different networks have different amount of discriminative informa-

tion for characterizing subjects. For example, the subcortical, and visual networks appear to be

more predictive (i.e., have more discriminative information) than auditory networks when

paired with a broad range of networks across all domains.

(PDF)

S3 Fig. (A-B) Sensitivity and specificity heatmaps. S3A and S3B Fig depict the heatmap of

sensitivity and specificity, respectively, expressed as percentages. Comparing the two heatmaps

reveals an interesting observation that certain domains (here, the subcortical domain) appear
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to contribute more significantly when classifying ‘same subjects,’ while a different set of net-

works (especially VI-VI and SM-SM network pairs in S3B Fig) contribute the most toward

classification of ‘different subjects’.

(PDF)

S4 Fig. (A-B) Sensitivity (A) and specificity (B) difference heatmap between sex groups. Fig

4A shows the sensitivity differences computed from subtracting the sensitivity of females from

that of males. According to the figure, network pair samples coming from male subjects per-

form better (i.e., they attain higher sensitivity) than samples coming from female subjects in

most cases of same-subject prediction. Fig 4B depicts the specificity differences computed

from subtracting the different-sex specificities from same-sex specificities. This figure shows

that when subjects have different sex, the model performs better (higher specificity) in differ-

ent-subject prediction than when subjects are from the same sex. Note that sensitivity and

specificity are expressed as percentages. (C-D) Percentage of bootstrapped differences

larger/smaller than 0: (C) corresponds to Fig A and (D) corresponds to Fig B. Bootstrapped

sensitivity and specificity differences were evaluated 1,000,000 times (with replacement) to

assess how likely it is to observe a non-zero value in sensitivity/specificity difference per net-

work pair, in the direction of the original difference shown in panels (A) and (B). Large per-

centages indicate the directionality of the observed difference replicates reliably. Note that we

report the number of times values are greater or smaller than zero (whichever is bigger). Thus,

percentages closer to 50% are indicative of unreliable (chance) replication of the original result.

(E-F) Coefficient of variation. Fig 4E and 4F report the ratio of the standard deviation to the

absolute (unsigned) mean of bootstrapped samples for sensitivity and specificity differences,

respectively. For bootstrapped mean differences whose absolute value are below 1, if their stan-

dard deviation exceeds the mean by 1.6 times or more, we simply report -10log10(1.6) = -0.2.

As illustrated, differences with larger absolute value have lower bootstrapped variability, fur-

ther supporting their reliability.

(PNG)

S5 Fig. (A-B) Sensitivity (A) and specificity (B) differences between young and old cohorts.

Figs 5A and 5B show the sensitivity and specificity score differences obtained by deducting the

scores of old subjects from those of young subjects. According to the results, for most network

pairs the sensitivity and specificity scores are higher in young subjects than in old subjects.

Note that sensitivity and specificity are expressed as percentages. (C-D) Percentage of boot-

strapped differences larger/smaller than 0: (C) corresponds to Fig A and (D) corresponds

to Fig B. Bootstrapped sensitivity and specificity differences were evaluated 1,000,000 times

(with replacement) to assess how likely it is to observe a non-zero value in sensitivity/specific-

ity difference per network pair, in the direction of the original difference shown in panels (A)

and (B). Large percentages indicate the directionality of the observed difference replicates reli-

ably. Note that we report the number of times values are greater or smaller than zero (which-

ever is bigger). Thus, percentages closer to 50% are indicative of unreliable (chance)

replication of the original result. (E-F) Coefficient of variation. Fig 5E and 5F report the ratio

of the standard deviation to the absolute (unsigned) mean of bootstrapped samples for sensi-

tivity and specificity differences, respectively. For bootstrapped mean differences whose abso-

lute value are below 1, if their standard deviation exceeds the mean by 1.6 times or more, we

simply report -10log10(1.6) = -0.2. As illustrated, in (E) sensitivity differences with larger abso-

lute value have lower bootstrapped variability, further supporting their reliability, while in (F)

large negative specificity differences (old> young) appear to have lower bootstrapped variabil-

ity than equally-large positive specificity differences.

(PNG)
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S6 Fig. (A) Males’ brains are more variable than females. Fig A shows that the model’s sensi-

tivity in males is higher than females in all brain domains, especially in CB, where 87% of net-

work pairs have higher sensitivity in males than females. (B) Different-sex brains are more

variable than same-sex brains. Fig B shows that most network pairs in the different-sex

cohort have higher specificity than those in the same-sex cohort within domains, especially in

DM, SM, VI, and SC. (C-D) Younger brains are more variable than elders’. According to Fig

C and D, sensitivity and specificity in young brains are higher than in old brains.

(PDF)

S1 Table. Networks identified by ICA and their regions in the brain.

(DOCX)

S2 Table. Training subjects’ demographics.

(DOCX)

S3 Table. Validation subjects’ demographics.

(DOCX)

S4 Table. Test subjects’ demographics.

(DOCX)

S5 Table. (A). Average domain-level accuracies along with two-tailed two-sample t-test p-

values (uncorrected). Numbers in parentheses refer to the average accuracy of network pairs

with one network of the domain. Numbers in cells are the -"log(p-value)×sign(t)" scores

obtained from a two-sided two-sample t-test between mean domain accuracies. The results

show that, using Bonferoni correction and a significance level of 0.05, the mean accuracies of

different domains are mostly significantly different (Bold cells are significant). Lowest and

highest scores are color-coded with blue and red, respectively. The table is symmetric along

the main diagonal except for the sign, which reflects the direction of the difference. (B)

Cohen’s d associated with Table A. Numbers in cells are the effect size, Cohen’s d, between

domain accuracies and are rounded to 3 digits.

(DOCX)

S6 Table. The average performance of network pairs by domain and the p-value between

sex cohorts. P-values were computed using the two-sided two-sample t-test to compare male

vs. female or same- vs. different-sex cohort. Results show that the mean sensitivity between

male and female sub-cohorts are significantly different, especially in CC and CB domains,

each of which includes CC-x and SM-x network pairs. Similarly, the p-values of comparing the

same- and different cohorts suggest the significance of the mean specificity difference, espe-

cially for CC and SM domains.

(DOCX)

S7 Table. The average performance of network pairs inside domains and the p-value

between age cohorts. P-values were computed using the two-sided two-sample t-test for com-

parison of young vs. old cohorts. The results depict the mean sensitivity and specificity

between the young and old sub-cohorts are significantly different.

(DOCX)
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