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Abstract
Purpose of Review Inflammatory signals have emerged as critical regulators of hematopoietic stem cell (HSC) function.
Specifically, HSCs are highly responsive to acute changes in systemic inflammation and this influences not only their division
rate but also their lineage fate. Identifying how inflammation regulates HSCs and shapes the blood system is crucial to under-
standing the mechanisms underpinning these processes, as well as potential links between them.
Recent Findings A widening array of physiologic and pathologic processes involving heightened inflammation are now recog-
nized to critically affect HSC biology and blood lineage production. Conditions documented to affect HSC function include not
only acute and chronic infections but also autoinflammatory conditions, irradiation injury, and physiologic states such as aging
and obesity.
Summary Recognizing the contexts during which inflammation affects primitive hematopoiesis is essential to improving our
understanding of HSC biology and informing new therapeutic interventions against maladaptive hematopoiesis that occurs
during inflammatory diseases, infections, and cancer-related disorders.
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Introduction

Hematopoietic stem cells (HSCs) are the most primitive he-
matopoietic population resident in the bone marrow (BM).
Although a very rare population, HSCs are the foundation of
the hematopoietic tree. Through self-renewal and differentia-
tion into other progenitor populations, HSCs have the unique
ability to completely regenerate the blood system after trans-
plantation and thus have been the focus of heavy study for
many decades. HSCs are also the foundation of many hema-
tological disorders and pathologies, since any mutation that
occurs in an HSC will be passed to downstream blood

lineages. Therefore, it is of critical importance to understand
the myriad processes that directly or indirectly affect HSC
biology.

HSCs were long perceived to be a population protected
from external signals, but recent overwhelming evidence has
shifted that view [1••]. For instance, inflammation is now well
recognized to have an important influence on HSC function
[2••, 3•]. Many types of endogenous and exogenous factors,
ranging from mechanical/thermal stimuli to pathogens or ag-
ing, induce local or systemic inflammation, and each of these
has the potential to affect HSC activity. The aim of this review
is to summarize the pro-inflammatory mediators and sources
of inflammation known to affect HSC biology.

Pro-inflammatory Cytokines

Cytokines (cyto, from Greek “κύτος” kytos “cavity, cell” +
kines, from Greek “κίνησις” kinēsis “movement”) are small
proteins (5–20 kDa) that signal between cells and in many
cases can mediate inflammatory responses. Cells with innate
receptors sense a range of inflammatory insults (i.e., tissue
damage, infection) and in response produce pro-
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inflammatory cytokines to recruit immune cells to clear the
damage.

HSCs express toll-like receptors (TLRs) that recognize
pathogen-associated molecular patterns (PAMPs) and can
therefore directly sense pathogens [1••, 4•]. Critically, on their
membrane, HSCs also express cytokine/growth factor recep-
tors that are able to sense pro-inflammatory mediators secreted
by other cells [1••]. Though the role of pro-inflammatory cy-
tokines on HSC regulation is well known and widely accepted
as a key factor of HSC biology [1••, 2••], the physiological
relevance of direct sensing and responses to pathogens (by
being infected or the recognition of PAMPs) byHSCs remains
unclear [4•, 5•]. Specifically, the consequences of inflamma-
tion on HSC persistence, clonal evolution, differentiation, and
function remain the subject of current investigations.

Distinguishing between the acute and chronic effects of
pro-inflammatory cytokines on HSC function represents an-
other layer of complexity. While short-term induction by a
range of cytokines such as IFNγ, IFNα/ß, IL-1, TNFα, or
IL-6 (Table 1) increases proliferation, long-term exposure to
these same cytokines can damage HSC function [2••].
Recently, the impact of pro-inflammatory cytokines on
HSCs has been thoroughly reviewed [2••], as summarized in
Table 1. The impact of inflammatory cytokines on the HSC
niche has also been reviewed recently [3•, 6].

The sources of pro-inflammatory cytokines that affect HSC
function range widely, from acute and chronic infections to
radiation injury and autoinflammation (Table 1). These
sources of inflammation and conditions in which they affect
HSC biology are the main focus of this review.

Sources of Inflammation

Infectious Diseases

Bacterial Infections

Mycobacterial infections are associated with bone marrow
suppression, perhaps because of their chronicity and capacity
to invade the bone marrow. Our group had shown that myco-
bacterial infections such as those mediated byMycobacterium
avium promote HSC proliferation in an IFNγ-dependent man-
ner [7••], ultimately depleting HSCs due to terminal myeloid
differentiation promoted by the transcription factor Batf2 [8•,
9]. Similarly, chronic Mycobacterium tuberculosis (Mtb) in-
fection drives IFNγ production in CD4 T cells, thus disrupting
hematopoietic homeostasis [10]. Moreover, Choi et al. dem-
onstrated during Mtb infection in mice that HSPC prolifera-
tion is associated with increased TNFα and IL-6 signaling via
the toll-like receptor (TLR) pathway [11].

Indeed, HSCs express TLR2 and TLR4 and therefore are
able to recognize bacterial cell wall components from Gram-

positive and Gram-negative bacteria, respectively [1••]. Mice
exposed to TLR2 and TLR4 antagonists showed increased
HSC differentiation and reduced self-renewal capacity [4•,
12•]. LPS, a TLR4 agonist, affects HSC function through
TLR4-TRIF-ROS-p38 signaling [4•]. A single dose of LPS
increases the BM serum levels of IL-1ß, IL-1α, and CXCL9
[13]. Chronic low-dose LPS administration increases HSC
proliferation and myeloid differentiation and functionally im-
pairs HSCs, as shown by their reduced repopulation capacity
in serial transplantation experiments [14•, 15]. Sonic
Hedgehog (SHH) signaling has also been shown to play a role
in HSPC activation during Escherichia coli infection [16].

Using a mouse model of an emerging tick-borne disease
carried by the lone star tick Amblyomma americanum, infec-
tion by the Gram-negative bacterium Ehrlichia muris was
shown to suppress BM function and myelopoiesis in an
IFNγ-dependent manner [17–20]. Moreover, Smith et al.
demonstrated that during E.muris infection, IFNα/ß signaling
also induces BM suppression, leading to emergency
myelopoiesis and reduced hematopoiesis. Consistent with
this, Ifnar1 null mice had increased hematopoiesis and main-
tained HSC functions despite infection with E. muris.
Mechanistically, it has been reported that type I IFNs induce
loss of HSPC via RIPK1-dependent cell death during E.muris
infection [21].

In Gram-positive Staphylococcus aureus infection, HSPCs
are stimulated by IL-1ß traffic to the infection site, where they
are activated via TLR2/MyD88 and produce prostaglandin E2
(PGE2) to promote granulopoiesis [22•, 23]. Another study
showed that treatment with TLR2 agonist PAM3CSK4 caused
HSC expansion but loss of their BM repopulating activity;
these effects were partially mediated by G-CSF and TNFα
[12•].

Viral Infections

Viral infections, including parvovirus [24, 25], HIV [26], viral
hepatitis [27], Epstein-Barr virus [28]), and influenza [29], are
often associated with BM suppression due to increased pro-
duction of pro-inflammatory cytokines [30]. Our group has
shown that interferons released during LCMV infection pro-
mote cell division and myeloid differentiation of HSPCs [9].
Though both type I and type II interferons are induced during
LCMV infection, effects on HSPCs were especially depen-
dent on type II interferon. Similarly, vesicular stomatitis virus
(VSV) and murine cytomegalovirus (MCMV) infections acti-
vate LT-HSC independently of type I interferon receptor sig-
naling [31•]. Therefore, strong evidence in LCMV, VSV, and
MCMV virus models showed that type II interferon but not
type I interferon is necessary for HSPC activation. Non-acute
MCMV infection induces a sustained inflammatory milieu
within the BM that is associated with long-lasting impairment
of LT-HSC function, even when the virus is cleared from BM
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[31•]. Moreover, HIV infection can alter HSPC differentiation
via ILR8 signaling [32]. IL-18, a cytokine that induces IFNγ
production, protects lymphoid HSPC from apoptosis during
primary HIV infection; however, high levels of IL-18 in
chronic HIV infection deter lymphoid HSPC proliferation
[33, 34]. Of interest, SARS-CoV-2 infection (the virus that
causes COVID-19) also produces a dramatic increase in many
pro-inflammatory cytokines known to affect HSCs, such as
TNF, IL-1ß, IL-6, IL-8, G-CSF, and GM-CSF. This increase
occurs especially in patients who are critically ill with
COVID-19; therefore, future studies should investigate how
this novel coronavirus affects BM/HSC activity [35].

Some miRNAs have been associated with HSC regulation
in viral infections [36, 37]. Our group reported that the loss of
miR-22, which normally promotes IFNα production during
viral infection, is beneficial for mice in a model of LCMV
infection. We found that miR-22-null mice had better overall
survival and HSC homeostasis than WT mice after LCMV
challenge, which can be attributed to their blunted IFN re-
sponse to infection [37].

Protozoan and Fungal Infections

Plasmodium is a genus of intracellular parasites that cause
malaria. Using a mouse model of malaria infection based on
natural, sporozoite-driven Plasmodium berghei infection,
Vainieri et al. showed that HSCs become highly proliferative
during infection [38•]. In line with this increase in prolifera-
tion, LT-HSC and LMPP numbers were higher as early as day
3 post-infection indicating that critical responses take place in
the primitive hematological populations at very early stages of
sporozoite infection [38•]. Furthermore, primitive HSCs pro-
liferated significantly at days 7–10 of infection. Given that
replication stress has been associated with loss of functionality
of aged HSCs [39] and the appearance of pre-malignant he-
matopoietic conditions such as clonal hematopoiesis [40], re-
sults from this study support the long-term consequences of
sustained HSC proliferation on HSC fitness.

Toxoplasma gondii (T. gondii), the agent of toxoplasmosis,
is a widespread intracellular protozoan parasite that infects up
to a third of the world’s population [41]. Given its overall
prevalence, reactivation of toxoplasmosis is a significant side
effect among recipients of hematopoietic stem cell transplan-
tation (HSCT) [42]. T. gondii infection leads to bone marrow
suppression, reducing white blood cells, reticulocytes, and
platelets [43]. Mice with T. gondii infection showed increased
granulopoiesis, leading to increased functional activity of
granulocytes in the blood [43]. T. gondii GA15 protein has
been shown to be involved in the regulation of TNF and NF-
kB signaling pathways using hamster kidney cells in vitro [44]
and triggers cGAS/STING signaling in a STING- and TRAF-
dependent manner in mice [45]. Since activation of STING is
necessary for the production of type I interferons [46] and

TRAF pathways affect primitive hematopoiesis in other
models [47], these signaling pathways also may affect hema-
topoiesis during toxoplasmosis infection in humans.

Fungal infection is often associated with high mortality in
HSCT patients [48, 49]. After stem cell transplant, fungal
infection, including mucormycosis, can lead to myriad severe
complications including invasive fungal sinusitis, emphyse-
matous gastritis, and other invasive fungal infections associ-
ated with extremely high mortality [50, 51]. Mucormycosis is
commonly found in hematological patients, according to a
review of 929 reported cases by Roden et al. [52]. Although
it has been reported that IFNγ signaling directly activates
antifungal responses in neutrophils [53], we found no evi-
dence that Aspergillus fumigatus infections affect HSC func-
tion (data not published); further research is warranted to
deepen our knowledge in this area.

Chronic Inflammatory/Autoimmune
Diseases/Neurological Diseases

Abnormal and steady elevation of serum pro-inflammatory
cytokines such as IL-6, TNFα, IL-17α, GM-CSF, and G-
CSF that potentially affect HSC function is a hallmark of
chronic inflammatory and autoimmune diseases. Chronic in-
testinal inflammation, driven by abnormal IL-23-dependent
responses, causes increased proliferation of HSPCs, which
accumulate at extramedullary sites. Eosinophil activation by
GM-CSF, which promotes eosinopoiesis in synergy with IL-
5, is responsible for this dysregulated hematopoiesis [54•, 55].
Niu et al. have shown in a lupus mouse model that HSCs
expanded with an increased capacity for self-renewal due to
a single nucleotide polymorphism in the cdkn2c gene, leading
to downregulation of p18INK4c [56•]. Moreover, in patients
with atherosclerotic cardiovascular disease (CVD), HSPCs
have higher proliferative capacity than healthy individuals
[57]. Chronic inflammation also is associated with autoim-
mune diseases such as rheumatoid arthritis (RA). In one recent
report using a mouse model of human RA, Hernandez et al.
showed that HSCs in RA mice persist in a quiescent state,
consistent with the activation of proliferation arrest genes de-
spite the increase of inflammation and myeloid production.
Treating RA mice with inflammatory cytokine blockade nor-
malized hematopoiesis and attenuated myelopoiesis [58].
Some monogenic autoimmune disorders such as IPEX syn-
drome and Stat1 gain-of-function are characterized by exces-
sive inflammation and disordered hematopoiesis [59, 60].
With increasing evidence suggesting chronic inflammation
disrupts HSC functions, HSCT has become a viable option
to treat patients with such severe chronic inflammatory and
autoimmune diseases [61].

In addition to traditional autoimmune diseases, people with
neurological disorders including depression have been shown
to present with higher serum levels of TNFα, IL-6, IL-13, IL-
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18, IL-12, IL-1RA, and sTNFR2, as well as decreased IFNγ
[62–64]. Mechanistically, activation of microglia through
PAMPs or danger-associated molecular patterns (DAMPs)
signaling promotes inflammatory responses in neurological
disorders such as Alzheimer’s disease, frontotemporal demen-
tia, and Parkinson’s disease [65]. Since many of the cytokines
associated with neuroinflammation are also involved in HSC
regulation (Table 1), it is reasonable to speculate that people
with neuroinflammatory disorders could have BM/HSC ab-
normalities. Interestingly, neurotrophic factor receptor RET
plays a role in promoting HSC survival and expansion by
activation of p38/MAP and CREB through Bcl2/Bcl2l1
[66]. Moreover, HSC quiescence is regulated by Schwann
cells—a type of glia wrapping nerve fibers in the BM—
through TGF-β signaling, suggesting that glial cells may
maintain HSC hibernation by regulating activation of latent
TGF-βwithin the BM niche [67]. Due to the high and increas-
ing prevalence of these disorders, new studies are needed to
reveal the plausible relationship between inflammation, neu-
rological diseases, and HSC function.

Aging

Many alterations that occur in the aging hematopoietic com-
partment are common to inflammatory processes [3•, 68], in-
cluding (1) myeloid bias in hematopoiesis with a shift in the
frequency of CD150+ high HSCs [69], (2) accumulation of
DNA damage [70], and (3) increased basal levels of pro-
inflammatory cytokines such as IL-6 [71, 72], TNF-α [73,
74], IL-1Rα, and C-reactive protein [3•] in the serum of
healthy elderly people. Chronic treatment with a low dose of
LPS inmice leads tomyeloid skewing [14•] reminiscent of the
myeloid skewing that is seen in normal aging. A recent report
linked the activity of retrotransponsable elements (RTE) with
sterile inflammation to aging. During cellular senescence,
LINE-1—the only human RTE capable of autonomous retro
transposition—became transcriptionally derepressed and acti-
vated an IFN-I response, which further contributed to the
maintenance of the senescence-associated secretory pheno-
type [75]. Environmental factors including inflammation are
also important in the progression of age-associated clonal he-
matopoiesis [76•], as shown by high levels of IFNγ in the
serum of patients withDNMT3A-related clonal hematopoiesis
and ulcerative colitis [77]. Collectively, these studies reveal a
clear interplay between low-grade inflammation and aging
and suggest that the hematopoietic changes seen with age
are attributable at least in part to inflammation.

Chemotherapy and Radiation

Under the stress caused by exposure to cytotoxic chemother-
apy, HSCs are activated and enter the cell cycle, which drives
emergency myelopoiesis and rapid regeneration of the

hematopoietic system. Moreover, radiation including X-rays
and γ-rays induce DNA damage, reactive oxygen/nitrogen
species, ER stress, and hypoxia, triggering inflammatory re-
sponses and increased production of pro-inflammatory cyto-
kines, such as IL-1α, IL-1β, IL-12p40, TNF-α, and IFNγ
[78]. Radiation can also lead to genetic changes in HSCs
[79]. Rodman et al. reported that exposure to chronic solar
energetic particles (SEP) and galactic cosmic ray (GCR) radi-
ation can cause mutations in genes involved in hematopoiesis,
modulate the engraftment as well as lineage commitment of
HSCs, damage BM stromal cells and thus disrupt the niche,
and contribute to the development of abnormal T-ALL [80•,
81].

Gender

Physiological differences between women and men play a
prominent role in their exposure to infectious diseases and
the frequency and manifestations of autoimmunity, including
autoimmune diseases [82]. It is widely accepted that men are
more susceptible to infections (i.e., tuberculosis and parasites),
while women present with more autoimmune diseases [82].
Estrogen and testosterone differentially regulate inflammation
[83]. Powell et al. revealed that estrogen increased inflamma-
tion in a model of human knee joint injury, while testosterone
reduced inflammation at the site of injury [83]. Sex hormones
regulate the transcription of many genes involved in immune
cell development and maturation, regulation of immune re-
sponses, and modulation of immune signaling pathways;
however, few reports have studied the direct effect of sex
hormones on HSC regulation [82]. Nakada et al. showed that
estrogen can induce more frequent HSC division in females
compared with males through its interaction with estrogen
receptor-alpha on HSCs [84••]. Indeed, this study showed
estradiol treatment increased HSC division in male mice.

Lifestyle Factors Can Affect HSC Inflammation

Dietary

Metabolic disorders including atherosclerosis, obesity, and
type 2 diabetes are characterized by the presence of a chronic
inflammatory state that negatively affects the regulation and
function of HSCs and progenitors [85]. Therefore, human
behaviors/actions to reduce those deleterious, chronic sources
of inflammation are vital to improve HSC function. It has been
reported that the ability for HSCs to self-renew and proliferate
depends on metabolism [86–88]. While fasting appears to
enhance HSC function, a number of recent reports have found
that high-fat diets (HFDs) and obesity reduce HSC activity.
HFDs are associated with increasing inflammation in the cen-
tral nervous system, liver, adipose tissue, skeletal muscle, and
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intestine [89]; alter the microbiome; increase the level of LPS;
and promote production of pro-inflammatory cytokines such
as IL-1β, IL-6, and TNF-α [90]. Accumulation of cholesterol
in innate immune cells [91] and HSPC [92] promoted in-
creased inflammatory responses through the TLR signaling
pathway [91] and increased myelopoiesis by amplifying
Janus kinase 2 (JAK2) signaling [92]. Indeed, inhibition of
JAK2 reduced atherogenesis by suppressing myelopoiesis
[93].

Vitamins are essential nutrients for human health. Taya
et al. showed that valine amino acid plays an important role
in the maintenance of HSC and BM niche [94]. In a recent
report, vitamin B6 intake reduced the number of inflammatory
markers, such as C-reactive protein, IL-6 receptor, and white
blood cell count as well as overall inflammation score [95].
Vitamin C alleviates inflammation by decreasing the level of
IL-6, fasting blood glucose, and high-sensitivity C-reactive
protein [96], and regulates HSPC self-renewal by acting as a
co-factor for TET2 by driving DNA hypomethylation.
Vitamin D treatment has also been shown to promote colony
formation by HSPCs [97].

A healthy diet is associated with increased survival and
lower risks of chronic health conditions in HSCT patients
[98]. In line with this, a diet rich in n-3 PUFA-rich fish oil
promotes hematopoiesis in the bone marrow and spleen of
mice, mediated in part by MMP12, and may induce
myeloid-derived suppressor cell differentiation to sup-
press tissue inflammation [99]. Additionally, a number
of studies support the idea that fasting/dietary restriction
plays an important role in prolonging a healthy lifespan
by regulating inflammatory responses and HSC function
[100•, 101]. Cheng et al. showed that 48-h cycles of
fasting promoted HSC regeneration in mice by inhibiting
insulin growth factor 1 (IGF1) signaling [100•]. Diabetes
is also seen as fasting-like state. A retrospective analysis
of HSCT patients found that diabetes negatively correlat-
ed with donor HSPC mobilization [101].

Exercise

Frodermann et al. reported that exercise modifies HSPC func-
tion by reducing leptin signaling in the bone marrow niche
[102••]. Specifically, physical activity can protect mice from
chronic leukocytosis by reducing hematopoietic activity with-
out compromising emergency hematopoiesis. Exercise atten-
uates the production of leptin in adipose tissue, which in turn
enhances CXCL12, a quiescence-promoting hematopoietic
niche factor important in the maintenance of HSC function
[102••]. In a separate study, mice fed a high-fat diet without
exercise showed increased common myeloid progenitor cells
and BM inflammation [103]. Overall, these studies indicate
that exercise maintains HSC function by decreasing inflam-
mation within the BM niche.

Smoking

Mice exposed to cigarette smoke exhibited increased
extramedullary hematopoiesis in the spleen, inhibition of
HSPC homing into BM, decreased mesenchymal stromal
cells and HSCs, and increased pro-proliferation genes that
lead to the expansion of HSPCs [104–106]. Cigarette
smoke extract decreased bone formation but increased an
array of different of interleukins such as IL-1β, IL-2, IL-
4, IL-5, IL-9, IL-10, IL-12p40, IL-13, IL-17-α, G-CSF,
GM-CSF TNF-α, and IFN-γ [107••]. Since many of these
cytokines have been shown to impact hematopoiesis, it is
reasonable to hypothesize that smoking may significantly
affect hematopoiesis by inducing systemic inflammation.
In support of these effects, smoking has been identified as
one of the factors related to the emergence of clonal he-
matopoiesis [76•] and hematological cancers [108•].

Microbiome/Antibiotics

Human conditions associated with altered intestinal bac-
terial populations, such as inflammatory bowel syndrome
or prolonged antibiotic use, are associated with adverse
hematologic effects, including anemia and neutropenia
[109]. Recent studies into these interactions illustrated
that microbiota modulate hematopoiesis in the BM
[109]. Germ-free mice have fewer HSPCs, abnormal
splenic myeloid counts, and impaired T cell function com-
pared with wild-type mice [110, 111, 112••, 113–115].
Our group has shown that mice treated with antibiotics
have reduced red blood cells, platelets, and white blood
cells in peripheral blood [109, 112••], coupled with de-
creased HSCs, multipotent progenitors, granulocytes, and
B cells in the BM. However, these studies also revealed
an increase in the number of CD8+ T cells, suggesting
disruption of T cell homeostasis in antibiotic-treated mice
could lead to increased inflammation and cause impaired
progenitor maintenance [112••]. Mechanistically, Stat1-
null mice and antibiotic-treated wild-type mice had simi-
larly low numbers of BM HSPCs and granulocytes. We
found that treating Stat1-null mice with antibiotics did not
further suppress cell counts, suggesting that STAT1 sig-
naling, stimulated by the microbiota, is required for nor-
mal hematopoiesis and providing a clear link between
microbiome and inflammatory/interferon pathways
[112••].

Indeed, a recent report by Staffas et al. showed the
microbiome and antibiotic treatment have an even more
profound effect on HSC regulation than previously
envisioned. The authors found that gut microbiota induces
engraftment of HSPCs following BM transplant, while
antibiotic treatment impairs immune reconstitution in the
post-transplant setting [116]. Moreover, Lee et al. showed
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that microbiota-derived molecules are transported in the
BM and recognized by BM CX3CR1+ mononuclear cells
to modulate hematopoiesis [117].

Conclusions and Future Directions

In summary, recent work indicates that many different condi-
tions (Fig. 1) produce pro-inflammatory mediators that affect
HSC biology. Rather than being inert cells that are isolated
and protected from external signals, we now know that HSCs
are constantly responding to the shifting inflammatory envi-
ronment caused by infectious diseases, cancer, gender, aging,
radiation, and lifestyle factors (Fig. 1). Inflammation is the
immune system’s response to harmful stimuli and initiates
the healing processes and defense mechanisms vital to health.
However, chronic inflammation contributes to a number of
diseases and critically damages HSC biology. Since HSCs

are the foundation of all blood cells and any genetic or epige-
netic modification is passed from them to downstream popu-
lations, it is vital to understand how inflammation disrupts
HSCs and blood regulation.

While some inflammatory sources are intrinsic to life
(i.e., aging), others can be modulated (i.e., diet, smoking)
to improve health. Current evidence demonstrates that a
healthy lifestyle can benefit HSC biology and thereby
prevent or delay the appearance of pre-malignant condi-
tions and/or hematological disorders fueled by inflamma-
tion. Further research is necessary to deepen our under-
standing of how specific inflammatory insults physiolog-
ically alter HSCs and reveal the most effective therapeutic
strategies to diminish the deleterious effects of inflamma-
tion on BM function.
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