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Abstract. Five structural features in mRNAs have
been found to contribute to the fidelity and efficiency
of initiation by eukaryotic ribosomes . Scrutiny of
vertebrate cDNA sequences in light of these criteria
reveals a set of transcripts-encoding oncoproteins,
growth factors, transcription factors, and other regu-
latory proteins-that seem designed to be translated
poorly. Thus, throttling at the level of translation
may be a critical component of gene regulation in
vertebrates. An alternative interpretation is that some
(perhaps many) cDNAs with encumbered 5' noncod-
ing sequences represent mRNA precursors, which
would imply extensive regulation at a posttranscrip-
tional step that precedes translation .

NITIATION oftranslation in multicellular eukaryotes is in-
fluenced by five aspects ofmRNA structure : (a) the m7G
cap (355) ; (b) theprimary sequence orcontext surround

ing the AUG codon (187, 190, 194) ; (c) the position of the
AUG codon, i .e ., whether it is the first AUG in the message
(186) ; (d) leader length (198, 199) ; and (e) secondary struc-
ture both upstream (188, 195) and downstream (196) from
the AUG codon . Elsewhere (200) I have reviewed the evi-
dence for these five features and explained how they work
together to determine the fidelity and efficiency ofinitiation .
A scanning mechanism for initiation can explain many of the
effects of cap, context, position, etc . The scanning model
(193) in its simplest form postulates that a 40S ribosomal
subunit, carrying Met-tRNA;^" and an imperfectly defined
set of initiation factors (302), enters at the 5' end of the
mRNA and migrates linearly until it reaches the first AUG
codon, whereupon a 60S subunit joins and the first peptide
bond is formed . Evidence in support of the model has been
adduced previously (62, 193, 197) . More recent evidence for
scanning includes the apparent queuing of 40S ribosomal
subunits on long leader sequences (199) and the stalling of
40S subunits on the 5' side of a stable hairpin structure intro-
duced between the cap and the AUG codon (195) . The possi-
bility of initiation by a mechanism other than scanning has
been proposed (158) and is evaluated elsewhere (197) .
The trick to identifying elements in 5' noncoding se-

quences that can modulate translation was to isolate each
feature (200), an approach made possible by the techniques
ofgenetic engineering . For example, by devising a transcript
in which the first AUG codon was in an unfavorable context
and hence "leaky," we were able to show that downstream
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secondary structure enhances recognition of the preceding
AUG codon, apparently by preventing the 40S ribosomal
subunit from scanning too fast or too far (196) . The contribu-
tion of downstream secondary structure would have been
missed had the primary sequence around the first AUG
codon been more favorable, and vice versa . Having used the
reductionist approach to identify several features that can
modulate initiation, I attempt herein to put the story back to-
gether by examining the extent to which natural mRNAs
conform to the experimentally determined requirements for
initiation . A surprising realization is that, although most ver-
tebrate mRNAs have features that ensure the fidelity of initia-
tion (i .e ., selection of the correct AUG codon), many do not
appear to be designed for efficient translation . This would
seem to have important implications for gene regulation .

LeaderSequences on Vertebrate mRNAs:
An Overview
In considering the extent to which natural mRNAs conform
to the five recognized requirements for initiation, I will focus
on mRNAs from vertebrate cells where the rapidly expand-
ing catalogue of sequences provides grist for analysis .
mRNAs from animal and plant viruses and yeasts are men-
tioned only incidentally when they uniquely illustrate a
point.
Every cellular mRNA that has been examined is capped

(355) . Not every mRNA has been examined, of course, but
it seems unlikely that uncapped cellular mRNAs will be
found inasmuch as the cap is crucial not only for translation
(355) but also for mRNA stability and transport (126) . Al-
though the uncapped rnRNAs from picornaviruses are a
vogue topic for discussion (158), it should be remembered
that picornaviruses are exceptions. All other animal viruses
produce capped mRNAs, even when doing so requires the
virus to encode its own capping and modifying enzymes
(189) .
The requirement for a favorable context around the AUG

initiator codon is also met by nearly all mRNAs from higher
eukaryotes. The consensus sequence for initiation derived
from a compilation of 699 vertebrate mRNAs (191) is
GCC'CCAUGG, the same as the experimentally derived
optimal sequence (187, 190, 194) . While the full consensus
sequence is found in only a small number of vertebrate
mRNAs, the two positions most critical for function (187)
are highly conserved : 97% of vertebrate mRNAs have a pu-
rine (usually A) in position -3 and 46% have G in position
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+4 (191) . (The A of the AUG codon is designated +1, with
positive and negative integers proceeding 3' and 5, respec-
tively.) Since context is a principal determinant of the fidelity
ofinitiation, good adherence to the context rules ensures that
the full-length protein is the sole translation product from
most vertebrate genes . Only six out of 699 mRNAs in the
aforementioned survey (191) lacked the preferred nucleotide
in both of the key positions flanking the AUG codon . One
of the original six entries has since been discounted as a se-
quencing error (212) but a few more mRNAs have recently
been added to the list (154, 180, 311) . These rare mRNAs
with highly unfavorable initiation sites encode potent regula-
tory proteins (growth factors, cytokines, etc .), suggesting that
a weak context might be an occasional ploy to modulate the
yield of proteins that could be harmful if overproduced .
Parenthetically, a recent compilation (unpublished results) of
252 plant mRNA sequences reveals that 93 % have a purine
in position -3, and 74% have G in position +4 ; thus, in the
two most influential positions, plant and animal consensus
sequences are the same.
The importance ofposition of the AUG codon in determin-

ing the site of initiation is illustrated by a family of bifunc-
tional genes, described in the next section, and by the fact
that the first AUG codon is the unique initiation site in most
(perhaps 90% of) vertebrate mRNAs (191) . The list of mam-
malian cDNA sequences that violate the first-AUG-rule is
growing, however, and it includes a large number of critical
regulatory genes, as documented below. If these AUG-
burdened cDNA sequences actually correspond to func-
tional mRNAs, their translation should be compromised . If
the AUG-burdened cDNA sequences correspond instead to
mRNA precursors or otherwise nonfunctional transcripts (as
has been established in some cases), their abundance implies
considerable regulation at a level other than translation . Both
possibilities are discussed below.
A handful of natural mRNAs, mostly of viral origin, seem

to have very efficient 5' noncoding sequences as documented
by leader-shuffling experiments (84, 237, 251, 342, 360) . At-
tempts to pinpoint a motif in any ofthose sequences that un-
derlies its efficient translation have been notably unsuccess-
ful ; that is, virtually every portion of the 5' noncoding
sequence has been mutated or deleted or replaced without
impairing translation . The apparent absence of a discrete
effector motif, and the fact that the sequences in question are

A . PROMOTER SWITCHING
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deficient in G residues, fit with the view that a moderately
long, unstructured 5' noncoding sequence may be necessary
and sufficient for efficient initiation of translation (199) . In-
deed, with some experimental constructs, the simple trick of
lengthening the 5' noncoding sequence improves translation
by an order of magnitude, creating very efficient in vitro ex-
pression vectors (199) . (The 5'sequences were lengthened by
reiterating three different synthetic oligonucleotides which
were designed simply to preclude secondary structure . It
seems unlikely that such arbitrarily designed sequences are
recognized by hypothetical "enhancer proteins :" Rather, the
observed accumulation of extra 40S ribosomal subunits on
long 5' leader sequences (199) may underlie their transla-
tional advantage .) The advantage conferred by long, syn-
thetic leader sequences does not hold for most naturally oc-
curring leaders, however : 5' noncoding sequences hundreds
of nucleotides long are not uncommon on vertebrate
mRNAs, but their remarkably high GC content implies that
they are highly structured ; and a structured leader sequence,
be it long or short, is a major barrier to translation (188,
195) . The frequent presence of such sequences on mRNAs
from critical regulatory genes (see below) has notable impli-
cations for gene regulation in vertebrates . These considera-
tions do not extend to mRNAs from plants or budding yeasts,
which usually have AU-rich, rather than GC-rich, leader
sequences .

Bifunctional Genes and Bifunctional mRNAs
The importance ofposition in determining the functional ini-
tiator codon is illustrated by a family of genes that are re-
quired to produce two versions of the encoded protein (Fig.
1 A and Table I) . The general idea is that ribosomes need to
initiate translation from the first and second AUG codons in
each of these genes . Although the longer mRNA from the
model gene in Fig . 1 A contains both AUG codons, the pres-
ence of a good context around the first AUG codon precludes
access to the second . The solution is that the gene produces
a second form of mRNA, the 5' end of which maps between
the two AUG codons . In each mRNA ribosomes initiate at
the first and only the first AUG codon .

There is a way for two proteins encoded in overlapping
open reading frames (ORFs) to be translated from a single
mRNA; namely, by introducing a poor context around the
first AUG codon . In the bifunctional mRNAs listed in Table

B . LEAKY SCANNING

m1G--cnnAUG----AUG-----------------UAA--3'
4 #1 #2
P

Figure 1 . T\vo mechanisms that enable one gene to produce two versions of the encoded protein . (A) When the first AUG codon is in
a strong context, as is usually the case, one gene can produce two proteins only by producing two mRNAs, i .e ., by initiating one transcript
(PI) upstream from the first AUG codon and initiating a second transcript (Pz) downstream from that AUG . Often the NHZ-terminal
amino acid extension targets the long form ofthe protein to a special intracellular compartment . Examples are given in Table I . (B) Leaky
scanning permits synthesis of two proteins from one mRNA when the context around the first AUG codon is unfavorable ; i .e ., when a
pyrimidine occurs in position -3, or when there is a Gin position -3 and something other than G in position +4 . Examples of genes
that use leaky scanning are given in Table II .

m1G---AccAUGG---- silentAUG x2-----------------UAA--3' mRNA-1
Q
P1- P2 GENE

m1G---AUG--------------------UAA--3' MRNA-2

40 1

mi.c protein



Table I. Genes that Produce Two Overlapping Proteins
by Initiating Transcriptionfrom Two Promoters, as
Illustrated in Fig. 1 A
° Val-tRNA synthetase (VAS1, yeast) (49)
° His-tRNA synthetase (HTS1, yeast) (282)
° a-Isopropylmalate synthase (LEU4, yeast) (18)
° tRNA dimethyltransferase (TRM1, yeast) (90)
° Serine :pyruvate aminotransferase (SPT, rat) (291)
° Cyclophilin (N . crassa) (398, 399)
Anion transport protein (band 3, chick) (177)
/31-4-galactosyltransferase (bovine) (234a, 331)

b Invertase (SUC2, yeast) (43)
Gelsolin (human) (207)

b Surface antigen, Hepatitis B virus (307)
` E2 protein, bovine papillomavirus (211)
Family 35 capsid proteins, herpes simplex (228)

° Progesterone receptor (forms A & B, human) (167)
Sterol carrier protein (SCPX & SCP2, rat liver) (349)
Porphobilinogen deaminase (human) (55)
Gs(x protein (human) (156)
Erythroid membrane protein 4.1 (human) (68)

Superscripts refer to ways in which the function of the long isoform differs
from that of the shorter protein : (a) import into mitochondria, (b) secretion,
(c) control of transcription . The expression of porphobilinogen deaminase,
erythroid membrane protein 4.1, and Gsa protein requires alternative splicing
as well as promoter switching; they are included because the net effect is acti-
vation of an internal AUG initiator codon by making it the first AUG in the
mRNA . Not listed are some interesting genes that produce small amounts of
5' truncated transcripts in extraneous tissues (63, 160, 234, 405, 410) . Even
when such mRNAs can be shown to direct synthesis of a polypeptide fragment
(63), which is almost inevitable if the transcript enters the cytoplasm, the
phenomenon might reflect inadvertent expression; what needs to be established
is that the NH2 terminally truncated polypeptide serves a unique function in
the ectopic tissue .

II, the first AUG codon deviates from the consensus se-
quence in either or both of positions -3 and +4. (Three ex-
ceptions are discussed in the Table II legend .) The result is
"leaky scanning" in which some 40S ribosomes bypass the

Table 11. Genes that Produce Two Proteinsfrom One mRNA by Leaky Scanning, as Illustrated in Fig . 1 B

A.

first AUG codon; initiation occurs from the first and second
AUG codons in these mRNAs (Fig . 1 B) . Curiously, most
of these bifunctional mRNAs are of viral origin . Only two
cellular mRNAs are listed in Table II, and in neither ofthose
cases has the short protein been shown to mediate a function
distinct from the long isoform. Thus, as a practical device
for producing two proteins from one gene, cells rely mostly
on a transcriptional device (Fig . 1 A) while viruses use a
translational ploy (Fig . 1 B) . Leaky scanning does not re-
quire virus-induced modifications of the translational ma-
chinery, however, inasmuch as the isolated reovirus Sl gene,
when expressed in uninfected COS cells, produces the ex-
pected two proteins (95) . Leaky scanning may also result
when the first AUG codon resides close to (within 12 or so
nucleotides of) the cap (113, 198), although leakiness due to
an unfavorable context is the more common mechanism.
Not included in Table II are a few bifunctional mRNAs

(344, 347, 397) in which two proteins are produced from
nonoverlapping ORFs . In such cases, reinitiation as well as
leaky scanning may provide access to the second AUG
codon, and the contributions of the two processes are hard
to sort out. As explained elsewhere (192, 200), reinitiation
by eukaryotic ribosomes is usually inefficient and seems to
occur only when the 5' proximal ORF is small. Those re-
strictions probably explain why no bifunctional mRNA has
been identified in animal cells or viruses that relies exclu-
sively on reinitiation for expression of the downstream cis-
tron . There are quite a few viral mRNAs that are structurally
bicistronic, encoding two full-length proteins in nonoverlap-
ping ORFs, but they are functionally monocistronic, trans-
lating only the 5'proximal ORF (189) . In the case ofEpstein-
Barr virus, a bicistronic mRNA that encodes both the R and
EBl proteins (in that order) does appear capable of trans-
lating EBl, albeit inefficiently; however, the virus also pro-
duces an abundant transcript that encodes (and translates
efficiently) only EBl (243) . The same is true for synthesis

In several cases the connection between leaky scanning and a suboptimal context around the first AUG codon has been confirmed by mutational analysis (78, 95,
346, 370) . Only three cases have been described in which ribosomes initiate at the first and second AUG codons despite a favorable context around the first AUG.
The most important of these exceptions is influenza virus B, where the proximity of the second AUG codon to the first AUG seems to allow leaky scanning (414) .
The other exceptions are barley stripe mosaic virus (308) and cowpea mosaic virus RNA-M (144), where the absence of secondary structure downstream from
the first "strong" AUG codon might account for the leakiness . Leaky scanning in those two plant viruses might be inadvertent, inasmuch as the second protein
isoform does not contribute to viral infectivity . In contrast, for most of the other viral entries, both proteins produced from the bifunctional mRNA are required
for infectivity . The fact that the overlapping arrangement of ORFs is conserved among different members of the paramyxovirus, reovirus, bunyavirus, adenovirus,
rotavirus, and tymovirus families constitutes additional evidence that the synthesis of two proteins by leaky scanning is not accidental in those cases . In the case
of HIV-1, vpu functions more efficiently in promoting the processing of env when the two proteins are translated from the same mRNA than when they areexpressed
experimentally from separate transcripts (M . Martin, K. Strebel and R. Willey, personal communication) . An asterisk, preceding some entries in the table, means
that only one of the two proteins predicted by the mRNA sequence has been detected so far.
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Initiation at 15' and 2"° AUGs generates long and short B . Initiation at 1" and 2"° AUGs in different, overlapping
protein isoforms from the same reading frame: reading frames produces two unrelated proteins :
Simian virus 40 late 19S mRNA - VP2, VP3 (346) Sendai (paramyxo)virus - P, C (78)
Rotavirus SAIL, segment 9 - 37K, 35K, (VP7) (47, 370) Reovirus S1 mRNA - al, 14K (92, 95)
West Nile flavivirus - V2 core proteins (44) Bunyavirus s-RNA - N, NSs (109)
Dengue (type 3) flavivirus - C, C' (300) Adenovirus, region EIB - 21K, 55K (27)
Foot-and-mouth disease virus - p20a, P16 (64) Adenovirus, region E3 - 6.7K, gp19K (415)
Hepatitis B virus, human - pre-S, p24s (306) Human T-Cell Leukemia Virus (HTLV-I)- p27, p40 (279, 359)
Feline leukemia virus - gPr80gag, Pr65gag (214) Human Immunodeficiency Virus Type I - vpu, env (345)
Rift Valley fever (bunya)virus - M proteins (378) Potato leafroll luteovirus - CP, 17K (380)
Cucumber necrosis virus - p21, p20 (325) Satellite tobacco mosaic virus - 6.8K, 17.5K (261)
Cowpea mosaic virus RNA-M - 105K, 95K (144) Rotavirus SA11, segment 11 - 28K, I IK (249, 263)
Barley stripe mosaic virus - (3b, /3b' (308) *Turnip yellow mosaic (tymo)virus - 69K OP, 200K RP (170)
Creatine kinase, chicken brain (363) *Maize chlorotic mottle virus - p31 .6, p50 (290)
N-myc, human tumor cell lines (240) Influenza B virus - NB, NA glycoproteins (414)



of the LP and EBNA-2 proteins of Epstein-Barr virus (5) .
The functionality of an interesting bicistronic transcript for
growth/differentiation factor 1 has not yet been established .
(Although the only detected transcript for GDF-1 in 14.5-d
mouse embryos is a 3-kb bicistronic transcript in which
GDF-1 is the downstream cistron, the GDF-1 protein de-
tected by immunohistochemical analysis in 14 .5-d embryos
might actually have been synthesized a few days earlier,
when a 1.4-kb transcript was the predominant form (218) .)
The ability to reinitiate to some extent after translating a

small 5' ORF, and the tendency of40S ribosomes to scan past
an AUG codon in a weak context, explainhow ribosomes can
initiate from an AUG codon that is not first . Nevertheless,
the occurrence of upstream AUG codons nearly always
reduces the efficiency of initiating from downstream . Thus,
mRNA (or, more correctly, cDNA) sequences that are pep-
pered with small upstream ORFs pose a problem .

5' Noncoding Exons, Introns, and Upstream
AUG Codons
The simple question of whether the mRNA from a particular
gene has upstream AUG codons cannot always be answered
simply. Some of the complexities are due to 5' noncoding
exons and associated phenomena such as alternative splic-
ing, inefficient removal of a 5' intron, and the presence of al-
ternative promoters . I will first address those complications
and then try to assess the frequency and significance of up-
stream AUG codons in vertebrate mRNAs.
Nearly one-fourth of the entries in a recent survey of 699

vertebrate mRNA sequences (191) have turned out to have
an intron between the promoter and the start of the major
ORF. The high incidence of5' introns has theoretical as well
as practical consequences. The first intron in a gene some-
times contains sequences that facilitate transcription (26, 42,
60, 73, 150, 174, 176, 185, 269, 280, 287, 303, 368), an effect
that sometimes requires the intron to be near the 5' end (42,
287, 303) . Some genes that have retained a 5' intron thereby
have the ability to switch promoters, in response to hormonal
or tissue-specific inducers, for example, and thus to ex-
change an inefficiently translated 5' noncoding exon for one
that appears more favorable (9, 54, 77, 106, 289) . (The
predicted improvement in translation has not yet been
verified for all of those genes.) Another kind of regulation
takes the form of allowing a gene to be transcribed in an ec-
topic tissue but preventing its translation by not removing the
5' intron . The expression of gonadotropin-releasing hor-
mone mRNA in extra-hypothalamic tissues is a striking ex-
ample (135) . Another might be the expression of the tyrosine
kinase fer gene in testis versus other tissues (101) .
From a practical perspective, the frequent presence of 5'

introns (sometimes directly abutting or even interrupting the
AUG codon) necessitates caution in picking a probable start
site for translation, and caution in scoring upstream AUG
triplets . Many claims ofmRNAs with AUG-burdened 5' non-
coding sequences (46, 114, 125, 213, 236, 238, 292, 348,
387) have been resolved by finding that the 5' portion of the
cDNA corresponds not to the mature mRNA but to an
intron-containing form (36, 135, 225, 235, 284, 316, 388,
407, 408) . (see reference 193 for additional examples.) The
growing evidence ofincomplete (20, 23, 28, 74, 76, 80, 138,
151, 168, 222, 259, 343, 354, 411) or regulated (417) RNA
processing in mammalian cells underscores the point that
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cDNA sequences cannot invariably be equated with func-
tional mRNAs. Some intron-containing transcripts are abun-
dant (70), some enter the cytoplasm (328), and some are
even found on polysomes (411) . These problems complicate
attempts to deduce the real structures of vertebrate mRNAs.
While a cDNA sequence that retains an unspliced intron
within the coding domain is easily recognizable as a process-
ing intermediate, the presence of unspliced intron(s) in the
5' noncoding domain is much harder to recognize .
Some genes are transcribed in ectopic tissues from an ill-

placed promoter that burdens the 5' noncoding sequence
with AUG codons, thereby impairing translation in that par-
ticular tissue . In the tissue that constitutes the major site of
expression, however, a different promoter produces a 5' non-
coding sequence that is not so encumbered . Examples in-
clude murine complement-B mRNA in hepatic versus ex-
trahepatic tissues (286), rat preproenkephalin mRNA in
testis versus brain (172, 175), rat a-crystallin mRNA in
brain versus other tissues (157), and rat farnesyl pyrophos-
phate 'synthetase mRNA in liver versus testis (390) . In the
last three cases, the predicted difference in translational
efficiency has been verified experimentally. Another ploy in-
volves switching to a shorter, more efficiently translated
leader sequence in response to some developmental (61,
425) or environmental cue, such as stimulation with serum
(409) or retinoic acid (61) or endotoxin (286), or during T
cell maturation (324) . Because of promoter switching and/or
alternative splicing, many other vertebrate genes produce
multiple transcripts that differ near the 5' end, and failure to
detect all pertinent forms has sometimes led to false conclu-
sions . The suggestion of "internal initiation" in the chicken
progesterone receptor mRNA (71) is one example of a wrong
conclusion that was righted upon discovering other forms of
mRNA (166, 167) . Detecting alternative transcripts is not al-
ways easy! Competition for the primer may cause a minor
transcript to be missed (175) . Even the major transcript has
been missed when the primer was positioned inappropriately
(72) or when hybridization conditions were too stringent
(338) .
Because of the difficulties described above and various

other complications in cloning or interpretation (6, 32, 37,
68, 69, 146, 226, 430), the frequency of spurious upstream
AUG codons in vertebrate mRNAs is difficult to estimate ;
but clearly it is not as high as superficial reading ofthe litera-
ture might suggest . When upstream AUG codons do occur,
the AUG-burdened leader sequence impairs translation (9a,
12, 105, 157, 247, 272, 277, 281, 326, 390, 409, 412, 424),
as expected if initiation occurs by the conventional scanning
process .
A partial listing of cDNAs with AUG-burdened leader se-

quences is given in Table III . It includes many proto-
oncogenes as well as genes fortranscription factors, a variety
of receptor proteins, signal transduction components, and
many proteins involved in the immune response . One con-
clusion might be that mRNAs that encode critical regulatory
proteins are intended to be translated poorly. I suspect that
conclusion is true for some entries in the table, but some
(perhaps many) entries might reflect a different type of regu-
lation . For example, the repeated finding of incompletely
spliced transcripts in lymphocytes (20, 107, 389, 411) and re-
cent evidence that undefined posttranscriptional processes
improve upon mitogen activation of lymphocytes (67) en-
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Table III. Vertebrate cDNA Sequences that Have Three or More AUG Codons Upstreamfrom the Major Open
Reading Frame
Tumor associated
(proto-oncogenes, etc .)

* abl, human (21)
* bcl-2, human (401)
ear-7, human (266)

* erb-A, human (413)
erg, human (320)
Evi-1, human (271)
Evi-2, mouse (38)

* fgr, human (122)
# fos-B, mouse (427)
HCK, human (318)

*# int-2, human (34)
* lck, mouse (324)
* mos, mouse (314)
ROS-1, human (22)

*# sis, (PDGF-2) (98, 319)
* sno, human (285)
syn (slk), human (352)

* T-cell l 1p15 (25)

Immune/inflammation mediators

Interleukin-7, mouse (239, 281)
IL-1 receptor, mouse (358)
IL-2 receptor-$, human (132)
IL-3 receptor, mouse (116)
IL-5 receptor, mouse (382)
IL-6 receptor, human (420)
IL-7 receptor, mouse (309)
G-CSF receptor, mouse (108)
C3b receptor (Mac-la) (315)
CD28, human T cells (217)
CD75, human B cells (365)
Ly-5 (CD45, CALLA) (334)
Ttg-1, T cells (252)
Surface antigen l14/A10 (87)
Tyr kinase, leukocyte (19)
,6Fcy receptor 11, mouse (143)
IgE receptor (high affin) (229)

Kozak An Analysis of Vertebrate mRNA Sequences

Signal transduction

courage the idea that many cDNA sequences from immune
cells might correspond to precursors rather than to func-
tional mRNAs. The same may be true of AUG-burdened
transcripts from transcription factor genes, since some of
those transcripts are restricted to the nucleus (61, 70, 275) ;
in other cases, a transcript is detectable but the correspond-
ing protein is not (256) . The first report ofmitogen-regulated
splicing of 5' introns in vertebrate genes has just been pub-
lished (417), giving substance to the hypothesis that non-
translatable transcripts may be synthesized and stored for
later processing .

Proto-oncogenes, on the other hand, might be genuine
candidates for translational modulation via an encumbered

chick embryo tyr kinase (304)
mouse liver tyr kinase (244)
FER tyr kinase (130)
tyk2 tyr kinase (100)
elk tyr kinase (223)
ERK3 ser/thr kinase (29)
p58 protein kinase (173)
rp-S6 kinase, chick (4)
protein tyr phosphatase (PTPase) LRP (293)
PTPase, megakaryocyte (121a)
Phospholipase C-1, rat (375)
cAMP phosphodiesterase (230)
insulin receptor substrate-I (IRS-1, pp185) (376a)

89 1

# Thyroid hormone, rat (277)
Rev-ErbAoi, rat (216)
Thyroid hormone, rat (394)

* Thyroid hormone, human (391)

Growth factors

Keratinocyte GF (99)
* Insulin-like GF-1 (17, 105)
Platelet-derived GF-A (328)
Epidermal GF (16)

# Transforming GF-03 (9a, 209)
See also : proto-oncogenes

Some, perhaps many, of these cDNA sequences are likely to represent mRNA precursors rather than functional mRNAs (see text) . The literature contains scattered
reports of AUG-burdened cDNA sequences in addition to those listed here . *, The gene produces multiple transcripts with alternative 5' noncoding sequences ;
#, translation is more efficient with transcripts (natural or derived) that lack the encumbered leader sequence .

leader sequence . Interpretation is complicated by the fact
that many proto-oncogenes produce transcripts with alterna-
tive 5' sequences (these are marked by asterisks in Table III),
but several observations support the idea that proto-
oncogene mRNAs are meant to be translated inefficiently :
c-mos transcripts are found on very small polysomes (314) ;
some activated oncogenes produce transcripts with simpler
5' noncoding sequences than the corresponding proto-
oncogenes (321, 337) ; and the experimental expression of
many proto-oncogenes improves dramatically upon deleting
portions of the leader sequence (12, 50, 247, 319) . To pro-
pose that proto-oncogene n1RNAs might be translated by a
mechanism other than scanning (253), inasmuch as their

Transcription factors
and DNA-binding proteins Receptors for the following ligands

NF1-B (TGGCA), chicken (330) * Acetylcholine, rat (224)
NFI-X, hamster (112) * Angiotensin H, rat (276)
CAMP response (CRE-BPI) (278) # Atrial natriuretic peptide (110)
IFN response (IRE-BFI) (421) D, dopamine, mouse (268)
PRDII-BFI (96) Estrogen, chicken (203)
DBP, rat liver (272) GABAA al, mouse (171)
HOX 2G, human (2) GABAA y2, chicken (115)
HOX 5.1, human (61) Gastrin-releasing peptide (13)
Hox 2.9, mouse (274) Glycine, human brain (119)
Hox 3, mouse (31) Heparin-binding GF (K-sam) (133)
Hox 3.1, mouse (10) Interferon a, human (402)
Hox 3.2, mouse (93) Progesterone, rabbit (262)

* BTF3 (general) (428) Prolactin, rabbit (89)
OTF-2, human (339) Retinoic acid (hRAR-a) (30)
TFE, canine (161) * Retinoic acid (mRAR-S) (426)
KUP, human (48) * Retinoic acid (hRAR-y) (204)
poll factor UBF, rat (296) Serotonin lc, rat (164)
HNF-1(3, mouse (256) Serotonin 5HT-2, rat & CHO (45, 313)

Substance K, bovine, human (111, 248)
Substance P, rat (136)

# Thromboxane AZ , human (140)



AUG-burdened leader sequences seem incompatible with
efficient scanning, is to miss the point that these potent pro-
teins probably have to be translated inefficiently.

Occurrences and Consequences of
Secondary Structure
The catalogue of vertebrate mRNAs with GC-rich (hence
highly structured) leader sequences again includes many
mRNAs for oncoproteins, growth factors, transcription fac-
tors, signal transduction components, and a wide variety of
receptor proteins (Table IV) . Again, the presence of an en-
cumbered leader sequence suggests that production of these
critical regulatory proteins is throttled at the level of transla-
tion . The GC-cohort also includes many housekeeping
genes, which are generally recognized to be expressed at low
levels . While it is easy to show that many ofthese leader se-
quences support translation poorly (see below), delineating
the cause is not simple . The extraordinarily high GC content
(70 to 90%) predicts many alternative base pairings, making
it impossible to pinpoint a target for mutagenesis . Conse-
quently, our understanding of how particular base-paired
structures affect translation relies heavily on experiments
carried out with synthetic transcripts (188, 195, 196) in
which discrete stem-and-loop structures have been intro-
duced and their existence documented by genetic techniques .
The best evidence that mRNAs in Table IV are translation-

ally impaired is the dramatic improvement in expression
when the GC-rich leader sequences (some ofwhich also con-
tain upstream AUG codons) are truncated experimentally
(53, 82, 182, 221, 246, 273, 319, 395) . (Discrepancies be-
tween mRNA levels and protein accumulation in some stages
or conditions of cell growth may be another indication of
translational control of transcription factor and other such
genes (66, 81, 83, 205, 340, 357, 373) ; but in most of those
cases alternative explanations, such as compartmentaliza-
tion of the mRNA or accelerated degradation of the protein,
have not been ruled out .) Some genes in Table IV actually
produce two versions of mRNA, on one of which the leader
is shorter and less encumbered than on the other (178, 283,
317, 377) . In the few cases where long- and short-leader
mRNAs from the same gene have been put to the test, the
short-leader transcript nearly always supports translation
more efficiently (153, 283, 337, 409) . Indeed, the dis-
crepancy in translatability dependent on 5' leader sequences
can be so profound that a minor transcript from certain genes
appears to be the major functional mRNA (149, 264, 283) .
Other genes in the GC-rich cohort produce transcripts with
so many different leader sequences (75, 85a, 165, 220, 245,
426) that it is impossible to guess, and no small task to test,
their functionality .
Notwithstanding those caveats, the extraordinary number

of mRNAs with GC-burdened leader sequences forces the
idea that synthesis of critical cellular proteins is probably
throttled at the level of translation . Under constitutive condi-
tions, the synthesis of a single molecule of such a protein
could conceivably take hours as a 40S subunit slowly maneu-
vers its way to the downstream AUG codon . Ifslow initiation
of translation is a key to limiting the production of proteins
that would be lethal if overproduced, one should not be sur-
prised that such mRNAs are virtually untranslatable in stan-
dard in vitro assays in which mRNAs are expected to pro-
duce a product in minutes! A compelling rationale for the
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cumbersome 5' noncoding sequences on so many regulatory
genes is that those transcripts should respond as a cohort to
shifts in the cell's translational capacity. As for how hypothet-
ical shifts in translational capacity might be accomplished,
changes in the extent ofphosphorylation of initiation factors
and ribosomal proteins have often been remarked (137, 393) .
With the notable exception of eIF2 (65), however, hard evi-
dence for the functional consequences of phosphorylation
remains elusive.
A structured leader sequence may have qualitative as well

as quantitative effects on translation . In a small number of
vertebrate mRNAs, ribosomes initiate at a non-AUG codon,
such as ACG, CUG, or GUG (3, 20, 86, 103, 127, 219, 232a,
336) . The list is slightly longer if one counts viral mRNAs
(15, 78, 312, 367) . It is not valid, however, to count mRNAs
in which the use of alternative initiator codons has been
documented only in vitro, where inappropriate reaction con-
ditions can activate cryptic sites that would not be used in
vivo (194) . Initiation at non-AUG codons is usually
inefficient and usually occurs in addition to using the first
AUG codon . The result is synthesis of an "extra" NHZ ter-
minally extended version of the protein . (There are only two
instances in which a protein derives uniquely from initiation
at an upstream non-AUG codon and not, at least in part, from
the first in-frame AUG codon . One occurs in cells trans-
fected with ltk tyrosine kinase cDNA, in which five out-of-
frame AUG triplets occur between the putative CUG initia-
tion site and the first in-frame AUG (20) ; initiation at the
far-upstream CUG codon thus circumvents the problem of
getting past out-of-frame AUG codons . As yet, however, ini-
tiation at the upstream CUG codon has not been demon-
strated with the endogenous ltk gene in untransfected cells .
The other very intriguing example is the apparently unique
use of an AUU codon to initiate translation of the human en-
hancer factor TEF-1 (416).) All of the vertebrate mRNAs
that use a nonstandard initiator codon have GC-rich leader
sequences, prompting the speculation that the slow transit of
scanning 40S ribosomes across a highly structured 5' non-
coding sequence might be responsible for activating cryptic
upstream sites (196) . Indeed, initiation at upstream non-
AUG codons in synthetic transcripts was considerably en-
hanced upon introducing secondary structure in an appropri-
ate position 3' of the cognate initiator codon (196) . While the
NHZ terminally extended polypeptides initiated from non-
AUG sites in viral and cellular mRNAs occasionally have
distinct functions (15, 312, 367) or distributions (3, 40,
232a), it would be simplistic to assume that every instance
of initiation from a cryptic upstream site is functionally im-
portant. Given the GC-richness of leader sequences on
mammalian mRNAs, spurious upstream initiation events
may be unavoidable byproducts of the way eukaryotic ribo-
somes arrive at the AUG codon . In avian cells, the efficiency
of initiating at the upstream CUG codon in c-nryc mRNA is
regulable by culture conditions (Stephen Hann, personal
communication) . This suggests interesting modulation of the
translational machinery, but it does not aid the so-far unsuc-
cessful effort to ascribe functional significance to the NHZ
terminally extended form of c-myc.
Many vertebrate mRNAs that have highly structured

leader sequences also have upstream AUG codons (see the
entries marked t in Table IV) . This coincidence might be
viewed in either oftwo ways. One rationalization invokes the
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Table IV. Some Vertebrate Genes Predicted to Have Highly Structured S' Noncoding Sequences

Tumor associated (proto-oncogenes, etc .)

t bcl-3, human (294)
t§ BCR, human (353)
bmk, mouse (145)
DBL, human (94)

$* erbA-1, human THRA (215)
erbB (HERD (124)
eph, human (139)
ets-2, human (250)
Jos, human (372)

$ hck, mouse (232)
t HER2 (neu) human (384)
f hst, human (423)
f int-1, human (406)

$§* int-2, human (34, 120)
jun, human (8)

t KS (Kaposi) (79)
lyl-1, human (255)
lyn, human (419)
myb, mouse (362)

Transcription factors
and DNA-binding proteins

RAP30/74 (general) (364)
f NF-KB, human (258)
PUA, mouse B cells (181)
EFIA CCAAT-BP, rat (301)
CCAAT/EBP, mouse (57)

f NF-Elb, chicken eryth . (418)
GATA-1 (NF-E1), human (429)
GATA-1 (NF-El), chick (129)
GATA-3, human (141)

t Krox-24, mouse (219)
jun-D, mouse (332)

f zif/268, serum induced (56)
hepatocyte NF-1, mouse (205)

t Cdx-1, mouse homeobox (88)
LAP, rat liver (81)
LRF-1, regen . liver (152)

f* SCL, human (9)
Oct6, mouse embryo (254)

t Serum response (SRE-BF) (288)
TFIIS (elongation) (422)

t TCF-1, murine T-cells (298)
t TEF-1, human EBP (416)
SCIP rat nerve (204a)

t L-myc, human (169)
t* N-MYC, human (366)

pint-1, human (323)
* H-ras, human (148)
Ki-ras, mouse (142)
RB, human (147)
rel, chicken (128)

t ret (381)
f*§ sis (PDGF-2) human

ski, human (285)
t Spi-1, human (322)
* src, chicken (85a)
$ syn, human (352)
GA733 antigen (227)
GA733-2 antigen (379)
mdm-1, mouse (361)
mdr-2, mouse (121)
timp-2, human (369)

f Wilms' tumor (WTI) (39)
(See also: growth control,

receptors)

Signal transduction
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(98, 319)

GAP, bovine (403)
G protein G a l l, mouse (374)
G protein G,a, human (201)
G protein G;a, human (14)

t G protein Ga12, mouse (374a)
G protein Ga13, mouse (374a)
G protein 02, human (104)

$ adenylyl cyclase, bovine (202)
protein kinase C (PKCa) (329)
PKC-r, rat brain (297)

$ PKC-L, human (11)
t nPKC, rabbit brain (295)
cAMP-dependent PKCa, hu (241)
cAMP-dependent PKCO, mu (58)
CaM-kinase II, rat (396)
ltk tyr kinase, mouse (20)

t PTPase (R-PTP-a), mouse (335)
PTPase, human placenta (52)
prot . phosphatase 2A, pig (371)
prot . phosphatase 2C, rat (386)
phospholipase C-, y, human (41)

Receptors for the following ligands

t n-acetylcholine, a5 (28)
t n-acetylcholine, 02 (7)
f a2B-adrenergic, rat (102)
* ß,-adrenergic, rat (356)
$§ 02-adrenergic, human (91)
$ aIA-adrenergic, human (233)
*§ atrial natriuretic peptide (53)
f dopamine D2, rat (267)
t ear-2 (THR family) (265)

t* estrogen, human (118)
t HER3 (EGFR-related) (310)
$ insulin, human (351)
IGF-II, human (270)
integrin, chicken (385)
interferon-y (117)

f interleukin-1 (59)
mannose-6-phosphate (231)
N10 (TH receptor family) (333)
nerve growth factor (350)
poliovirus, human (184)

t* progesterone, chicken (162)
f* retinoic acid (hRAR-y) (204)

ryanodine, rabbit (383)
syndecan, human (242)
thrombin, human (404)

t* transferrin, human (341)
tumor necrosis factor (183)
(See also : proto-oncogenes)

Growth control

TGF-a, rat (24)
* TGF-ß 1, human (178, 317)
t TGF-ßl masking protein (400)
TNF-ß, human (257)
CSF-1, human (208)
interleukin 11, human (305)
endothelial GF (hPD-ECGF) (123)

t Egr-1, mouse (376)
f erythropoietin, human (159)
basic fibroblast GF, human (1)

$§ fibroblast GF-5, mouse (12, 134)
* IGF-II, human (155)
IGF-binding prot-1, human (33)
IGF-binding prot-2, rat (35)

t* PDGF-A, human (328)
Schwannoma-derived GF (180)
TAPA-1, human (299)
(See also : proto-oncogenes)

The leader sequences on cDNAs from these genes have a G+C content of 70 to 90%, which would seem to imply extensive secondary structure . Most but not
all genes for oncoproteins, receptors, transcription factors and signal transduction componentsbelong to this GC-cohort . Overall, only 19% of the vertebrate mRNAs
compiled in reference 191 have GC-rich leader sequences . Of these, -40% fall into the categories listed in Table IV, although oncogenes, receptors, transcription
factors, signal transduction, and growth factor genes constitute only 13% of the total sequences in the compilation . Another -30% of the GC-burdened leader
sequences in reference 191 derive from mRNAs for cytoskeletal and housekeeping proteins . Thus, GC-rich 5'-noncoding sequences are not randomly distributed
among vertebrate genes . The frequency of GC-rich mRNAs does appear to be increasing, however, now that technical improvements enable the routine cloning
of cDNAs derived from scarce transcripts . *, The gene produces multiple transcripts with alternative 5' noncoding sequences ; t, the GC-rich leader sequence also
contains upstream AUG codon(s) ; §, translation improves upon deleting portions of the leader sequence .



adage that nothing bad can happen to a rotten eggplant : a
highly structured 5' sequence is so inhibitory to translation
that the further slight diminution attributable to one or two
small upstream ORFs should hardly matter. A more interest-
ing view is that upstream ORFs (initiating at AUG or AUG-
cognate codons) might actually be necessary to mitigate the
inhibitory effects of a GC-rich leader sequence . The argu-
ment here is that 80S ribosomes engaged in translating the
upstream ORFs might be able to penetrate duplex structures
that are too stable to be penetrated by scanning 40S
ribosomal subunits-an idea which is supportedby some evi-
dence from experimental constructs (179, 195) . Ifa smatter-
ing of upstream initiator codons indeed facilitates the trans-
lation of mRNAs with highly structured leader sequences,
they probably provide only a small measure of relief. The
major experimental finding is that mRNAs with long, GC-
rich leader sequences are translated inefficiently. And a sur-
prising number of vertebrate mRNAs fit that bill .

Coda
The usually favorable context around the AUG start site in
vertebrate mRNAs ensures the fidelity of initiation . Because
recognition ofthe AUG codon is a late event in the initiation
process, however, a good context should not, and does not
(194), affect the ability ofone mRNA to outcompete another .
Translational efficiency, defined as competitive ability, is
probably determined instead by accessibility of the capped
5' end of the mRNA, since the 5' end constitutes the apparent
entry site for the 40S ribosome/factor complex . Effective
competition for the 40S ribosome/factor complex is not
sufficient, however ; translational efficiency (defined now as
actual production of the intended protein) can still be re-
duced by upstream AUG codons or by base-paired structures
that constitute barriers to the scanning 40S ribosome . The
particulars, such as how much secondary structure is re-
quired to inhibit scanning, and the available evidence are
summarized elsewhere (200) . If one accepts the general no-
tion that base-paired structures and upstream AUG codons
can block ribosome entry and/or scanning, then the encum-
bered leader sequences described herein pose problems .
Time will tell which of the AUG-burdened cDNA se-

quences described above represent functional mRNAs and
which represent mRNA precursors . The likelihood ofthe lat-
ter explanation increases as the number of upstream AUG
codons increases : cDNAs with a dozen or so upstream AUG
triplets (45, 85, 140, 151a, 161, 256, 309, 315, 421) almost
certainly do not represent translatable transcripts! The im-
portance of using appropriate primers to search for alterna-
tive 5' noncoding sequences cannot be overemphasized .
Positioning a primer near the 5' end ofthe longest cDNA (85,
260) will nicely pinpoint the start site of the longest tran-
script, but alternative mRNAs with shorter leader sequences
inevitably will be missed unless the primer is positioned
close to the AUG initiator codon . The fact that so many
AUG-burdened 5'-noncoding sequences have already been
traced to retained introns or to other irregularities
(documented above and in reference 193) encourages the
view that many of the cDNAs in Table III may correspond
to nonfunctional transcripts rather than to functional
mRNAs. On the other hand, when the correct form of the
mRNA is eventually deduced, genes thereby eliminated
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from Table III often move into Table IV! One way or another,
the mRNAs for oncoproteins, transcription factors, growth
factors, etc ., seem destined to be translated poorly.

For GC-burdened cDNAs, the solution of switching
promoters to produce an alternative, less encumbered 5' non-
coding sequence has been documented in only a few cases
(178, 283, 317, 377) . Because alternative leader sequences
can easily be missed, as mentioned above, their frequency
might be higher than presently appears . Nevertheless, be-
cause of the consistency with which GC-rich leader se-
quences occur, it seems farfetched to argue that most ofthose
cDNAs (Table IV) derive from nonfunctional transcripts
rather than from functional mRNAs. Unlike the tabulation
of AUG-burdened leader sequences, which in time tends to
be whittled down by corrections, the tabulation of GC-
burdened leader sequences keeps growing. It includes
mRNAs for many cytoskeletal and housekeeping proteins in
addition to the regulatory proteins mentioned in Table IV.
Thus, it seems likely that some (probably many) vertebrate
mRNAs have enough secondary structure at the 5' end to
throttle translation . The biggest uncertainty may be whether
these mRNAs invariably are translated poorly or whether
their translation is "derepressed" in response to mitogens, for
example, by modifications of the translational machinery or
induction ofhelicases . (Although numerous modifications of
the translational machinery correlate with a serum-induced
increase in translation, no causal connection has yet been
established .) The widespread occurrence of 5' noncoding
sequences that appear unfavorable for translation might be
rationalized by the ability ofGC motifs to promote transcrip-
tion . In some vertebrate genes, sequence elements located
downstream from the cap site indeed augment the yield of
mRNA (51, 97, 131, 13 la, 163, 210, 327, 392) .
Whatever the explanation, the encumbered leader se-

quences described herein represent a minority of the ver-
tebrate cDNA sequences that have been analyzed, and they
are a distinctly nonrandom set . AUG-burdened/GC-rich
leader sequences virtually never occur on mRNAs that en-
code globins, albumins, caseins, immunoglobulins, his-
tones, or other highly expressed proteins . The fact that genes
for growth factors, cytokine receptors, proto-oncogenes,
etc., often produce transcripts with encumbered 5' noncod-
ing sequences suggests extensive regulation of the regula-
tors, at the level of translation and/or RNA processing.
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