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ABSTRACT: A suite of analytical techniques was used to obtain a
comprehensive picture of per- and polyfluoroalkyl substances (PFAS) in
selected Canadian food packaging used for fast foods (n = 42). Particle-
induced gamma ray emission spectroscopy revealed that 55% of the
samples contained <3580, 19% contained 3580−10 800, and 26% >
10 800 μg F/m2. The highest total F (1 010 000−1 300 000 μg F/m2)
was measured in molded “compostable” bowls. Targeted analysis of 8
samples with high total F revealed 4−15 individual PFAS in each sample,
with 6:2 fluorotelomer methacrylate (FTMAc) and 6:2 fluorotelomer
alcohol (FTOH) typically dominating. Up to 34% of the total fluorine
was released from samples after hydrolysis, indicating the presence of
unknown precursors. Nontargeted analysis detected 22 PFAS from 6
different groups, including degradation products of FTOH. Results
indicate the use of side-chain fluorinated polymers and suggest that these
products can release short-chain compounds that ultimately can be transformed to compounds of toxicological concern. Analysis
after 2 years of storage showed overall decreases in PFAS consistent with the loss of volatile compounds such as 6:2 FTMAc and
FTOH. The use of PFAS in food packaging such as “compostable” bowls represents a regrettable substitution of single-use plastic
food packaging.
KEYWORDS: Fast food packaging, PFAS analysis, nontargeted PFAS analysis, regrettable substitution, plant fiber-based food packaging,
PFAS precursors, hydrolysis assay, PFAS stability

■ INTRODUCTION
Per- and polyfluoroalkyl substances (PFAS) are used globally
and comprise more than 4700 individual compounds.1,2 They
have been intentionally added to food packaging for decades to
confer grease and water repellency. PFAS are inherently
persistent, and many are mobile, bioaccumulative, and/or
toxic.3−6 As such, their use in food packaging could represent a
significant issue in terms of direct human exposure and end-of-
life environmental pollution.3,5−9 On December 20, 2022, the
Government of Canada prohibited the manufacturing or
import of single-use plastics, including “single-use plastic
foodservice ware” such as polystyrene and oxo-degradable
plastic clamshell containers, lidded containers, boxes, and
bowls.10 This regulation, and a subsequent Canadian
regulation that will restrict the use of these single-use plastics
entirely by December 2023, will likely lead to greater use of
plant fiber-based food packaging alternatives, to which PFAS
may be added to achieve grease- and water-repellency.11 If so,
this would represent a regrettable substitution of trading one
harmful option for another.

Several studies have documented the widespread use of
PFAS in food packaging,2,3,6,12,13 although only one was from
Canada.14 The specific compounds used have changed over
time, from past use of perfluorooctanesulfonic acid (PFOS)
precursors such as N-ethyl perfluorooctane sulfonamido
alcohol-based phosphate esters (SamPAPs) to substances
based on 6:2 fluorotelomer alcohol (FTOH) and perfluor-
opolyethers9 (Tables S1 and S2 summarize literature data on
PFAS in food packaging). PFAS can migrate from food
packaging into food depending on the type of material, contact
time, temperature, and PFAS chain length.3,15−18 For example,
the consumption of popcorn from microwave popcorn bags
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containing PFAS has been related to elevated serum PFAS
levels.15

An associated concern is the presence of polymeric PFAS,
notably side-chain fluorinated polymers, in food packaging
materials.19−21 Although these PFAS polymers are likely less
mobile and bioaccessible than nonpolymeric PFAS, they
contain nonpolymeric PFAS impurities and can produce
lower molecular weight breakdown products such as
FTOHs.12 As polymers, these substances are not subject to
the same regulatory scrutiny as monomers and neither are their
impurities and breakdown products.22−25

The negative health7 and environmental8 consequences of
PFAS used in food packaging have led to legislative changes. In
2020, Denmark banned PFAS-containing cardboard and paper
used in food packaging.26 As of 2022, 11 states in the United
States have passed regulations banning the use of PFAS in food
packaging.20 Industry has taken note of these actions: in 2020,
three U.S. manufacturers agreed to voluntarily phase out sales
of food packaging products containing 6:2 FTOH by 2023,
and McDonald’s and Restaurant Brands International have
committed to removing all PFAS from consumer packaging
materials by 2025.27−29 Currently, PFOS, perfluorooctanoic
acid (PFOA), and long-chain perfluoroalkyl carboxylic acids
(PFCAs) as well as their salts and precursors are prohibited
from manufacture, use, sale, or import under the Canadian
Environmental Protection Act.22,23 Although the Government
of Canada provides some information on the regulation of
PFAS in food packaging,30 the Canadian regulatory system is
far from transparent and does not include a publicly available
list of PFAS that are restricted or that can be used in these
materials, as is done in the U.S.

We herein used a suite of analytical techniques to obtain a
comprehensive picture of PFAS in a selection of Canadian fast-
food packaging, motivated by understanding the potential for
exposure, Canadian regulatory requirements, and implications
for the restrictions on single-use plastics for food packaging.
Particle-induced gamma ray emission (PIGE) spectroscopy
was used to screen samples for total fluorine (F) content
followed by targeted analysis of PFAS by liquid and gas
chromatography mass spectrometry (LC-MS/MS, GC-MS) for
samples with high total F. We used high-resolution or HRMS-
based nontarget analysis (NTA) to identify a broader set of
unknown PFAS. The mass balance gap between total F and
identifiable PFAS was further closed using a hydrolysis assay
followed by GC-MS to detect neutral PFAS breakdown
products. We chose the hydrolysis rather than the total
oxidizable precursor (TOP) assay because we found that the
former yielded higher concentrations of neutral PFAS when
applied to textile samples.31 Finally, we shed light on changes
in PFAS in fast-food packaging after storage along with
associated implications.

■ MATERIALS AND METHODS
Sampling. Food packaging samples were collected twice

from food retailers in Toronto, Canada: February to March
2020 (42 samples) and August 2020 (resampling of 8 samples
from the same retailers). Samples included molded “compo-
stable” fiber bowls, sandwich and burger wrappers, popcorn
serving bags, and dessert and bread wrappers.18,32 Detailed
descriptions of the samples, sampling procedure, and all
analytical methods used are in Supporting Information
Sections S1−S5 and Table S3. The first round of analytical
work (i.e., PIGE, targeted and nontargeted) occurred in

August 2020, while the hydrolysis assay and the second round
of targeted analysis occurred in August 2022 after samples
were stored for about 2 years at room temperature in the dark.
PIGE Analysis. Samples (n = 50 including field and lab

duplicates) were analyzed for total F using PIGE spectroscopy
as described by Ritter et al.33 and Xia et al.31 Section S2 and
Table S9 describe study-specific quality assurance/quality
control (QA/QC) analysis and sampling information.
Targeted GC-MS and LC-MS/MS. Eight products with

high total F were selected for targeted analysis by LC-MS/MS
and GC-MS after solvent extraction before and after 2 years of
storage using analytical methods adapted from Wu et al.34 and
described by Whitehead et al.35 Section S3 and Tables S4−S8
summarize the 55 PFAS selected for targeted analysis,
including a study-specific QA/QC analysis (including labo-
ratory and field blanks).
Hydrolysis Assay. Subsamples from the same eight

products analyzed with a targeted MS analysis were subjected
to hydrolysis after 2 years of storage using the approach of
Nikiforov,36 modified by Xia et al.31 Samples were mixed with
a NaOH solution in methanol/water (90:10), heated at 60 °C
in an oven for 16 h, and analyzed using GC/MS for a targeted
analysis of FTOHs and fluorotelomer (meth)acrylates (FT-
(M)Acs) (Section S4).
Nontargeted LC-MS/MS. The same eight products

selected for targeted analysis also underwent NTA using an
extraction procedure and instrumental method adapted from
Yuan et al.18 and Barrett et al.37 All samples were analyzed
using a Vanquish ultrahigh-performance liquid chromatog-
raphy (UHPLC) system (Thermo Fisher Scientific) with an
electrospray ionization (ESI) source, coupled to a Q Exactive
high-resolution mass spectrometer (Thermo Fisher Scientific).
After instrumental analysis, the spectra were run through an in-
house R script for peak detection and PFAS database
matching.37 The identities of PFAS were then manually
confirmed via MS2 analysis, and only those of PFAS supported
by predicted MS2 fragments were kept. Of the tentatively
identified compounds, authentic standards were commercially
available for two compounds (6:2 FTUCA and 5:3 FTCA),
which were used for validation. Supporting Information
Section S5 and Figures S1 and S2 contain further details,
including QA/QC measures (including laboratory and field
blanks).

■ RESULTS AND DISCUSSION
Total Fluorine Screening. 55% of the samples contained

no detectable F, defined here as <3580 μg F/m2. 19% of the
samples contained trace levels of F ranging from 3580 to
10 800 μg F/m2, and 26% of the samples had >10 800 μg F/m2

(Figure S3, Tables S10 & S11). A similar range was reported
previously using PIGE to measure total F in fast food
packaging collected from the U.S. in 2014 and 2015 (Section
S6 and Table S1).32,33

The PIGE analysis highlighted the relationship between
material type and the amount of F. The highest concentrations
of total F (1 010 000−1 300 000 μg F/m2) were detected in
four samples of molded fiber bowls (also known as bagasse
bowls) used for take-out food such as salads and burritos
(Figure S4). These bowls are marketed as “green” alternatives
to plastic bowls, since they are purportedly “compostable”.
However, some molded fiber-based food packaging requires
large quantities of PFAS to be mixed into the raw pulp to
confer mechanical strength and prevent disintegration upon
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contact with liquids.13 Other samples containing quantifiable F
(11 400−30 100 μg F/m2) were paper bags intended to hold
oily food items such as pastries, donuts, or burgers. These bags
had significantly higher total F than paper wrappers intended
for use with less oily food items such as wraps (except for one
paper wrapper intended for a burger, which contained no
detectable F, Figure S4).
Targeted PFAS Analysis. Eight products were selected for

targeted analysis (before storage) based on high F concen-
trations as measured by PIGE: three molded fiber bowls and
five paper bags, all of which were intended to hold greasy or
wet foods such as burrito bowls, salads, donuts, or popcorn.
PIGE total F was 100−5000 times higher than the results from
targeted total F for these samples (Table 1). ∑PFAS
concentrations from targeted analysis ranged from 55 to
7180 ng/g, with the paper bags, except popcorn bag 8,
containing higher ∑PFAS than the three molded fiber bowls.

Among the 55 targeted PFAS (prestorage), 5−14 individual
compounds were detected in each sample, including (FT(M)-
Acs), FTOHs, PFCAs, fluorotelomer phosphate monoesters
and diesters (PAPs and diPAPs), and fluorotelomer sulfonic
acids (FTSAs), at levels from ∼1 to 5670 ng/g for individual
compounds (Figure S5, Table S12a).

Two short-chain PFAS, i.e., 6:2 FTOH and 6:2 FTMAc,
were most abundant (except for one sample) from 300 to
∼5700 ng/g per individual compound. 6:2 FTMAc comprised
60−79% by weight for five of the eight samples (burrito bowl 1
and paper bags 4−7) or was second most abundant (42−46%
in bowls 2 and 3). 8:2 FTMAc was not detected in any of the
samples. To the authors’ knowledge, this is the first time that
FTMAcs have been reported in food packaging. In two of the
eight samples, FTOHs dominated at ∼55% by weight or were
the second most abundant compound (five of the eight
samples) with concentrations of 300−1735 ng/g. 8:2 FTOH
was present (8 to ca. 100 ng/g) in 4 samples. 4:2 and 10:2
FTOH were not detected.

Yuan et al. reported finding seven individual FTOHs in 78%
of food packaging from China purchased from 2013 to 2015,
with the most abundant being 8:2 FTOH.18 Previous analyses
of U.S. food packaging found that 6:2 FTOH was the major

component in all FTOH-detectable food packaging.38 Table
S2 contains further comparisons with the literature.

Across the PFCAs, FTAcs, FTMAcs, and FTOHs, the six-
perfluorocarbon homologues were detected with the highest
abundance, aligning with the general industrial transition from
longer chain to 6:2 fluorotelomer-based monomers and
polymers and their abundance in numerous environmental
matrices.39,40

Effect of Storage on the PFAS Profile. During storage,
PFAS, especially volatile neutral ones, such as 6:2 FTOH,
could be transformed and/or released from the products,
changing the initial composition of the item. Before conducting
the hydrolysis experiment, we reanalyzed the same fast-food
packing products after they had been stored in a sealed bag in
the dark for ∼2 years at room temperature. Total PFAS
concentrations from the targeted analysis in re-extracted
samples were lower in six of the eight samples, by up to
85%, than those in the original extracts, ranging from 130 to
2430 ng/g (Table S12b). Most pronounced were losses of 65−
100% of 6:2 FTMAc and 6:2 FTOH in two samples (paper
bags 4 and 6). Concentrations of 8:2 FTOH, 6:2 and 8:2 PAP,
and 6:2 diPAP decreased to less than the limit of detection
(<LOD) in several samples. These decreases are consistent
with losses of volatile PFAS (FTOHs) observed in outdoor
jacket textile samples, stored under conditions similar to those
here for 3.5 years.41

The concentrations of most ionic PFAS were comparable to
those from the original extractions with the exception of
perfluoropropionic acid (PFPrA), perfluoropentanoic acid
(PFPeA), and perfluorohexanoic acid (PFHxA), which
increased by up to 8-fold in five samples (3 bowls and paper
bags 7 and 8). These changes were likely due to the
transformation of known (e.g., 6:2 FTOH, 6:2 FTMAc, 6:2
PAP, and 8:2 FTOH) and unknown precursors.42,43 We
hypothesize that at least some mass losses of volatile FTOHs
and FTMAcs were due to volatilization, whether present
initially or due to transformation from precursors.

In contrast, 6:2 FTOH concentrations increased in five
samples, potentially due to the transformation of the
precursors. Notably, total PFAS concentrations measured by

Table 1. Mass Balance of Total Fluorine for Eight Products Analyzed by PIGE and Targeted Analysis of Extracts before and
after Storage for 2 Years, and after Hydrolysis Assaya

Sample name

Burrito
molded
bowl 1

Burrito
molded
bowl 2

Salad
molded
bowl 3

Donut
paper
bag 4

Pastry
paper
bag 5

Pastry
paper
bag 6

Popcorn
paper
bag 7

Popcorn
paper
bag 8

PIGE
Concentration 1 300 000 1 010 000 1 180 000 30 100 23 800 28 000 11 400 <LOQ
Original Targeted Analysis
Concentration (original extraction) 283 569 328 181 105 126 109 4.07
Percent of PIGE concentration explained (%) 0.02 0.06 0.03 0.60 0.44 0.45 0.96 N/A
Concentration (re-extraction after 2 years) 395 552 340 31.1 31.0 24.3 45.4 9.30
Percent of PIGE concentration explained (%) 0.03 0.05 0.03 0.10 0.13 0.09 0.40 N/A
Hydrolysis
Concentration 36 100 24 100 65 700 3900 8100 8000 2900 7.00
Difference between hydrolysis and concentration (re-
extraction after 2 years)

35 700 23 700 65 400 3860 8000 7960 2860

Percent of PIGE concentration explained (%) (F from
unknown precursors released after hydrolysis)

2.8 2.4 5.6 13 34 28 25 N/A

aConcentrations of total F analyzed by PIGE and targeted analysis of extracts and after hydrolysis are expressed in μg F/m2. Also included are
percentage contributions of the targeted analysis to total F measured by PIGE. The detailed information on conversion for concentration of total F
(μg F/m2) from concentration of PFAS (ng/g) for targeted analysis of extracts and after hydrolysis was shown in Section S9. N/A indicates not
applicable.
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targeted analysis increased by 26 and 132% in two samples
likely due to transformation of nondetected precursors to 6:2
FTOH.
Hydrolysis Assay. The hydrolysis treatment can free up

chemically bound FTOHs and other volatile PFAS from the
precursors, particularly from side-chain fluorinated polymers.
Table 1 summarizes the data for pre- and post-hydrolysis for
the eight samples with median concentrations plotted in Figure
1. After hydrolysis (focusing on neutral PFAS), 6:2 FTOH and

6:2 FTMAc had detection frequencies of 100% and 88% and
median concentrations of 14 500 and 84.5 ng/g, respectively.
6:2 FTOH concentrations increased in all samples by an
average of 220 times after hydrolysis, similarly to that observed
in textile products.36,31 Conversely, the concentrations of 6:2
FTMAc and 6:2 FTAc decreased in all samples that contained
them, likely due to their conversion to 6:2 FTOH during
hydrolysis.

The hydrolysis treatment provides crucial information to
close the mass balance between targeted analyses and PIGE
(Table 1). 6:2 FTOH, 6:2 FTMAc, and 6:2 FTAc released
from hydrolysis accounted for 2.4−34% of the total F
determined by PIGE for seven samples, confirming that the
hydrolysis treatment is a useful tool to assess the mass of
unknown precursors. However, the large gap remaining
between these two techniques suggests the presence of other
PFAS that have not been converted to products capable of
detection by our targeted analysis.
Non-Targeted Analysis (NTA). We also used NTA to

attempt to explain the discrepancy between total F obtained by
using PIGE and results from targeted analysis before and after
the hydrolysis assay. Six compound groups were detected, with
22 individual compounds (Figures S6−S12, Table S13).

6:2 FTUCA was detected as the most abundant PFAS in all
three bowls, with peak intensities even greater than those of
the targeted PFCAs. 6:2 FTUCA has been detected previously

in food packaging, including microwave popcorn bags from
Europe, the U.S., and China,44,45 as well as paper and
cardboard fast-food packaging from the U.S.46,32 FTUCAs can
be present in materials as transformation products from the
corresponding FTOHs.50,45−49

Among n:3 FTCAs, 5:3 FTCA and 6:3 FTCA were detected
in two samples and with lower peak intensities than 6:2
FTUCA. As with FTUCAs, n:3 FTCAs were most likely from
the transformation of FTOHs.47 6:2 FTUCA and 5:3 FTCA
have been measured previously in microwave popcorn bags
from around the world44,45 and North American fast-food
packaging.46,32 This study is the first to detect 6:3 FTCA in
food packaging, to the authors’ knowledge. 5:3 FTCA, which
can be a metabolic transformation product of 6:2 FTOH and
further converted into PFCAs with long in vivo half-lives, is of
concern because of its biopersistence and potential toxicity.51

6:2 FTUCA and 5:3 FTCA concentrations were quantified
through targeted analysis (Table S12). The concentrations of
6:2 FTUCA in the original extracts (prestorage) were
comparable to those in popcorn bags previously reported.46,45

6:2 FTUCA and 5:3 FTCA concentrations increased ∼6- and
∼10-fold after storage, respectively, which suggested the
presence of precursors like FTOHs.47

One multiple H-substituted-ether-substituted-perfluoroalkyl
carboxylic acid (C9H5F13O3) was observed with low intensity
in burrito bowl 2 (Figure S8). This compound class was first
detected in influent and effluent wastewater samples from a
fluorochemical manufacturing park in 201852 but has not been
previously reported in food packaging.

Two (linear) PFCAs containing a C�C double bond, with
the chemical formula Cn+8HF2n+13O2 where n = 3 and n = 4,
were both measured only in plastic-coated popcorn bag 8 with
moderate intensity (Figure S9). These compounds were
reported in environmental agricultural samples and wastewater
effluent samples47,52,53 but not previously in food packaging.
These PFCAs could come from impurities/oligomers in the
fluoropolymer used as an extrusion processing aid in the
production of plastic coatings.2 Also, several single-H
substituted linear PFCAs were detected in popcorn bag 8
with low to moderate intensity (Figure S10). The n = 9
compound was also detected in pastry bag 5 with low intensity.
These compounds (more specifically, compounds with n = 3 to
13) have been detected preivously in wastewater samples54 and
raw and treated drinking water.47,52,55,56

Seven linear perfluoroalkyl dicarboxylic acids with chain
lengths from 7 to 13 were also detected in popcorn bag 8 with
low to moderate intensity (Figure S11). This group of
compounds was first discovered in wastewater from a
fluorochemical manufacturing park.52

Implications. The suite of compounds measured here was
consistent with the intentional use of side-chain fluorinated
polymers, such as those with a C6 side chain, to confer grease
and water repellency, with molded carboard bowls consistently
having the highest concentrations of total F. Our results are
also consistent with the presence (and some losses during
storage) of impurities and breakdown products from these
side-chain fluorinated polymers.

PFAS used in food packaging have a high potential of
exposing consumers to compounds that are of toxicological
concern such as 6:2 FTOH15 and some of the less known
compounds identified via NTA such as FTUCAs and
FTCAs.57,51 Further, our results suggest that, when stored,
such food packaging could be a source of exposure to volatile

Figure 1. Median concentrations (ng/g) of detected PFAS in eight
samples in extracts before and after 2 years of storage and after
hydrolysis (which was performed on samples after 2 years of storage).
For hydrolysis, only neutral PFAS were targeted in the analysis. The
letters on the top of each bar indicate the results of an ANOVA test (p
= 0.05) on concentrations obtained with the three sets of analyses.
Different letters indicate a significant difference for a given congener.
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PFAS such as FTOHs and FTMAcs in indoor air,40 as they
appear to be released over time.

The threshold for a manufacturer to provide toxicological
information to Health Canada pertaining to specific con-
stituents and/or single additives to packaging materials for use
with foods is a Probable Daily Intake of >0.025 μg kg bw−1 d−1

based on a migration test.58 Our calculations indicated that this
Probable Daily Intake value could be exceeded when
considering total PFAS measured here using targeted analysis
(Supporting Information Section S7). This Health Canada
threshold Probable Daily Intake of >0.025 μg kg bw−1 d−1

(compounds not specified) exceeds the tolerable weekly intake
(TWI) of 4.4 ng kg bw−1 week−1 set by the European Food
Safety Authority for the sum of PFOS, PFOA, perfluoronona-
noic acid (PFNA), and perfluorohexanesulfonic acid
(PFHxS).59

The continued use of PFAS in food packaging should be
questioned given opportunities for release and exposure and
the movement by numerous government bodies and private
entities to discontinue their use. In particular, the use of PFAS
in plant fiber-based food packaging (e.g., molded cardboard
bowls) could be seen as a regrettable substitution for single-use
plastic because of the hazard posed by the use of PFAS.
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