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Simple Summary: Tumor microenvironment is a complex and dynamically changing entity, which is
crucial for tumor development. Indoleamine 2, 3-dioxygenase 1 is elevated in the tumor microenvi-
ronment and is strongly associated with tumor histological malignancy. Therefore, the Indoleamine
2, 3-dioxygenase 1 metabolic pathway as a potential tumor immune escape could be used as a novel
strategy for cancer therapy. However, the current phase III clinical trials did not achieve a desired result.
Thus, it is imperative to further explore the immunosuppressive mechanism mediated by indoleamine
2,3-dioxygenase 1 in the tumor microenvironment to optimize clinical trial treatment strategies.

Abstract: Indoleamine 2, 3-dioxygenase 1 (IDO1) is a rate-limiting enzyme that metabolizes an
essential amino acid tryptophan (Trp) into kynurenine (Kyn), and it promotes the occurrence of
immunosuppressive effects by regulating the consumption of Trp and the accumulation of Kyn in
the tumor microenvironment (TME). Recent studies have shown that the main cellular components
of TME interact with each other through this pathway to promote the formation of tumor immuno-
suppressive microenvironment. Here, we review the role of the immunosuppression mechanisms
mediated by the IDO1 pathway in tumor growth. We discuss obstacles encountered in using IDO1 as
a new tumor immunotherapy target, as well as the current clinical research progress.

Keywords: indoleamine 2,3-dioxygenase 1; tumor microenvironment; interferon-γ; dendritic cell;
myeloid-derived suppressor cell; regulatory T cell

1. Introduction

IDO is a cellular metabolic enzyme that metabolizes Trp into Kyn, then binds and
activates the aryl hydrocarbon receptor (AhR) [1]. IDO becomes well known for its function
as an essential amino acid Trp degradation enzyme in the body. The IDO gene family
includes IDO1 and IDO2. However, compared to IDO1, IDO2 is a poor producer of Kyn.
Although IDO2 can also initiate the Trp pathway, the affinity and catalytic efficacy of IDO2
for the substrate are very low [2]. Therefore, IDO2 may have little effect on the whole Trp
metabolism [3–5]. The expression level of IDO1 closely correlates with poor prognosis of
tumor, and IDO1 inhibitors have shown significantly limit tumor growth [6–10].

TME is a complex, dynamic entity which composition varies by the tumor type,
but primarily includes immune cells that inhibit the antitumor immune response, blood
vessels, and extracellular matrix. TME has been extensively implicated in tumorigenesis
as it harbors tumor cells that interact with surrounding cells especially immune cells to
influence tumor growth, metastasis, and response to therapy [11]. Immune cells in TME
mainly include dendritic cells (DCs), regulatory T cells (Tregs), myeloid-derived suppressor
cells (MDSCs), nature kill cells (NK cells), and tumor-associated macrophages (TAMs),
activating an immunosuppressive environment through a variety of mechanisms [12,13].
Accordingly, the immunosuppressive TME is one of the major barriers to effective antitumor
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therapy. In recent years, we have witnessed enormous growth in studies on the IDO1-
mediated immunosuppressive network in TME. Upon IDO1 catalysis, the metabolite Kyn
binds to AhR, regulating DCs towards an immunosuppressive phenotype [14–16] and
activating immunosuppressive function of MDSCs [17–19], then resulting CD4 + T cells
differentiate into Tregs. IDO1 affects NK cells by regulating the critical cytotoxic receptors
expression [20,21]. The effect of IDO1 on immune cells and other TME-related cells is
not independent. IDO1 + DCs promote formation of Tregs and induce Tregs to inhibit
normal immune surveillance [22–25]. Tregs then recruit MDSCs and promote TAMs
proliferation to enhance IDO1-drive immunosuppressive network [19,26]. Overall, IDO1-
Kyn-AhR pathway plays a vital role in forming immunosuppressive TME and promotes
TME transform from normal immunogenic to tolerogenic.

Hence, interfering with the IDO1 pathway targeting cancer has become one of the
focused areas in cancer immunotherapy research in recent years. Numerous small-molecule
IDO1 inhibitors have been reported in clinical trials. Here, we provide an exhaustive review
of the role of the IDO1 metabolic pathway in the constituent cells of TME over the past
decades, and depicts the IDO1-mediated immunosuppressive network in TME. This review
may raise new ideas for optimizing a novel direction of clinical trial strategies.

2. Biology and Essential Role of IDO1

IDO1 is a heme-containing enzyme catalyzing the conversion of Trp to Kyn by cleaving
the 2, 3-double bond of the indole ring. Kyn is then converted into other active metabolites
through a series of enzymatic reactions, further resulting in the production of nicotinamide
adenine dinucleotide + (NAD +) and adenosine triphosphate (ATP) to promote cellular
metabolism [27]. IDO1 gene is located on chromosome 8 (8p12-p11 in humans, 8 A2
in mice), and its span is about 15 kb [28,29]. The promoter of the IDO1 gene contains
three interferon-activated sites (GAS) and two interferon-stimulated response elements
(ISRE), which interact with interferon regulatory factor 1 (IRF1) and signal and activator
of transcription (STAT1), respectively [28–30]. These interactions make IDO1 responds
strongly to interferons (IFNs). In this respect, inflammatory states such as infection or
tumorigenesis induce the generation of IFNs and may co-induce the expression of IDO1 in
some cells [31]. These IDO1-expressing cells, including MDSCs, DCs, and macrophages,
are closely related to the restriction of normal immune response, which is consistent with
the high expression of IDO1 in some tumor tissues [7,32–34]. Accordingly, inhibition of
IFNs production and interference with IDO1 expression will be an inspiring and promising
direction in tumor therapy.

3. Regulation of IDO1
3.1. JAK/STAT Signaling Pathway

IFN-γ is a potent inducer of IDO1 expression, and its transcription induction mecha-
nism mainly depends on Janus kinase (JAK), IRF1, and STAT1 transcription factors [35–38].
In response to IFN-γ, STAT1 is firstly phosphorylated by JAK, then dimerized and recruited
into the nucleus, where it binds to the upstream of IDO1 encoding region GAS-2 and
GAS-3 sites and directly activates IDO1 expression. Simultaneously, IFN-γ and STAT1 also
indirectly activate IDO1 expression by synergistically inducing the synthesis of IRF-1 and
binding to ISRE-1 and ISRE-2 sites [39–44]. However, complete STAT1 activation process
depends on IFN-γ-induced activation of the PI3Ka pathway [45,46]. Compared with STAT1,
a published study has shown that IRF-1 combined with ISRE site is a more critical mecha-
nism for inducing IDO1 gene expression [39]. Furthermore, IFN-β is reported to upregulate
IDO1 expression via activating STAT1/STAT2, and activate IDO1-Kyn-AhR metabolic
circuitry like IFN-γ signaling [47,48]. Unexpectedly, cell metabolism glycolysis involves the
JAK/STAT/IDO1 axis and maintains cellular IDO1 expression in responding to inflamma-
tory cues. During the process of providing fuel for the hexosamine biosynthesis pathway,
glycolysis generates GlcNAc, which is utilized by the O-GlcNAc Transferase (OGT) for the
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o-GlcNAc glycosylation of STAT1 [49]. The STAT1-O-GlcNacylation signaling circuit is
necessary for maintaining the activation of STAT1 and its stable downstream effects.

3.2. NF-κB Signaling Pathway

NF-κB transcription factors have been implicated in IDO1 induction [43]. NF-κB
I (IkB) can be induced by canonical (classical) and noncanonical (alternative) signaling
pathways. The canonical pathway involves activation of IkB kinase-β (IKKβ) [50,51], while
the noncanonical pathway is strictly dependent on IkB kinase α (IKKα) homodimers [52,53].
IKKα and IKKβ could have the opposite effect, as IKKβ mediates the response to pro-
inflammation, and IKKα is implicated in remission of the early inflammatory process,
lymphoid organ formation and immune cell maturation [46,54–56]. It is noteworthy that
IFN-γ requires (IKKα) to activate IDO1 expression [57], which suggest that IDO1 expression
requires noncanonical NF-κB pathway to inhibit T cell activity and promote the expansion
of immunosuppressive T cells. In current studies, IFN-γ is the primary inducer of IDO1,
but other inflammatory stimuli including tumor necrosis factor α (TNF-α) and Interleukin-
6 (IL-6), could also induce IDO1. Similarly, TNF-α can synergistically enhance IDO1
transcription through NF-κB relocation and increase the binding of IFN-γ-transactivated
factors to GAS and ISRE sites [39,58]. Still, the induction level is markedly less than IFN-
γ. In addition, it is interesting that IL-6 plays a dual role in the co-regulation of IDO1
expression. IL-6 negatively regulates IDO1 expression by inducing SOCS3 in normal
DCs. Some studies show that blocking the noncanonical NF-κB pathway reduces IL-6
in DCs [46,59]. Opposing effects of IL-6 have been observed in DCs, where a high IDO1
level is detected in Epstein-Barr virus (EBV) infection-induced human monocyte-derived
macrophages (MDMs) [60]. EBV infection increases the production of TNF-α and IL-6,
which subsequently synergistically upregulates IDO1 expression in MDMs. Similar results
have been observed in cancer-related fibroblasts (CAFs) and MDSCs [61,62]. These opposite
effects on regulating IDO1 expression in different cell states and cells indicate that IL-6 may
mediate two pathways involved in the transcriptional expression process.

In summary (Figure 1), JAK/STAT and noncanonical NF-κB pathways are the major
signaling pathways activating IDO1 expression, while a second signal is necessary to
activate the enzyme. A published study has shown that Prostaglandin E2 (PGE2) induces
the expression of IDO1 via catalyzing the formation of cAMP and activating PKA, and
the catalytic activity of IDO1 is then activated through TNF receptor (TNF-R) or a Toll-
like receptor (TLR) signal [63]. De novo heme synthesis is required for induction of the
active IDO1 enzyme in monocyte-derived macrophages [64]. Cyclooxygenase (COX)-2, the
rate-limiting enzyme in the synthesis of prostaglandins, is significantly associated with the
IDO1 catalytic activity [65]. Moreover, the metabolite N-acetylserotonin (NAS) of serotonin
pathway acts as a positive allosteric modulator of the IDO1 enzyme to directly activate
IDO1 [66]. Other pathways, including IL-6-mediated pathways, may each be involved
in IDO transcriptional expression processes through different mechanisms, although the
detailed mechanisms need to be further explored.
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Figure 1. Regulation of activating IDO1 transcription. IFN-γ promotes STAT1 phosphorylation by
JAK, then STAT1 dimerization binding to GAS-2 and GAS-3 sites upstream of the IDO1 coding region
to activate IDO1 transcription and induce IRF-1 synthesis. IRF-1 binds to ISRE-1 and ISRE-2 sites in
concert with STAT1 to promote IDO expression. IFN-β upregulates IDO1 expression via activating
JAK1/TyK2 and STAT1/STAT2. Another regulatory pathway, activation of IKKα by NF-κB-inducing
kinase (NIK) results in the formation of p52-REL-B dimers, which promotes NF-κB translocation
and attaches to the IDO1 coding region. TNF-α synergistically enhancing the IDO1 induction effect
of IFN-γ.

4. Role of IDO1 in TME

Tumor cells are closely related to the surrounding environment and interact continu-
ously. In the process of tumor development, TME promotes the proliferation and metastatic
spread of cancer cells by coordinating with tumor cells. Considering the vital role of
TME in tumorigenesis, an increasing number of studies are focusing on new TME targets
in immunotherapy. Intriguingly, the individual components of TME that constitute the
tumor immunosuppressive network may be IDO1 expression-dependent. Friberget et al.
first reported the IDO1 pathway as a possible tumor immune escape mechanism in 2002
when they observed IDO1 expression by monocytes in tumor tissues and tumor-draining
lymph nodes [67]. In the past decade, numerous studies have observed high IDO1 levels in
human tumors, including glioblastoma, head and neck squamous cell carcinoma, breast
cancer adrenocortical carcinoma, esophageal squamous cell carcinoma, gastric cancer, and
colon cancer [68–75].

In addition to the tumor cells, IDO1 is also expressed by immune-related cells. IDO1-
expressing plasmacytoid DCs were found in malignant melanoma tumor-draining lymph
nodes (TDLNs) [76,77]; IDO-expressing macrophages have also been isolated from human
ovarian cancer [78]. The IDO1 level is associated with the histological malignant grade
and adverse prognosis. Jiao et al. observed increasing IDO1 expression in TME after
neoadjuvant chemoradiotherapy and neoadjuvant chemotherapy accompanied by poor
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pathological response and prognosis [70]. IDO1 pathway accelerates colorectal cancer
growth, local invasion and suppresses CD8 + T cell response. In contrast, IDO1 inhibitors
can significantly potentiate Th1 cytokines and myeloid cell-modulating factors in TME and
improve radiation therapy outcomes [79,80]. These results suggest that IDO1 has a non-
negligible role in TME. IDO1-mediated Trp degradation pathway, resulting in decreased
Trp levels and increased Kyn levels. In this respect, low levels of Trp activates the amino
acid-sensitive general control nonderepressible 2 (GCN2) pathway and the mammalian
target of rapamycin (mTOR) kinase pathway to increase effector T cell deactivation and
apoptosis [81–83]. Accumulated Kyn binds AhR to induce apoptosis of effector T cells
and promote the transformation of naive CD4 T cells to immunosuppressive Forkhead
box P3 (Foxp3) Treg cells [1]. Furthermore, IDO1 induces tumor angiogenesis in vivo by
regulating the IFN-γ/IL-6 balance [84,85]. These mechanisms may significantly inhibit
tumor immunity and promote tumor growth and invasion via the IDO1 pathway.

4.1. Immunomodulatory Effects of IDO1 on Tumor-Associated Dendritic Cells

Dendritic cells (DCs) are specialized antigen-presenting cells that coordinate the body’s
immune response. DCs play an essential role in maintaining the immunosuppressive
state in TME. TME is infiltrated with DCs in different maturation stages and subsets [86].
Immunosuppressive factors such as IFN-γ, PGE2, IL-6, and transforming growth factor-
β (TGF-β) are produced in TME, recruiting DCs to TME and converting them from an
immunostimulating phenotype in early stage to an immunosuppressive phenotype in
the late stage [87–90]. Immunosuppressive DCs maintained the tumor-resistant state and
sustained growth of tumor.

The formation of tolerogenic DCs (tDCs) and their immunosuppressive function is
closely related to IDO1. Many studies have found that DCs in mouse spleens and TDLNs
exhibit structural and intact IDO expression under basal conditions [24,77,91]. IDO1 in
DCs is induced and activated by ligating the B7 ligand through cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), which plays a key role in peripheral tolerance [92–94].
In addition to the ligand-binding modality, the cytokine IFN-γ is also involved in the
induction process. Activated by IFN-γ, immunogenic DCs (iDCs) gradually transform into
IDO1 + tDCs and lose the ability to activate prime CD8 + T cells [90,95,96]. The induction
of IFN-γ is transient, but the long-term maintenance of IDO1 expression that endows
DCs with the tolerance phenotype depends on the IDO1-Kyn/AhR-IDO1 loop [95]. It is a
self-regulated positive feedback pathway, which is first triggered by IDO1 enzyme to form
the Kyn/AhR complex. The Kyn/AhR complex endows DCs with the tolerant phenotype.
Then, the positive feedback continues to maintain the IDO1 expression in tDCs [95–97].
Moreover, 3-hydroxyanthranilic acid (3-HAA), a Trp metabolite produced downstream
of Kyn, promotes the binding of the nuclear coactivator 7 (NCoA7) to AhR in DCs and
enhances the transcription of Kyn-driven, AhR-dependent genes [98]. Apart from IFN-γ,
the Wnt-β-catenin signaling pathway promotes IDO1 + DC tolerance [99–103]. The Wnt
receptors Wnt3a and Wnt5a could induce β-catenin binding to the IDO1 promoter in DCs,
and the induced IDO1 expression level was higher than IFN-γ [101]. Especially, Wnt5a
plays a leading role in inducing and maintaining IDO1 expression, while Wnt3a-mediated
IDO1 expression depends on IFN-γ [99,101].

DCs drive the differentiation and proliferation of Tregs and induce Tregs to inhibit
normal immune surveillance. It has been observed in several studies that IDO1 + DCs lead
to local T-cells deactivation and suppress the host’s anti-tumor T-cells response [22–24].
When IDO1 + tDCs were transformed and formed, the immunosuppressive factor TGF-β
and Tregs infiltration significantly increased TME [14–16,90,102]. These findings led to a
prediction that the T-cells suppressive effect of DCs was mainly mediated by activating
Tregs proliferation and Tregs suppressive activity. CD4 + CD25 + T cells differentiated
into CD4 + CD25 + Foxp3 + Tregs by specific stimulation of degradation product Kyn
induced by IDO + DC [24,25]. However, it is not the newly differentiated Tregs that
predominantly inhibit T cells. IDO1 + DC-mediated Trp depletion causes pre-existing
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quiescent CD4 + CD25 + Foxp3 + Tregs to acquire inhibitory activity by activating the com-
plete amino acid-responsive GCN2 pathway in Tregs [77]. This fraction of Tregs is the
major participant in the anti-tumor T cell response. Increased IDO1 expression in DCs also
slightly enhances the immunosuppressive effect of MSCs on the immune system [15]. IDO1
appears to construct an immunosuppressive network in the TME through DCs.

4.2. Immunomodulatory Effects of IDO1 on Tregs

Tregs are necessary to form self-tolerance in the immune system and belong to the
immunosuppressive subtype of CD4 + T cells. Additionally, they participate in the process
of inhibiting tumor immune response and promoting tumor growth by suppressing the
activation and proliferation of cytotoxic CD8 + T cells and effector T cells.

IDO1 drives the activation process of immunosuppressive phenotype Tregs. Foxp3,
as a specific immunosuppressive marker, endows Tregs with the ability of immunosup-
pression. Absent or mutation of Foxp3 will lead to severe autoimmunity in mice and
significantly inhibit tumor growth [104]. As widely reported, Foxp3 and IDO1 are co-
expressed in a series of tumor tissues [105–108], suggesting that IDO1 is involved in the
differentiation of T cells into Foxp3 Tregs and promotion of tumor growth. IDO1 expression
in TME mainly comes from PDC in TDLNs [24,77]. IDO1 does not act directly. Instead,
Kyn activates AhR and induces T cells differentiation into Foxp3 + Tregs [1,24]. Inhibition
of AhR leads to a decrease in Foxp3 + Tregs [19,109]. IDO1 affects the immunosuppressive
function of Foxp3 + Tregs by regulating mTOR2 and Akt signals. Depletable Trp activates
low levels amino acid-sensitive GCN2 and leads to inhibition of mTORC2 complex and
Akt phosphorylation [110]. Tregs maintain their inhibitory phenotype by keeping low Akt
signaling, which is necessary for the normal activation of effector T cells [111]. Moreover,
the IDO1-activated GCN2 kinase pathway mediates cell cycle arrest and incompetence
induction. In high IDO1-expressing TME, a significant increase of Foxp3 + Tregs was
observed, and Foxp3 + Tregs inhibit CD8 + T cells proliferation in vitro [17,19,112]. IDO1
preferentially activates mature, pre-existing Tregs’ inhibitory activity in the co-culture
system while inducing newly differentiated Foxp3 + Tregs to acquire less activity [77].

IDO1-activated Tregs develop and infiltrate the tumor microenvironment, suppressing
local immune surveillance and promoting tumor development and metastasis. Compared
with the B16-F10 melanoma parental cell line (B16WT) mouse model, Tregs isolated from
the B16-F10 melanoma overexpressing IDO (B16IDO) mouse model exhibited a higher
level of immunosuppressive factors, including vascular endothelial growth factor (VEGF),
CTLA-4, IL-10 and more remarkable ability to suppress immune activation of autologous
CD8 + T cells [19]. IDO1-activated Tregs cause proliferation of M2-like tumor-associated
macrophages (TAMs), which together with Tregs form the Treg-macrophage suppressive
axis to promote the formation of TME [19]. Similarly, Tregs also recruit and activate
immunosuppressive MDSCs to infiltrate the tumor tissues [17].

4.3. Immunomodulatory Effects of IDO1 on MDSCs

MDSCs are a class of immature myeloid cells in different differentiation stages char-
acterized by immunosuppressive activity. Several studies have provided evidence that
MDSCs mediate multiple immunosuppressive mechanisms in TME, including but not
limited to, promotion of Treg infiltration and up-regulation of immunosuppressive cy-
tokines [113–115]. Depletable Trp and accumulative Kyn in TME may also be closely
related to the recruitment and activation of MDSCs in tumor tissues [17].

Glutamine metabolism drives the generation, recruitment, and apoptosis of MDSCs in
primary and metastatic tumors, while it is highly related to IDO1 expression. A significant
decrease in IDO1 expression can be observed in the tumor when inhibiting glutamine
metabolism, accompanied by a robust reversal of the Kyn/Trp ratio [26], which led to
the prediction that the increased IDO1 expression activates the immunosuppressive effect
of MDSCs in TME. IDO1 level in MDSCs is mainly induced by signal transducer and
activator of transcription factor 3 (STAT3)-NF-Kβ-IDO1 pathway. Tumor-derived IL-6



Cancers 2022, 14, 2756 7 of 22

phosphorylates STAT3 and stimulates two noncanonical NF-kB subunits, p52 and RelB to
form a dimer that directly binds to the promoter of IDO1, then drives the expression of IDO1
in MDSCs [61,116]. An adaptor protein signal, caspase recruitment domain-containing
protein 9 (CARD9), which is highly expressed in myeloid cells, initiates the IDO1 expression
via the NF-kβ pathway, thus inhibiting the inhibitory function of MDSCs [117,118]. More
generally, these data suggest that CARD9-NF-kβ-IDO1 and IL-6-STAT3-NF-kβ-IDO1 are
vital tumor immunomodulatory pathways in MDSCs.

IDO1-expressing MDSCs are involved in tumor immunosuppression and immune escape
processes. IDO1 is necessary for MDSCs recruitment to tumor tissues, lymph nodes, and
spleens for local immunosuppressive functions, and IDO1-expressing MDSCs are a crucial
cell population for immunotherapy resistance in a range of tumors [17,119–122]. IDO1-
expressing MDSCs have been shown to accumulate in chronic lymphocytic leukemia (CLL)
patients, suppress T cells activity significantly, and induce suppressive Tregs in vitro [123,124].
Correspondingly, when IDO1 was highly activated in MDSCs, the increased infiltration of
CD4 + CD25 + FoxP3 + Tregs and the enhancement of immunosuppressive function could
be observed in the tumor. Interestingly, as a part of the feedback pathway, IDO1-induced
Tregs are involved in the recruitment and activation of MDSCs. When Tregs were absent in
the tumor, the ability of the splenic MDSCs to migrate to the tumor was lost entirely [17,33].
In addition, decreased IDO1 expression leads to a reduced ability of MDSCs to induce the
production of FoxP3 + Treg [18].

Hence, MDSCs, Tregs and DCs coordinate to form the tumor immunosuppressive
environment through the IDO1 pathway (as shown in Figure 2 and Table 1). However, the
immunosuppressive activity of MDSCs also affects a wide range of immune cell subsets.
MDSCs down-regulates the expression of key surface markers on B cells, including CD80,
CD86, CD95, IgM, HLA-DR, and TACI in vitro through IDO1 expression rather than direct
cell-contact, and induces B cells apoptosis-related gene (such as BAX, BCL-2, and FAS)
upregulated [125]. Accordingly, MDSCs significantly interfere with B cells proliferation
and immune function. Furthermore, MDSCs may produce a variety of chemokines, growth
factors, and pro-inflammatory factors (such as IL-2, IL-10, IL-6, TNF-α, IFN- γ, VEGF and
GM-CSF), which further promote the formation of TME [17].

4.4. Immunomodulatory Effects of IDO1 on Natural Killer Cells

Natural killer (NK) cells can kill tumor cells and virus-infected cells without prior
sensitization. Based on the role of NK cells in anti-tumor responses, many studies have
shown the potential of NK cells in tumor immunotherapy, which makes NK cells the attrac-
tive candidate for tumor therapy [126–128]. However, the treatment effect of NK cells in
solid tumors still faces serious limitations [129,130]. In addition to the difficulty of NK cells
penetrating the tumor in site, the continuous interference of TME’s immunosuppressive
effect is also a big obstacle in this limitation. In TME, some tumor cells or tumor-associated
cells secrete immunosuppressive factors, including TGF-β, IDO, PGE2, IL-6, and IL-10,
which prevent NK cells from performing normal cytotoxic killing function [131–133]. Sig-
nificantly, IDO1 enzyme has a leading effect on the anti-tumor responses of NK cells and
its interactions with other TME-related cells.

Tumor cells lead to NK cell dysfunction by promoting IDO1 expression. As shown
in recent studies, IDO1 is highly expressed in some tumors, and the generated Kyn binds
and activates AhR of NK cells, significantly reducing the expressions of natural cytotoxic
receptors NK cell p46-related protein (NKp46) and type II integral membrane protein
(NKG2D) on the surface of NK cells [20,21]. NKp46 and NKG2D are key activating receptors
of NK cells to bind target cells’ ligands and determine the fate of these cells [134]. Kyn does
not directly act on NK cell activating receptors, but regulates receptors expression through
JAK-STAT signaling pathway. The JAK-STAT signaling pathway is known to be involved
in the maturation, survival, and cytotoxicity of NK cells, and most cytokines can activate or
block NK cells by this pathway [135–137]. STAT1 and STAT3 directly regulate the expression
of NKp46 and NKG2D by binding to the promoter regions of these receptors [21]. When
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Kyn accumulates around NK cells, the number of phosphorylated forms of STAT1 and
STAT3 is reduced, thereby down-regulating the level of NKp46 and NKG2D receptors. IDO1
also interferes with the function of NK cells through another axis. IDO1 can down-regulate
NKG2D and NKG2DL in NK cells by upregulating miR-18a, a microRNA (miRNA) that
significantly promotes tumor cell growth, metastasis and inhibit apoptosis in breast cancer,
ovarian cancer, lung cancer, and hepatocellular carcinoma [138]. The down-regulation of
these cytotoxic receptors undoubtedly leads to the dysfunction of NK cells, which in turn
affects the interaction between NK cells and other immunosuppressive cells in TME.

Figure 2. Immunosuppression network mechanism of TADCs, Tregs, and MDSCs in TME. iDCs
activate IDO1 expression through CTLA-4 ligation with B7, then are transformed into tDCs lacking
the function of activating CD8 + T-cell upon induction of IFN-γ from TME. IDO1 of tDCs can be
strongly induced by the Kyn metabolite 3-HAA and the Wnt3a and Wnt5a receptors accumulated in
TME. Kyn produced by tDCs metabolism binds to AhR of T cells, stimulating their differentiation
into Foxp3 + Tregs. In response to depleted Trp, the GCN2 pathway of Foxp3 + Tregs is activated to
suppress tumor immune responses. Tumor-derived IL-6 promotes STAT3 phosphorylation, which
upregulates NF-κB-driven IDO1 expression and activates immunosuppressive functions of MDSCs.
On the other hand, high expression of CARD9 in MDSCs inhibits immunosuppressive function via
the NF-κB pathway. Foxp3 + Tregs and MDSCs interact to influence each other’s ability to migrate to
tumors. Moreover, IDO1-activated Tregs cause proliferation of TAMs.

NK cells dysfunction mediated by IDO1 impedes the body’s normal anti-tumor im-
mune response. In this respect, recent studies have shown that NKG2DL is expressed in
mononuclear subsets of MDSCs derived from subcutaneous lymphoma in mice, suggest-
ing that NK cells play the role of lysing MDSCs by binding NKG2DL [139]. Due to the
interference of IDO1, the effect of NK cells on killing immunosuppressive cells in TME was
weakened. In addition to being a cell killer, NK cells also secrete IFN-γ to induce IDO1
expression [140]. It is tempting to speculate that while IDO1 affects the anti-tumor effect of
NK cells in TME, it may also form an IDO1-NK cells/IFN-γ-IDO1 loop that can promote
the increase of self-expression. However, if correct, the combination of IDO1 inhibitors
and NK cells immunotherapy would have a more attractive prospect. IDO1 and NK cells
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may have more interaction than previous thought, and further study is needed to clarify
the relationship.

4.5. Immunomodulatory Effects of IDO1 on Tumor-Associated Macrophages

TAMs are the most abundant cell type in solid tumors. TAMs usually exhibit an
M2-like phenotype to participate in tumor immunosuppression and lead to immune es-
cape of cancer cells via different mechanisms [141,142]. In TME, TAMs and some tumor-
derived vascular growth factors such as VEGF, PDGF, CCL2, and CCL8 promote tumor
neovascularization and maintain the tumor growth vascular network [143–145]. In addi-
tion, TAMs promote tumor growth by producing matrix metalloproteinases (MMPs) and
cathepsin to degrade the basement membrane [146–148]. A number of studies have also
provided evidence that TAM seriously interferes with the composition of immune cells
in TME [142,149]. While decreasing tumor immune cells, TAMS increased the number
of immunosuppressive cells to accelerate the formation of TME. However, which factors
promote M2 polarization of TAMs in vivo and how TAMs inhibit anti-tumor immunity in
TME remain largely undefined.

TAMs may play a dual role in tumor immunity through the IDO1-Kyn-AhR pathway.
In a vitro experiment, IFN-γ was observed to promote autophagy in cervical cancer cells and
enhance macrophages phagocytize autophagy-active cancer cells, the mechanism of which
may be related to the overexpression of IDO1 and the accumulation of Kyn [150]. This data
suggests that IFN-γ may inhibit tumor growth through the IDO1-Kyn-autophagy pathway.
However, opposing effects of IDO1 in TAMs have been observed, where IDO1-expressing
cancer cells drive TAMs to impair T cell response. In glioblastoma, Kyn produced by
cancer cells triggers AhR-signaling to regulate the phenotype of TAMs, and causes the
production of adenosine by CD39 and CD73 in TAMs, ultimately leading to CD8 + T cells
dysfunction [151]. In addition, AhR signaling mediates tumor immunosuppression by
promoting CD155 expression on TAMs [152]. CD155, an immune checkpoint as a target for
tumor immunotherapy, is universally expressed in solid tumors [153,154]. Constantly active
AhR signaling induces expression of CD155 on TAMs. Inhibiting AhR mitigated CD155
expression on TAMs could reverse tumor immunosuppression. Similarly, the expression
level of AhR in TAMs is regulated by IDO1 in tumor. However, IDO1 does not directly
control the AhR expression, but through the recruitment of positive regulators STAT1 and
STAT3 [151]. TAMs play a role in inhibiting tumor growth and promoting the inhibition
of anti-tumor immunity through AhR signaling. Moreover, which of these two opposite
effects is dominant in TME remains unclear. Therefore, further studies are still needed
to elucidate the association between the IDO1-Kyn-AhR pathway and TAMs in tumors.
Targeting AhR of TAMs in tumor immunotherapy may be a novel research direction.

4.6. Immunomodulatory Effects of IDO1 on Other TME-Related Cells

Currently, the research of immunotherapy for TME is progressing rapidly. Other
than Tregs, MDSCs, TADCs, NK cells, and TAMs, CAFs, B regulatory cells (Bregs), tumor
endothelial cells (TECs), and tumor-repopulating cells (TRCs) belong to the cellular compo-
nents of the tumor immune microenvironment too (Figure 3 and Table 1). However, to our
knowledge, no study to date has clearly analyzed the potential relation between IDO1 and
these cells.

CAFs originate from normal fibroblasts stimulated by hypoxia in TME or signals
from adjacent tumor cells, and are one of the major stromal cells in tumors [155,156]. A
recent study by Cui et al. highlighted that interstitial CAFs and microvascular endothelial
cells co-express IDO1 in esophageal cancer, which may be an of the mechanisms that
cancer cells inhibit host anti-tumor immunity [157]. However, it seems that CAFs recruit
other immune cells to express IDO1 in a more indirect way to inhibit T cell response.
By contrast, in hepatocellular carcinoma, CAFs secrete IL-6 to mediate STAT3 activation,
convert normal DCs into cells with high IDO1 expression and educate them to acquire a
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tolerogenic phenotype [62]. The relation between CAFs and IDO1 in forming the tumor
immune microenvironment remains further studied and explored.

Figure 3. Immunosuppression mechanism of other TME-related cells in TME. IDO1 metabolism
in tumors produces an overaccumulation of Kyn. Kyn binds and activates AhR of TAMs, drives
TAMs to secrete adenosine to interfere with T cells’ immune function in TME. CD155 expression on
TAMs also is upregulated to promote tumor immunosuppression. Kyn binds and activates AhR of
NK cells and downregulates NKp46 and NKG2D receptor expression. The significant reduction of
these natural cytotoxic receptors inhibits the function of NK cells to kill tumor cells. The major tumor
stromal cells CAFs secrete IL-6, which educates iDCs to acquire a tolerogenic phenotype, and further
promotes tumor immunosuppression. IFN-γ/IFN-β from tumor induce TRCs into dormancy by
activating IDO1 expression. Increased IDO1 expression in B cells drives their conversion to iBregs.
iBregs are involved in regulating the immune function of T cells and Tregs in TME.

Tumor angiogenesis is an essential condition for tumor progression and metastasis.
Rapid tumor growth often leads to increased oxygen consumption, which produces a
large number of pro-angiogenic factors in TME and forms a tumor vascular network.
IDO1 may be involved in tumor angiogenesis. High microvascular density and worse
prognosis of breast cancer is closely related to the expression of IDO1 [158]. Silencing
IDO1 gene or using molecule inhibitor of IDO1 significantly reduces the number of tumor
neovascularization and inhibits the invasion and migration of cancer cells [159,160]. This
inhibition effect of tumor angiogenesis is potentially associated with IDO1 generation
by TECs [159]. Accordingly, TECs express IDO1 to accelerate tumor neovascularization
and promote tumor growth. However, few studies on the correlation between IDO1 and
tumor angiogenesis, and this regulatory effect’s specific signaling transduction pathway
remains unclear.

More recently, immunologic tumor dormancy, an immune surveillance escape program
against hard microenvironments, has been observed in clinical post-transplantation and
surgical remission patients [161–164]. Immunologic tumor dormancy may be a potential
barrier for current immunotherapies. As shown in recent studies, IFN-γ and IFN-β induce
TRCs into dormancy by activating IDO1-Kyn-AhR-dependent kinase inhibitor 1B (p27)
signaling [47,48,165], which prevents STAT1 and STAT3 signaling to suppressing the cell
death and apoptosis. Compared with IFN-γ, IFN-β appears to have a stronger ability to
induce TRC dormancy. IFN-β promotes STAT3 serine phosphorylation by JAK1/TyK2
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pathway. STAT3 translocation into the nucleus and further activating p27 expression [47].
These data suggest that IFN-γ/IFN-β-induce IDO1-Kyn-AhR pathway involves in the
immunologic tumor dormancy and further contributes to immune escape of tumor cells.

IDO1 pathway induces innate immune B cells to be effective induced B regulatory
cells (iBregs) [166]. Activated B cells produce IDO1 and TGF-β in a CTLA-4-dependent
manner to transform themselves into iBregs, which gain the ability to regulate T cells and
drive the generation of Foxp3 + CD4 + T cells [166]. This transformation may accelerate
the formation of the immunosuppressive microenvironment, which is conducive to tumor
growth. Further studies are needed to shed some light on the interaction between IDO1
and B cells.

5. Current Status of IDO1 and TME in Treatment of Cancer, Future Perspective

IDO1 is highly expressed in most tumor tissues and mediates immune escape of
tumor cells, so 11 inhibitor drugs targeting IDO1 pathway have entered clinical trials [167].
Over the past few years, clinical trial treatment strategies have mainly included IDO1
inhibitor monotherapy, IDO1 inhibitors combined with checkpoint inhibitors, and IDO1
combined with chemotherapy and radiotherapy (as shown in Table 2). Although several
IDO1 inhibitor monotherapies, including indoximod and epacadostat, have entered phase
II trials, it is disappointing that no significant tumor reduction and T cell count changes
were observed in preclinical work [168–170]. The immune checkpoint PD-1/PD-L1 is
co-expressed with IDO1 in a range of tumors [171–174], and anti-PD-1/PD-L1 and anti-
CTLA-4 treatments induce IDO1 expression [175,176], suggesting a possible synergistic
relationship may exist between the three. Therefore, an increasing number of clinical trials
are now focusing on IDO1 inhibitor combination therapies. In this regard, the combination
of epacadostat with the immune checkpoint inhibitor pembrolizumab showed encouraging
results, promoting the combination therapy into phase III clinical trials [177]. However,
this combination therapy did not improve clinical response in phase III trials [178]. The use
of triple therapy, combining an IDO1 inhibitor with anti-PD-1/PD-L1 and anti-CTLA-4,
showed a reduction in Treg infiltration in vivo, but no difference in survival compared
to the CTLA-4/PD-L1 double therapy. The effectiveness of IDO1 inhibitors as a strategy
to enhance the therapeutic activity of PD-1/PD-L1 remains unclear. The clinical results
of these IDO1 inhibitors have frustrated the research community, but have thus inspired
multifactorial thinking and discussion. First, the design details of clinical trials, including
inhibitor selection, inhibitor dose, inhibitor combination regimen, cancer type selection,
and the patient stratification based on IDO1 expression are all critical in determining
the effectiveness of clinical trials [179]. When IDO1 is inhibited, IDO2 and Tryptophan-
2, 3-Dioxygenase (TDO) may be potential surrogate pathways for tumors, failing IDO1
inhibitors to inhibit Trp degradation [6,179]. As shown in a recent study, interleukin-4-
induced-1 (IL4I1) correlates more with AhR activity than IDO1 or TDO in 32 tumors. IL4I1
activates AhR by producing Kyn, which may also explain the failure of clinical trials using
IDO inhibitors [180]. Furthermore, IDO1 inhibitors combined with other types of therapy
may induce IDO1 expression up-regulation through various mechanisms. Therefore,
exploring the combination of dual IDO/TDO inhibition and TME downstream signaling
blockade may become a promising strategic option in future clinical trials.

6. Conclusions

This review elucidates the network of immunosuppressive mechanisms regulated by
IDO1 in TME, which is involved in the process of tumor development. IDO1 plays a crucial
role in tumor immunosuppression, and IDO1 may become a very attractive target for future
anti-tumor molecular targeted therapy. However, many unanswered questions remain to
be explored before the full potential of IDO in cancer immunotherapy can be harnessed.
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Table 1. IDO1 affects immune-related cells under different conditions.

Cell Type Mechanism (Pathway) Effects Condition

DCs

IDO1-Kyn-AhR pathway Endowed with the tolerance phenotype and lose the
ability to activate prime CD8 + T cells

Low metastatic lung alveolar carcinoma in vivo [90], mammary carcinoma
in vivo [95], and non-tumor in vivo [96]

IDO1-Kyn-AhR pathway Promote formation of Foxp3 + Tregs and induce Foxp3 +
Tregs to inhibit normal immune surveillance.

Acute myeloid leukemia in vitro [22], and hepatocellular carcinoma in vitro [23],
non-tumor in vitro [24,25], low metastatic lung alveolar carcinoma in vivo [90],

acute myeloid leukemia in vitro [102], mesothelioma and lung cancer in vivo [16],
mammary carcinoma, lung alveolar carcinoma, and colon carcinoma in vivo [14],

and non-tumor in vivo [15]
IDO1-Kyn-AhR pathway and amino

acid-responsive GCN2 pathway Activate pre-existing Tregs suppressive activity Melanoma in vivo [77]

Tregs

IDO1-Kyn-AhR pathway Differentiated into CD4 + CD25 + Foxp3 + Tregs Non-tumor in vitro [1,24,109], melanoma, and colon cancer in vivo [19]
IDO1-Kyn-AhR pathway and amino

acid-responsive GCN2 pathway Acquire suppressive ability Melanoma in vivo [77,110]

IDO1-Kyn-AhR pathway Inhibit CD8 + T cells proliferation Melanoma and colon cancer in vivo [19], and Melanoma in vivo [17]
IDO1-Kyn-AhR pathway Promote expression of immunosuppressive factors Melanoma and colon cancer in vivo [19]
IDO1-Kyn-AhR pathway Promote TAMs proliferation Melanoma and colon cancer in vitro [19]
IDO1-Kyn-AhR pathway Recruit MDSCs to tumor tissues Melanoma in vivo [17]

MDSCs

IDO1-Kyn-AhR pathway Suppress T cells activity and induce suppressive Tregs Chronic lymphocytic leukemia in vitro [123,124]
IDO1-Kyn-AhR pathway Enhance Tregs suppressive activity Chronic lymphocytic leukemia in vitro [123,124]
IDO1-Kyn-AhR pathway Promote formation of Foxp3 + Tregs Non-tumor in vitro [18]
IDO1-Kyn-AhR pathway Interfere with B cells proliferation and immune function Non-tumor in vitro [125]

IDO1-Kyn-AhR pathway Accelerated tumor outgrowth Melanoma in vivo [17,119], lung cancer in vivo [120], lewis lung carcinoma
in vivo [121], and triple-negative breast cancer in vitro [122]

NK cells IDO1-Kyn-AhR pathway, JAK-STAT pathway, and
IDO1-miR-18a-NKG2D-NKG2DL axis Cytotoxic killing ability dysfunction Thyroid cancer in vitro [21], pancreatic cancer in vitro [20], and breast cancer

in vitro [138]

TAMs
IDO1-Kyn-autophagy pathway Phagocytic cancer cells with active autophagy Cervical cancer in vitro [150]

IDO1-Kyn-AhR pathway, CD39-CD73-adenosine
pathway, and IDO1-Kyn-AhR-CD155 pathway Impair T cell response Glioblastoma in vivo [151], non-tumor in vitro and breast cancer in vivo [152]

CAFs IL-6-STAT3-IDO1 pathway Educate DCs to acquire an IDO1-express tolerogenic
phenotype Hepatocellular carcinoma in vitro [62]

TECs IDO1-Kyn-AhR pathway Regulate tumor neovascularization Clear cell renal cell carcinoma specimen [159], and lung cancer in vivo [160]

TRCs IDO1-Kyn-AhR-p27 pathway Enter dormancy Colon cancer, hepatocellular carcinoma, breast cancer, stomach cancer, and liver
cancer in vitro, and melanoma both in vitro and in vivo [47,165]

B cells IDO1-Kyn-AhR pathway Transform into iBreg to regulate T cells and drive the
generation of Foxp3 + CD4 + T cells Non-tumor in vitro [166]
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Table 2. IDO1 inhibitors as a single agent and in combination with other therapies in completed clinical trials.

Agent Strategy NCT Number Phase Conditions Clinical Efficacy

Indoximod
(1-D-MT)

Single agent
NCT03852446 Early I Healthy Unknown
NCT03372239 I Healthy Unknown
NCT00567931 I Unspecified adult solid tumor Unknown

Sipuleucel-T NCT01560923 II Metastatic prostate cancer Stabel disease (SD) is 50%
Idarubicin and cytarabine NCT02835729 I Acute myeloid leukemia Unknown

Temozolomide, cyclophosphamide,
etoposide, and radiation NCT02502708 I

Glioblastoma multiforme, glioma, gliosarcoma, malignant brain tumor,
ependymoma, medulloblastoma, diffuse intrinsic pontine glioma, and

primary CNS tumor
Unknown

Nab-Paclitaxel and gemcitabine NCT02077881 I/II Metastatic pancreatic adenocarcinoma and metastatic pancreatic cancer Unknown
Ipilimumab, nivolumab,

and pembrolizumab NCT02073123 I/II Metastatic melanoma and stage III-IV melanoma Unknown

Docetaxel, indoximod, and paclitaxel NCT01792050 II Metastatic breast cancer
Objective response rate (ORR) is 40%
and 37%, respectively (indoximod vs.

placebo) [181]
Temozolomide, bevacizumab, and radiation NCT02052648 I/II Glioblastoma multiforme, glioma, gliosarcoma, and malignant brain tumor Unknown

Docetaxel NCT01191216 I Unspecified adult solid tumor Unknown

Epacadostat
(INCB024360)

Single agent NCT01195311 II Solid tumors and hematologic malignancy SD lasting ≥16 weeks was observed
in 7 of 52 patients [169]

NCT01822691 II Myelodysplastic syndromes
SD in 12 (80%) patients and

progressive disease in 3 (20%)
patients [170]

Pembrolizumab

NCT03322540 II Lung cancer ORR 32.5%
NCT03291054 II Gastrointestinal stromal tumors Unknown
NCT02364076 II Thymic carcinoma, thymus neoplasms, and thymus cancer SD 52.5%

NCT03196232 II

Gastric adenocarcinoma, gastroesophageal junction adenocarcinoma,
recurrent esophageal carcinoma, recurrent gastric carcinoma, stage IV

esophageal cancer AJCC v7, stage IV gastric cancer AJCC v7, and
unresectable esophageal carcinoma

Unknown

NCT02752074 III Melanoma
No significant differences were found

between the treatment groups for
progression-free survival [178]

NCT03361865 III Urothelial cancer ORR 31.8%
NCT03374488 III Urothelial cancer ORR 21.4%

Pembrolizumab and chemotherapy NCT02862457 I Neoplasms, carcinoma, and non-small-cell lung Unknown
NCT03322566 II Lung cancer ORR 26.4%

Pembrolizumab, oxaliplatin, leucovorin,
5-fluorouracil, gemcitabine, nab-paclitaxel,

carboplatin, paclitaxel, pemetrexed,
cyclophosphamide, and cisplatin

NCT03085914 I/II Solid tumor

Partial response (PR):
Epa + Pembrolizumab + mFOLFOX6:
55.6%; Epa + Pembrolizumab + 5-FU

and Platinum Agent: 45.5%
Durvalumab (MEDI4736) NCT02318277 I/II Solid tumors, head and neck cancer, lung cancer, and urothelial cancer ORR 12.9% (phase II)

SD-101 and radiation NCT03322384 I/II Advanced solid tumors, lymphoma Unknown
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Table 2. Cont.

Agent Strategy NCT Number Phase Conditions Clinical Efficacy

MK-3475 NCT02178722 I/II

Microsatellite-instability high colorectal cancer, endometrial cancer, head and
neck cancer, hepatocellular carcinoma, gastric cancer, lung cancer, lymphoma,

renal cell carcinoma, ovarian cancer, solid tumors, urothelial cancer, breast
cancer, and melanoma

ORR: microsatellite-instability high
colorectal cancer: 43.8%; melanoma:
60.5%; non-small cell lung cancer:
30.8%; renal cell carcinoma: 32.4%;

squamous cell carcinoma of the head
and neck: 33.3%; transitional

carcinoma of the genitourinary tract:
30.6%

Nivolumab and chemotherapy NCT02327078 I/II B-cell malignancies, colorectal cancer (CRC), head and neck cancer, lung
cancer, lymphoma, melanoma, ovarian cancer, and glioblastoma Unknown

MELITAC 12.1 Peptide Vaccine NCT01961115 II Stage III–IV melanoma Unknown
Fludarabine, cyclophosphamide, NK cells,

and IL-2 NCT02118285 I Ovarian cancer, fallopian tube carcinoma, and primary peritoneal carcinoma Unknown

DEC-205, NY-ESO-1 Fusion Protein
CDX-1401, and Poly ICLC NCT02166905 I/II Fallopian tube carcinoma, ovarian carcinoma, and primary

peritoneal carcinoma Unknown

BMS-986205

Single agent

NCT03378310 I Healthy Unknown
NCT03312426 I Healthy Unknown
NCT03374228 I Healthy Unknown
NCT03362411 I Healthy Unknown
NCT03247283 I Cancer Unknown

Nivolumab
NCT03192943 I Advanced cancer Unknown
NCT03792750 I/II Advanced cancer Unknown
NCT03329846 III Melanoma and skin Cancer Unknown

Omeprazole NCT03936374 I Healthy Unknown
Itraconazole and rifampin NCT03346837 I Malignancies multiple Unknown

navoximod
(GDC-0919/NLG919)

Single agent NCT02048709 I Solid tumor (8) 36% had stable disease and (10)
46% had progressive disease [168]

Atezolizumab NCT02471846 I Solid tumor
(6) 9% dose escalation patients

achieved PR, (10) 11% expansion
patients achieved PR or CR [182]

NLG802 Single agent NCT03164603 I Solid tumor Unknown

SHR9146
(HTI-1090)

Single agent NCT03208959 I Advanced solid tumor Unknown
Mogamulizumab NCT02867007 I Solid tumor, cancer, and carcinoma Unknown
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