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Abstract.

Background: Parkinson’s disease (PD) and multiple system atrophy (MSA) patients often suffer from gastrointestinal (GI)
dysfunction and GI dysbiosis (microbial imbalance). GI dysfunction also occurs in mouse models of PD and MSA.
Objectives: To assess gut dysfunction and dysbiosis in PD subjects as compared to controls, identify potential shared
microbial taxa in humans and mouse models of PD and MSA, and to assess the effects of potential therapies on mouse GI
microbiota.

Methods: In this human pilot study, GI function was assessed by fecal consistency/frequency measured using the Bristol
Stool Form Scale and GI transit time assessed using Sitzmarks pills and abdominal radiology. Human and mouse microbiota
were analyzed by extracting fecal genomic DNA followed by 16S rRNA sequencing.

Results: In our PD patients genera Akkermansia significantly increased while a trend toward increased Bifidobacterium and
decreased Prevotella was observed. Families Bacteroidaceae and Lachnospiraceae and genera Prevotella and Bacteroides
were detected in both humans and PD mice, suggesting potential shared biomarkers. In mice treated with the approved multiple
sclerosis drug, FTY720, or with our FTY720-Mitoxy-derivative, we saw that FTY720 had little effect while FTY720-Mitoxy
increased beneficial Ruminococcus and decreased Rickenellaceae family.

Conclusion: Akkermansia and Prevotellaceae data reported by others were replicated in our human pilot study suggesting
the use of those taxa as potential biomarkers for PD diagnosis. The effect of FTY720-Mitoxy on taxa Rikenellaceae and
Ruminococcus and the relevance of S24-7 await further evaluation. It also remains to be determined if mouse microbiota
have predictive power for human subjects.
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INTRODUCTION

The gut microbiome plays an important role in
regulating metabolism [1-3], immunity [4], and neu-
rological function [5-7]. In addition to antibiotics,
certain non-antibiotic drugs and/or common medica-
tions can alter gut microbial growth or elicit changes
that may induce antibiotic resistance [8]. Gut micro-
bial imbalances are also common in chronic diseases
like diabetes [9, 10], inflammatory bowel disease
[11], and obesity [12], as well as in neurodegener-
ative disorders like Parkinson’s disease (PD) [13—15]
and multiple system atrophy (MSA) [16, 17]. Gut
microbiome changes in PD and MSA often parallel
associated gastrointestinal (GI) hyperpermeability,
constipation, and dysmotility. Interestingly, such GI
changes can begin years before gait/motor symp-
toms, suggesting that specific microbial signatures
may yield predictive biomarkers for early PD or MSA
diagnosis [18].

In order to assess the effect of potential ther-
apeutics for treating PD and MSA pathology we
obtained relevant mouse models. To model PD we
used a parkinsonian mouse that expresses AS53T
mutant human alpha-synuclein (a-Syn) in neurons
[19], referred to here as A53T transgenic (Tg) mice
and an MSA mouse model that expresses human aSyn
in oligodendrocytes under the 2, 3’-cyclic nucleotide
3’-phosphodiesterase (CNP) promoter [20], referred
to here as CNP-aSyn transgenic (Tg) mice. The A53T
and the CNP-aSyn Tg mice mimic some of the neu-
ropathology found in patients with PD and MSA,
including age-onset motor and GI dysfunction [21,
22].

Other studies have suggested that GI dysfunc-
tion and dysbiosis are strongly related and that the
intestine may be a major source leading to neu-
roinflammation [23, 24]. In PD patients and in
parkinsonian animal models, aggregated a-Syn is
found in neurons of the enteric nervous system as we
have previously reported for AS3T Tg mice [21, 22].
AS53T and CNP-aSyn Tg mice are thus anticipated to
have dysbiosis as they suffer GI dysfunction and/or
a-Syn aggregation in the enteric nervous system in
contrast to their wild type (WT) littermates that have
no pathology or GI dysfunction and thus are expected
to have normal gut microbiota.

Previously we and others have studied protection
by FTY720, an approved oral immunosuppressive
drug for multiple sclerosis, that when phosphorylated
acts on sphingosine-1-phosphate receptors (S1P-Rs)
[25]. FTY720 causes immunosuppression but also

enhances expression of brain derived trophic factor in
multiple cell and animal models [26-30]. We showed
that FTY720 improves GI physiology/function and
reduces GI aSyn pathology in AS3T Tg parkinsonian
mice [22]. In CNP-aSyn MSA mice we have assessed
FTY720-Mitoxy, our novel neuroprotective FTY720-
derivative, [27] that though not orally bioavailable,
readily crosses the blood brain barrier [31], stimulates
trophic factor expression in neurons and oligoden-
droglia [32, 33], and is not immunosuppressive by
decreasing circulating T cells [34]. Preliminary data
confirm the restorative effects of FT'Y720-Mitoxy on
motor, sudomotor, and GI function in Tg CNP-aSyn
MSA mice [21].

In this pilot study we evaluated the gut microbiota
of human PD and control subjects and parkinsonian
AS53T aSyn and MSA CNP-aSyn Tg mouse mod-
els. We also sought to determine if mice and humans
have shared GI microbiota and if potential therapeutic
drugs for PD and/or MSA may affect the microbiota
of mice, in hopes of producing information that may
translate to humans.

METHODS

Human subjects

Our human study was ethically performed as
approved by the Texas Tech University Health Sci-
ence Center (TTUHSC) El Paso Institutional Review
Board (protocol #E16039). Subjects gave written
informed consent to provide samples and health infor-
mation that were de-identified and HIPAA protected.
In 9 subjects with PD and 13 healthy controls, partic-
ipants were recruited by flyers posted in clinics and
hospitals and also by inviting subjects who attended
local PD group meetings and educational programs.
Inclusion criteria for PD subjects were: 1) between
35 and 95 years of age, 2) neurologist confirmed PD
diagnosis. Exclusion criteria for PD subjects were:
1) dementia, 2) major GI disease or cancer, 3) smok-
ing or use of recreational drugs, 4) medical device
implanted near the GI tract, 5) an MRI during the
time of the study, 6) pregnancy, or 7) use of antibiotics
within 2 weeks prior to initiation of the study. Inclu-
sion criteria for control subjects were: 1) between 35
and 95 years of age, 2) No PD or other neurodegen-
erative disease, 3) no complaints or symptoms of any
disease, 4) no signs of constipation or GI disorder.
Exclusion criteria for control subjects were the same
as for PD patients.
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Animals and drug delivery

Ethical treatment of animals followed AALAC and
NIH guidelines on TTUHSC Institutional Animal
Care and Use Committee (IACUC) protocol #12001.
AS53T aSyn wild type (WT) and transgenic (Tg)
mice (B6;C3-Tg-Prnp/SNCA*AS53T/83Vle/J; Jack-
son Laboratories, Bar Harbor, ME) were evaluated
at 10mo and 17 mo after receiving 5—12 mo of oral
FTY720 (0.5 mg/kg/mouse) prepared in 200 proof
EtOH (vehicle) given 2x/week, while control mice
received vehicle alone on the same schedule (N=17).
WT and Tg CNP-aSyn MSA mice (B6;C3-Tg-
CNP-SNCA-M2Vle) [25] were assessed at 10—11 mo
after receiving 2 or 3mo of FTY720-Mitoxy
(1.1 mg/kg/day) prepared in 200 proof EtOH plus
Lactated Ringers (vehicle) or vehicle alone, delivered
by Alzet pump Model 2006, implanted subcuta-
neously on the back of the animal without interfering
with normal movement of the mice (N =10).

Constipation and gut motility

Participants completed Bristol Stool Form Scale
(BSFS) diaries for 14 days, reporting fecal con-
sistency (appearance) and frequency (bowel move-
ments/week) in order to diagnose constipation. Gut
motility was measured using Sitzmarks pills (Konsyl
Pharmaceuticals, Easton, MD, USA) ingested 5 days
before abdominal X-rays, performed using estab-
lished protocols to quantify radio-opaque markers
remaining in the gut as described by other [35, 36].

Feces collection and DNA extraction

Participants collected fecal samples at home using
the provided special container filled with stool DNA
stabilizer (PSP® Spin Stool DNA PlusKit, Stratec
Molecular) preservative. Specimens were received
from all participants and transferred to the laboratory
where they were stored at —80°C until processing.
Mouse feces were collected in sterile tubes during
1 hour periods in the morning, with feces preserved
and stored as described above. Total fecal DNA was
extracted using the QIAamp fast DNA stool Mini kit
(Cat # 51604, Qiagen Inc, Valencia, CA) according
to manufacturer instructions.

Sequencing and microbiota analysis

Bacterial 16S rRNA sequencing and microbiota
analyses were performed based on the protocol of

Reinoso et al [36-38]. Briefly, the o- and B-diversity
were calculated using the microbial ecology (QIIME,
version 1.8.0) pipeline and the UniFrac methods,
respectively, with the variable region V3 and V4 of
bacterial 16S rRNA amplified and sequenced using
MiSeq (Illumina Inc., San Diego, CA, USA) at the
Texas Tech University Genomics Core (Lubbock,
TX).

Statistical analysis

The two-tailed Mann-Whitney U test was used
to analyze relative abundance values for the human
study. For animal studies, non-parametric data
were evaluated using Clustered Regression Analy-
sis. Spearman correlation analysis was performed to
determine the significance levels regarding stool con-
sistency and frequency data for the BSFS analysis. In
all cases, p values below .05 were considered sig-
nificant (CI=95%) and GraphPad Prism software (v
6.07, San Diego, CA) was used to generate study-
specific graphs. Analyses were verified by experts in
the Biostatistics and Epidemiology Consulting Lab
at TTUHSC El Paso.

RESULTS

Gut motility was not different between control
and PD subjects, with 0—4 markers present in the
intestine 5 days after Sitzmarks ingestion, a range
that is considered normal. However, the mean BSFS
score for consistency was 4.0 and for frequency
was 8-16.5 bowel movements/week for controls.
In contrast, the PD group had a mean BSFS score
of 3.0 and frequency of 5-10, which is consistent
with constipation. In PD participants, a moder-
ately high negative correlation (Spearman p =-0.771,
p=0.0426) was found between the mean BSFS con-
sistency and frequency, similar to previous findings
by others [39]. Almost no correlation (Spearman
0=0.110, p=0.747) was established between the
mean BSFS consistency and frequency of control
participants.

Analysis of microbiota revealed that o- and -
diversity were not significantly different (not shown);
though significant differences were seen in % rela-
tive abundance (RA) by Mann-Whitney U tests. At
the phylum level the mean % RA of combined Fir-
micutes and Bacteroidetes represented 88% of the
reads for controls and 81% for PD (Table 1, column
A). Interestingly, the Verrucomicrobiaceae family
was only detected in PD subjects but not in con-
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Fig. 1. Relative abundance of gut microbial taxa in pilot studies of human PD, and in PD and MSA mouse models and effects of FTY720
(FTY) or FTY720-Mitoxy (FTY-M) on mouse gut microbiota. This figure only shows data relevant to PD and MSA. (A) At the family level
Verrucomicrobiaceae (*p < 0.05) is present only in PD subjects and Bifidobacteriaceae (ns) is increased in PD compared to control subjects.
(B) The genus Prevotella is notoriously reduced in PD, while Bifidobacterium and Akkermansia are more abundant in PD than in control
subjects; ns, not significant, *p <0.05, Two-tailed Mann-Whitney U Test. Taxa shared by humans and mice in C — F show the mean % relative
abundance (RA) only, as raw data were unavailable for statistical analyses. (C) Families Ruminococcaceae and Lachnospiraceae are only
present in 10mo old A53T transgenic (Tg) mice compared to age matched wild type (WT) mice. (D) At 17 mo, family Bacteroidaceae is
somewhat increased in WT and Tg mice after FTY, while family Lachnospiraceae is somewhat reduced in response to FTY in Tg mice. (E)
In CNP-aSyn MSA mice, family Rikenellaceae is present only in vehicle (Veh) treated WT and Tg CNP-aSyn mice, but absent in FTY-M
treated mice; while Ruminococcaceae family tended to increase in WT FTY-M treated mice. (F) The genus Ruminococcus is present only
in FTY-M treated WT and MSA CNP-aSyn Tg mice while the genus Bacteroides increases only after FTY-M in the CNP-aSyn Tg MSA
mice. Taxa are color coded according to phyla. Unassigned = non-bacterial fecal components, Other = unidentified bacteria at that particular

taxonomic level or bacteria that are not considered relevant to PD or MSA.

trols (Fig. 1A, Table 1, column A). Keshavarzian
et al. [40] found a significant increase in the Bac-
teroidaceae family in their PD subjects compared
to controls, though in our study no difference in
Bacteroidaceae family was found. Conversely, the
Prevotellaceae family was reduced in our PD sub-
jects, though not significantly when compared to
control subjects (Fig. 1A and Table 1, column A).
At the genus level, putative pro-inflammatory Akker-
mansia, a gram-negative anaerobic bacterium [41],
was significantly more abundant in our PD subjects
(Mann-Whitney U, p=0.0172) compared to controls,
consistent with the results of others [40, 42]. Mean-
while in our pilot study, Prevotella, a mucin degrader,
was decreased in PD patients as compared to con-
trols although not significantly (p =0.196) (Fig. 1B).

A decrease in Prevotella is known to be associ-
ated with increased gut permeability in association
with decreased mucin synthesis [14]. Interestingly,
in 17mo AS5S3T mice, genus Prevotella was also
increased in parkinsonian Tg animals (Table 1, col-
umn C). Bifidobacterium is known to be increased in
PD patients [14, 40, 42—-45] and we have confirmed
this finding in our group of PD subjects (p =0.072)
and also in 17 mo old vehicle treated parkinsonian
AS53T Tg mice. Unfortunately, those results did not
reach statistically significant levels (Table 1, columns
A and C; Fig. 1B, ns). Surprisingly, 10mo AS53T
Tg mice had both Proteobacteria and Actinobacte-
ria as their most abundant phyla, contrasting with
low % RA of Firmicutes and Bacteroidetes, both of
which are normally abundant phyla in humans and
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Table 1
Relative abundance of relevant taxa present in a pilot study comparing Parkinson’s disease participants with controls and taxa shared
with parkinsonian and multiple system atrophy mouse models

189

(A) (B) ©) D)
Human AS53T 10mo AS53T 17 mo CNPaSyn 10-11 mo
Control PD  Wild-Type Transgenic Wild-Type Transgenic Wild-Type Transgenic
Taxonomic Level n=13) n=9) (n=2) (n=5) (n=5) (n=5) (n=5) (n=5)
Phylum
Actinobacteria 3% 6% 30% 26% 10% 17% 0% 0%
Bacteroidetes 45%  38% 16% 17% 41% 33% 51% 61%
Firmicutes 43%  43% 3%*b 7%*b 18% 13% 39% 30%
Proteobacteria 3% 3% 42% 42% 14% 18% 0% 0%
Verrucomicrobia 0% 2% 0% 0% 0% 0% 0% 0%
Unassigned 5% 6% 4% 3% 5% 6% 6% 6%
Other 1% 2% 8% 12% 12% 13% 4% 3%
Family
Bacteroidaceae (p_Bacteroidetes) 26%  27% 1% 1% 3% 4% 8% 4%
Bifidobacteriaceae (p_Actinobacteria) 1% 5% 0% 0% 0% 1% 0% 0%
Lachnospiraceae (p_Firmicutes) 13% 12% 0% 1% 2% 2% 3% 3%
Prevotellaceae (p_Bacteroidetes) 10% 2% 0% 0% 0% 0% 0% 0%
Rikenellaceae (p_Bacteroidetes) 2% 2% 0% 0% 0% 0% 3% 3%
Ruminococcaceae (p_Firmicutes) 21%  19% 0% 1% 2% 1% 8% 5%
S24-7 (p_Bacteroidetes) 0% 2% 2% 3% 30% 21% 39% 53%
Verrucomicrobiaceae (p_Verrucomicrobia) 0%  2%%*a 0% 0% 0% 0% 0% 0%
Unassigned 5% 6% 4% 3% 5% 6% 6% 6%
Other 22%  25% 7% 6% 10% 7% 26% 20%
Genus
Akkermansia (f_Verrucomicrobiaceae) 0% 2%*a 0% 0% 0% 0%
Bacteroides (f_Bacteroidaceae) 26%  27% 3% 4% 8% 4%
Bifidobacterium (f_Bifidobacteriaceae) 1% 5% 0% 1% 0% 0%
Lactobacillus (fLactobacillaceae) 0% 0% Data  unavailable 3% 1% 2% 2%
Osciflospira (f_Ruminococcaceae) 2% 2% 1% 1% 5% 3%
Prevotella (f_Prevotellaceae) 10% 2% 1% 2% 0% 0%
Ruminococcus (f_Ruminococcaceae) 2% 2% 0% 0% 0% 0%

(A) Human study % RA, (C=control, PD =Parkinson’s Disease). Two-tailed Mann-Whitney U test (*a=p <.05). (B) Clustered Regression
analysis % RA in A53T mice, direct comparison between Wild-type and Transgenic (*b=p<.05). Data at the genus level are unavail-
able. (C, D) % RA from AS53T parkinsonian and CNPaSyn MSA mice, respectively. Raw data unavailable, thus only mean % RA was
performed. Bold text =taxa related to PD. Red text =taxa related to MSA. Combined bold and red text =taxa related to PD and MSA.
Unassigned = unidentified or unknown taxa. Other = unidentified bacteria at that taxonomic level or bacteria not relevant to PD or MSA. All

results are rounded to nearest whole number.

mice (Table 1, column B). At 17 mo, parkinsonian
AS53T Tg mice had a higher % RA of Firmicutes
and Bacteroidetes, compared to low reads for these
same phyla at 10 mo, indicating a possible age-related
microbiota change (Table 1, columns B and C). The
Lachnospiraceae family in the Firmicutes was shared
between humans, A53T Tg vehicle 10 mo, and both
WT and Tg AS53T mice at 17 mo (Fig. 1A, C, D and
Table 1, columns A-C).

An effect on the families Lachnospiraceae and
Bacteroidaceae was observed after treating AS3T WT
and Tg mice with FTY720 (Fig. 1D). The Lach-
nospiraceae family is of special interest because it
is reportedly reduced in some PD patients [40]. Inter-
estingly, Lachnospiraceae produce short chain fatty
acids in the human gut [44] and its depletion in
PD subjects may partially explain their related GI
inflammation/dysfunction that occurs, as some short

chain fatty acids are able to reduce inflammation [16,
44]. The Bacteroidaceae and S24-7 families represent
shared taxa present in all subjects and all conditions
studied (Fig. 1A, 1C, 1D and Table 1, columns A-D).
According to Keshavarzian et al [40], Bacteroidaceae
family is significantly more abundant in PD as com-
pared to controls. The relevance of the S24-7 family is
still unclear and needs further investigation, although
existing links are found between increased S24-7
abundance and high-fat fed diabetes-sensitive-mice
[46].

Firmicutes and Bacteroidetes represent the most
abundant phyla found in CNP-aSyn MSA mice
(Table 1, column D). Lachnospiraceae, Rikenel-
laceae, and Ruminococcaceae families present in
CNP-aSyn mice were also shared with humans
(Table 1, columns A and D). The putative anti-
inflammatory bacteria families Lachnospiraceae and
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Ruminococcaceae are reported to be reduced in MSA
patients compared to controls [17]. The Ruminococ-
caceae family was reduced in MSA CNP-aSyn
Tg mice compared to WT and when mice were
FTY720-Mitoxy-treated, this family showed little or
no change in % RA, with a greater change noted
for FTY720-Mitoxy treated WT mice (Fig. 1E).
Authors, including Engen et al, previously reported
significantly higher abundance of the Rikenellaceae
family in MSA subjects as compared to controls
[17]. Notably, the Rikenellaceae family was not
detected after FTY720-Mitoxy treatment, an effect
that may also be of benefit for MSA patients
(Fig. 1E). Ruminococcus, which are short chain fatty
acid/butyrate-producing anti-inflammatory bacteria,
were present at 1% RA in FTY720-Mitoxy treated
mice. Ruminococcus is reportedly low in MSA, so
administering a drug that increases its abundance
might benefit MSA patients (Fig. 1F). Bacteriodes,
which is more abundant in MS A, was also more abun-
dant in MSA-like vehicle treated CNP-aSyn Tg mice
(Fig. 1F, Table 1, column D).

DISCUSSION

A recent review by Gerhardt and Mohajeri [42]
includes data about colonic bacterial composition
in PD and other neurodegenerative diseases and
reported [(3-diversity that was significantly differ-
ent between healthy controls and PD in all studies
reviewed. In this pilot study 3-diversity was not found
to be statistically significantly different between our
PD and control subjects. In that same Gerhardt and
Mohajeri review three studies reported that the genus
Bifidobacterium is significantly increased, and Pre-
votella is significantly reduced in PD as compared to
controls. In our pilot study we noted a trend toward
an increase in Bifidobacterium and a reduction in
Prevotella but those data did not reach significance.
Despite the fact that some of our findings did not
replicate data of others, we did reproduce the changes
seen in Akkermansia as reported by Keshavarsian et
al. [40], and were also able to establish a trend toward
a decrease in the presence of Prevotellaceae as shown
by Unger et al. [43]. A limitation of this pilot study is
possibly related to the small number of participants,
as we believe this fact could have affected the sen-
sitivity of the results. Other aspects that may have
contributed to our findings are differences in DNA
extraction methodology, use of medications by our
PD participants and/or differences in disease dura-

tion in our PD subjects, as this has been observed to
affect data obtained by others [42, 44].

In conclusion, human PD gut microbiota changes
in Akkermansia and Prevotellaceae were reproduced
in our study, further supporting their use as biomark-
ers for early PD diagnosis. Additional work should
test this possibility as well as evaluate identified
shared microbial markers that correlated with dis-
ease in our PD and MSA mouse models. Our results
suggest that mice may be useful surrogates for eval-
uating therapeutic effects on gut function and/or
pathology, as we did with FTY720 in parkinso-
nian A53T Tg mice [22, 26, 28]. Although here we
saw little impact of FTY720 on mouse microbiota,
desirable microbial effects were noted in response
to FTY720-Mitoxy, supporting further evaluation
of this anti-synucleinopathy, neurotrophic-factor-
enhancing, brain penetrating compound [32, 33].
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