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Disease recurrence is frequent in high-risk neuroblastoma (NBL) patients even after multi-
modality aggressive treatment [a combination of chemotherapy, surgical resection, local
radiation therapy, autologous stem cell transplantation, and cis-retinoic acid (CRA)]. Recent
clinical studies have explored the use of monoclonal antibodies (mAbs) that bind to disialo-
ganglioside (GD2), highly expressed in NBL, as a means to enable immune effector cells
to destroy NBL cells via antibody-dependent cell-mediated cytotoxicity (ADCC). Preclinical
data indicate that ADCC can be more effective when appropriate effector cells are activated
by cytokines. Clinical studies have pursued this by administering anti-GD2 mAb in combina-
tion with ADCC-enhancing cytokines (IL2 and GM-CSF), a regimen that has demonstrated
improved cancer-free survival. More recently, early clinical studies have used a fusion pro-
tein that consists of the anti-GD2 mAb directly linked to IL2, and anti-tumor responses
were seen in the Phase II setting. Analyses of genes that code for receptors that influence
ADCC activity and natural killer (NK) cell function [Fc receptor (FcR), killer immunoglublin-
like receptor (KIR), and KIR-ligand (KIR-L)] suggest patients with anti-tumor activity are more
likely to have certain genotype profiles. Further analyses will need to be conducted to deter-
mine whether these genotypes can be used as predictive markers for favorable therapeutic
outcome. In this review, we discuss factors that affect response to mAb-based tumor ther-
apies such as hu14.18-IL2. Many of our observations have been made in the context of
NBL; however, we will also include some observations made with mAbs targeting other
tumor types that are consistent with results in NBL. Therefore, we hypothesize that the
NBL observations discussed here may also be relevant to mAb therapy for other cancers,
in which ADCC is known to play a role.
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INTRODUCTION
Neuroblastoma is the most common extracranial solid tumor in
children, accounting for 8–10% of all childhood cancers with
approximately 600 new cases diagnosed in the United States

Abbreviations: ADCC, antibody-dependent cell-mediated cytotoxicity; AIS, acti-
vating immune synapse; AML, acute myeloid leukemia; ALL, acute lymphoid
leukemia; ASCT, aAutologous stem cell transplant; CD16, FcRγIIIa; CD20, B-
lymphocyte antigen expressed on all mature B-cells; CD32, FcRγIIa; ch14.18,
chimeric 14.18 anti-GD2 mAb; COG, Children’s Oncology Group; CRA, cis-retinoic
acid; CRC, colorectal cancer; EGFR, epidermal growth factor receptor; F, pheny-
lalanine; FcR, receptor for Fc region of immunoglobulin; GD2, disialoganglioside;
GM-CSF, granulocyte macrophage colony stimulating factor; H, histidine; HER2,
human epidermal growth factor receptor-2; HLA, human leukocyte antigen; HSCT,
hematopoietic stem cell transplantation; hu14.18, humanized 14.18 anti-GD2 mAb;
hu14.18-IL2, humanized 14.18-IL2 IC; IC, immunocytokine; IFN-γ, interferon-
γ;IL2, interleukin 2; IL2R, IL2 receptor; KIR, killer immunoglobulin-like receptor;

each year (Navid et al., 2009). Greater than 60% of patients
older than 1 year of age have metastatic tumors (Modak and
Cheung, 2007), and for these high-risk patients, the prognosis
is often poor. Even with the aggressive multi-modal treatment

KIR-L, killer immunoglobulin-like receptor ligand; K-ras, Kirsten rat sarcoma
oncogene homolog; mAb, monoclonal antibody; MHC-I, major histocompatibil-
ity complex class I; MIP-1α, macrophage inflammatory protein-1α; MRD, minimal
residual disease; NCRs, natural cytotoxicity receptors; NBL, neuroblastoma; NK,
natural killer; NKG2A/CD94, inhibitory NK cell receptor, a dimer of NKG2A and
CD94; NKG2D, activating NK cell receptor; NKL, NK-like cell line expressing
little or no CD16; PCR-SSP, PCR amplification with sequence-specific primers;
PCR-SSOP, PCR amplification using a sequence-specific oligonucleotide probe;
R, arginine; RANTES, regulated-upon activation, normal T expressed cytokine;
SBT, sequence-based typing; SNP, single nucleotide polymorphism; TNF-α, tumor
necrosis factor-α; V, valine.
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of surgery, chemotherapy, radiotherapy, CRA, and autologous
stem cell transplantation (ASCT), the recent (as of 2010) 3-year
event-free survival remained as low as 30%, often due to recur-
rence caused by refractory minimal residual disease (MRD; Yang
and Sondel, 2010). More effective treatment strategies are highly
sought, including advances via immunotherapeutic options (Yu
et al., 2010), currently being further developed in clinical trials.

Neuroblastoma is a tumor of neuroectodermal origin and
overexpresses GD2. Since GD2 expression is restricted to few nor-
mal tissue types, such as peripheral nerves, and its normal level
of expression is relatively low, it is a viable target for tumor-
selective immunotherapy involving anti-GD2 monoclonal anti-
bodies (mAbs) and their derivatives. Anti-GD2 mAbs have evolved
from fully murine (3F8 and 14.G2a) to chimeric (ch14.18) to
humanized (hu14.18) reagents. One recent preclinical develop-
ment in anti-GD2 immunotherapy is an antibody that recognizes
the O-acetyl derivative of GD2 (OAcGD2; Alvarez-Rueda et al.,
2011). Preclinical and clinical testing is also proceeding with
hu14.18-IL2, an immunocytokine (IC) comprised of a humanized
form of the anti-GD2 mAb genetically linked to two molecules of
IL2 (Gillies et al., 1992; Lode et al., 1998a;Shusterman et al., 2010).
These immunotherapies exploit the cytolytic activities of NK cells
via CD16, the FcR found on NK cells, which can cause antibody-
dependent cell-mediated cytotoxicity (ADCC) upon binding to
the Fc portion of such mAbs or ICs (Weiner et al., 2009). The
degree of cytotoxicity is dependent upon a number of factors
including, but not limited to: the activation state of NK cells,
the affinity of CD16, and inhibitory signaling via KIRs (Becknell
and Caligiuri, 2008). This manuscript reviews recent findings in
clinical and preclinical trials related to each of these factors and
provides a hypothesis regarding the potential for genetic screen-
ing of patients for favorable KIR/KIR-L and FcR genotypes for
immunotherapeutic treatment of NBL in the context of NK-based
and mAb-mediated cancer immunotherapy. This neuroblastoma
(NBL)-based hypothesis may potentially apply to other cancers
for which mAb-mediated treatment has been shown to involve
ADCC.

NATURAL KILLER CELLS AND ANTIBODY-DEPENDENT
CELL-MEDIATED CYTOTOXICITY
Natural killer cells are large granular lymphocytes of the innate
immune system responsible for elimination of infected and trans-
formed cells as well as cytokine production. NK cells recognize
and destroy target cells via immune synapses formed through
surface-expressed receptors on the NK cells and corresponding
ligands on target cells (Orange, 2008). NK cell-mediated cytotox-
icity is directed toward specific target cells, based on the balance
of recognition of appropriate membrane structures by activating
and inhibitory receptors expressed on the NK cell (Leung, 2011).
The mechanisms of destruction are multi-modal: the release of
cytotoxic granules such as granzymes and perforin and the expres-
sion of Fas ligand (Fas-L) and TNF-related apoptosis inducing
ligand (TRAIL) are mechanisms used by NK cells to kill target
cells (Zompi and Colucci, 2005). NK cells can further shape the
immune response by secreting cytokines (such as IFN-γ, TNF-
α, and GM-CSF), and chemokines (for example MIP-1α and
RANTES; Oliva et al., 1998; Biron et al., 1999). The level of NK

response is ultimately determined by the balance of signals from
activating and inhibitory receptors (Moretta et al., 2005). NK cells
express a variety of activating (NCRs, NKG2D, KIRs, and CD16)
and inhibitory receptors (NKG2A/CD94 and KIRs; Farag and
Caligiuri, 2006). Also important for the effector–target interaction
are adhesion molecules (CD2 and LFA-1) and cytokine receptors
(IL2R) that promote adhesion and activate NK cells (Orange et al.,
2003; Gubbels et al., 2011).

Antibody-dependent cell-mediated cytotoxicity is an impor-
tant anti-tumor mechanism of the innate immune system, medi-
ated by leukocytes with FcRs (NK cells, monocytes, macrophages,
and neutrophils). When a tumor is treated with a tumor-specific
mAb, the variable regions of the Fab portions of the mAbs bind
to the antigens on the tumor. The Fc regions of the tumor-bound
mAbs project from the tumor cell surface allowing interactions
with effector cells that express FcRs. The binding of many mAb
molecules to the surface of a tumor cell creates a lattice of exposed
Fc regions allowing for multiple Fc–FcR interactions. When mul-
tiple CD16 molecules on an effector cell (i.e., NK cell) are engaged
simultaneously, immunoreceptor tyrosine-based activation motif
(ITAM)-mediated downstream signaling events occur that lead
to triggering of cytotoxic mechanisms and the destruction of
mAb-coated tumor cells (Ravetch and Bolland, 2001; Farag et al.,
2003).

Leukocytes express a variety of receptors from the FcR fam-
ily. The most important activating FcRs for ADCC include CD16
(FcγRIIIa; expressed primarily on NK cells) and CD32 (FcγRIIa;
expressed on monocytes, macrophages, and neutrophils; Nimmer-
jahn and Ravetch, 2008). CD16 and CD32 bind to the Fc portion
of human immunoglobulin molecules with the highest affinity
for the IgG1 isotype (Jefferis, 2007); thus human mAbs of the
IgG1 isotype induce a more robust ADCC response compared to
other heavy chain isotypes. For this reason, most therapeutic mAbs
approved for clinical application are of the human IgG1 isotype
(Schrama et al., 2006).

The importance of FcRs in mAb-based cancer therapy has been
previously demonstrated with the application of multiple tumor-
specific mAbs in both preclinical and clinical settings. Using mice
lacking FcRs, Clynes et al. (2000) showed that the anti-tumor activ-
ity of therapeutic mAbs was diminished in FcγR knockout mice
compared to wild-type mice, indicating the importance of FcRs
in tumor cell clearance . Studies have demonstrated the impor-
tance of ADCC as a tumor clearing mechanism in mAb therapies
(Basham et al., 1988; Primus et al., 1994). Many therapeutic mAbs
currently used clinically to treat cancer, such as Rituximab (anti-
CD20), Trastuzumab (anti-HER2), Cetuximab (anti-EGFR), and
ch14.18 (anti-GD2), likely utilize ADCC as an anti-tumor mech-
anism, although it is difficult to determine the necessity for NK
cell-mediated ADCC in humans (Adams and Weiner, 2005).

CYTOKINE ACTIVATION OF NK CELLS AND HU14.18-IL2 IC
Several preclinical studies had shown that IL2, a potent activator
of NK cells, augments NK-mediated ADCC when used to treat
NK cells in vitro, and in vivo administration of IL2 increased the
ability of circulating NK cells from cancer patients to mediate
ADCC (Hank et al., 1988, 1990, 1993; Sosman et al., 1990). A recent
phase III NBL study conducted by the Children’s Oncology Group
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(COG) combined mAb treatment with cytokine administration
(Yu et al., 2010). Patients that received then-standard therapy of
13-cis retinoic acid (CRA) along with an immunotherapy regimen
of ch14.18 mAb, IL2, and GM-CSF showed improved response as
compared to the control group that received only CRA. There was
a significant improvement in 2-year overall survival (86 vs. 75%;
p = 0.02) and 2-year event-free survival (66 vs. 46%; p = 0.01) in
children with MRD who received the immunotherapy regimen (Yu
et al., 2010). Of note, a study previously conducted in Germany of
ch14.18 mAb treatment of children with NBL initially found no
therapeutic advantage to treatment with the ch14.18 mAb alone
(Simon et al., 2004). A long term follow-up of the German study
did demonstrate an advantage in survival, but not in event-free
survival (considered to be a more direct indicator of anti-tumor
effect of the therapy), for those children that received the ch14.18
(Simon et al., 2011). Importantly, this German study employed
ch14.18 alone, without the administration of IL2 and GM-CSF,
which suggests that the clinical benefit realized in the COG study
was due, at least in part, to the activation of innate immune cells
by the addition of IL2 and GM-CSF.

To further advance the therapeutic benefits of this combi-
natorial therapy, hu14.18-IL2 IC was developed from the well-
characterized ch14.18-IL2 IC (Yamane et al., 2009). Ch14.18-IL2
was constructed by fusing the gene sequence for human IL2
to the human Cγ1 gene at the carboxy-terminus of each IgG1
heavy chain of ch14.18 mAb (Gillies et al., 1992). This genetic
linking enables the delivery of IL2 to the tumor microenviron-
ment (Lode et al., 1998a; Johnson et al., 2007). In contrast to
ch14.18-IL2, the antibody portion of hu14.18-IL2 has been 98%
humanized to minimize anti-mouse antibody responses (Yamane

et al., 2009). Hu14.18-IL2 IC is a next generation anti-GD2 ther-
apeutic agent that holds promise in NBL treatment. In mice,
hu14.18-IL2 IC exhibits superior anti-tumor effects compared to
simultaneous administration of similar amounts of hu14.18 mAb
and IL2 administered as separate agents (Lode et al., 1998b; Gillies
et al., 2005). The anti-tumor effect is primarily NK cell-mediated
(Lode et al., 1998b) and more pronounced in mice with non-
bulky disease (Neal et al., 2004b). As demonstrated in a murine
NBL study (Neal et al., 2004a), increased Major Histocompatibil-
ity Complex Class I (H-2 class I, the mouse equivalent of HLA-I in
humans, KIR-L) expression appears to be a mechanism by which
tumor cells can escape hu14.18-IL2 IC-induced, NK-mediated,
immunotherapy. A similar escape mechanism has been shown in
B cell-lymphoma upon Rituximab treatment (Borgerding et al.,
2010), suggesting that ligation of inhibitory receptors (KIRs) on
NK cells by MHC class I (KIR-L) on tumor cells can inhibit ADCC
responses.

The superior anti-tumor effects of hu14.18-IL2 IC (over the
combination of hu14.18 mAb and soluble IL2 administered simul-
taneously) may be due, in part, to contributions from IL2Rs that
are able to interact with IL2 molecules uniquely presented on the
surface of 14.18-IL2 IC-treated tumor cells. Gubbels et al. (2011)
used an NK cell line (NKL) that expresses little or no CD16, to
demonstrate that hu14.18-IL2 IC can facilitate NK cell conjugation
(in vitro) to tumor cells via the NK cells’ IL2Rs (Figure 1). Also,
interaction with hu14.18-IL2 IC-coated tumor cells via the NK
cells’ IL2Rs causes the polarization of NK cell adhesion and effector
molecules, resulting in the formation of an activating immune
synapse (AIS) necessary for the subsequent destruction of tumor
cells (Gubbels et al., 2011). Thus the improved anti-tumor efficacy

FIGURE 1 | 14.18-IL2 IC increases conjugate formation between M21

(GD2
+ tumor cells) and NKL cells, and conjugate formation can be

blocked with an anti-CD25 (IL2R α-chain) mAb in flow cytometry

conjugate assays. M21 and NKL cells were dyed with BODIPY and CFSE
respectively, incubated together with the depicted treatments and analyzed
for conjugate formation. huKS-IL2 IC, which recognizes EpCAM not GD2, was

added to demonstrate specificity of the hu14.18-IL2 IC. Pre-treatment with
blocking anti-CD25 mAb almost completely abrogates conjugate formation.
Numbers in dot plots indicate percentage of total counted events in each
quadrant, with the upper right quadrant indicating 2-color conjugate events.
The results are representative of three independent experiments (Reproduced
here, with permission, from Gubbels et al., 2011).
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of hu14.18-IL2 IC may be attributed, in part, to its ability to facili-
tate the formation of immune synapses via the IL2R. IL2 activation
of NK cells can increase the expression of activating receptors
on the NK cell thereby tipping the balance in favor of activation
and reducing the inhibition mediated by KIR/KIR-L interactions
(Huenecke et al., 2010). Taken together, these data imply that NK
cells might use the hu14.18-IL2 IC to mediate destruction of tumor
cells expressing GD2 via their FcRs, via IL2R-mediated events, or
by utilizing both FcRs and IL2Rs simultaneously.

CLINICAL ACTIVITY OF HU14.18-IL2 IC IN NEUROBLASTOMA
A recently conducted COG NBL phase II study (Shusterman et al.,
2010) evaluated the anti-tumor activity and immunological effects
of hu14.18-IL2 IC in children with recurrent or refractory disease.
A daily dose of 12 mg/m2 was given intravenously for three con-
secutive days every 28 days. While no responses were noted in the
15 patients with bulky disease detected by computed tomography
(CT) scan or magnetic resonance imaging (MRI), 5 of 24 patients
with less-bulky disease, evaluable only by bone marrow biopsy
or Iodine-131-Meta-Iodobenzylguanidine (131I-MIBG) scintigra-
phy, had complete responses. Two other patients with less-bulky
disease showed clear evidence of anti-tumor effect, but did not
quite meet the stringent response criteria of the study. The dose
limiting toxicities of hu14.18-IL2 IC included capillary leak, pain,
and allergic reaction (Osenga et al., 2006). The difference between
clinical activity in the patient group with bulky disease vs. the
group with less-bulky disease was significant (p = 0.03) and was
consistent with results from preclinical studies in tumor-bearing
mice, in which better anti-tumor activity was seen in animals with
smaller tumors at the time treatment was initiated (Neal et al.,
2004b).

INFLUENCE OF FcR POLYMORPHISMS ON ADCC ACTIVITY
Studies of people expressing polymorphic variants of FcRs have
demonstrated that responses in mAb-based cancer therapy vary
depending on FcR polymorphisms. In humans, the FcR found
on NK cells, CD16, displays a single nucleotide polymorphism
(SNP) resulting in a different amino acid in the IgG-binding
domain at position 158. Either phenylalanine (F) or valine (V)
is present, which is associated with a lower or a higher affin-
ity for the Fc portion respectively. Subsequently, studies using
the tumor-targeted mAb Rituximab have shown that the V/V
genotype has the highest binding affinity to IgG1 isotype and
initiates more robust ADCC activity in vitro. Furthermore, a pos-
itive correlation has been drawn between a V/V genotype and
superior clinical response to Rituximab. In studies of Ritux-
imab in Non-Hodgkin’s lymphoma (Cartron et al., 2002; Weng
and Levy, 2003), patients with the high affinity V/V genotype
showed a higher complete or partial response rate of 96% com-
pared to 62% for patients with the intermediate (F/V) or low
affinity (F/F) genotypes. Thus, carrying the high affinity CD16
genotype can be used as a positive predictive marker for better
response to Rituximab, and likely to other human mAbs of an
IgG1 isotype.

Most, but not all, studies on Rituximab, Trastuzumab, and
Cetuximab demonstrated greater clinical benefit in patients with
high affinity V/V genotypes of CD16 (Cartron et al., 2002; Weng

and Levy, 2003;Zhang et al., 2007; Musolino et al., 2008;Tay-
lor et al., 2009). In addition, there is also a benefit of having
a genotype for a high affinity CD32, the FcR found on neu-
trophils and monocytes/macrophages. CD32 also has a SNP in
humans consisting of two alleles. These alleles differ in the IgG-
binding domain at position 131, where either a lower affinity
arginine (R) or a higher affinity histidine (H) is present. For
CD32, the H/H genotype has the highest affinity binding to the
IgG1 isotype and initiates more robust ADCC in vitro. Similar
to CD16, the high affinity CD32 subtype (H/H) has also been
associated with a greater clinical response to the above men-
tioned therapeutic mAbs (Weng and Levy, 2003; Zhang et al.,
2007;Musolino et al., 2008; Taylor et al., 2009). Collectively, these
studies suggest that the in vivo efficacy of therapeutic mAbs is,
at least in part, dependent on the affinity of FcRs for IgG1, con-
sistent with a major role for in vivo ADCC as the mechanism of
action.

INHIBITORY KIRs AND NK CELL RESPONSES
Killer immunoglublin-like receptors are cell surface proteins of
NK cells that regulate NK cell activation and function. Inhibitory
KIRs are distinguished from activating KIRs by the inclusion
of an immunoreceptor tyrosine-based inhibitory motif (ITIM)
in the cytoplasmic signaling domain, leading to a potent inhi-
bition of multiple cell processes upon engagement (Purdy and
Campbell, 2009; Leung, 2011). While many ligands for activat-
ing KIRs are not well established, inhibitory KIRs recognize Class
I human leukocyte antigen (HLA-I) molecules (KIR-L), which
are expressed by all nucleated cells. The expression of inhibitory
KIRs helps prohibit NK effector function against HLA-expressing
autologous normal cells (Vilches and Parham, 2002). Downreg-
ulation of HLA is a mechanism by which virally infected and
transformed cells evade T cell recognition (Vilches and Parham,
2002). However in the absence of normal HLA-I expression, NK
cells are not inhibited through their KIRs, potentially resulting in
lysis of autologous cells (Kärre, 2002; Vilches and Parham, 2002).
NK cells are often described as natural effector cells against virally
infected and transformed autologous cells (Purdy and Camp-
bell, 2009) and much of this responsiveness is dictated by the
balance of activating signals with the engagement of inhibitory
KIRs (Kärre, 2002; Orr et al., 2010). Thus, the effector func-
tion of NK cells is tightly regulated by inhibitory KIR signal-
ing and is of great importance to NK-mediated immunotherapy
regimens.

Killer immunoglublin-like receptor in humans bind to spe-
cific HLA Class I molecules (KIR-L) coded for by the A, B, and
C loci (Velardi, 2008). Four inhibitory KIRs: KIR2DL1, KIR2DL2,
KIR2DL3, and KIR3DL1 have received a lot of attention in various
cell therapy settings (Purdy and Campbell, 2009). The impor-
tance of KIR/KIR-L interaction for the anti-cancer activity of NK
cells was demonstrated in the setting of allogeneic hematopoietic
stem cell transplant (HSCT). In HLA-haploidentical transplanta-
tion patients with acute myeloid leukemia (AML), Ruggeri et al.
evaluated the response of leukemia patients where the HLA Class
I expression of KIR ligands (KIR-L) on donor and recipient indi-
cated that donor NK cells might not all be inhibited by recipient
HLA (designated as “KIR-Ligand incompatibility” in the “GVH
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direction”). In this analysis, patients with AML were found to have
a survival advantage if they had a KIR-Ligand incompatibility.
Five years post transplant 100% of AML patients with a missing
KIR-L were disease free compared to 25% of patients whose tissues
expressed KIR-Ls for all donor NK cells (Ruggeri et al., 2002). An
update from Ruggeri et al. (2007) further demonstrated the benefit
of KIR-L incompatibility in AML patients after transplant. Of the
112 HLA-haploidentical transplants in high-risk AML patients,
those who were KIR-L incompatible for their transplant had sig-
nificantly better event-free survival compared to patients without
KIR-L incompatibility (67%; n = 51 vs.18%; n = 61 respectively;
p = 0.02). Thus, improved leukemia control can be conferred by
alloreactive donor NK cells, in AML patients whose cells are KIR-
L incompatible in the GVH direction. In contrast, in these same
reports, there was no benefit noted for a missing KIR-L in patients
with acute lymphoid leukemia (ALL).

More recently, Leung et al. (2007) proposed a separate way of
analyzing these allogeneic KIR relationships. By first characteriz-
ing the genotype for the inhibitory KIRs of the donor (KIR2DL1,
KIR2DL2, KIR2DL3, and KIR3DL1), and then genotyping the
HLA Class I KIR ligands of the recipient, one could determine
whether donor NK cells contained at least one KIR for which the
recipient lacked a corresponding HLA-ligand (“missing KIR-L,” or
“KIR/KIR-Ligand mismatch”). In those transplant recipients with
the “missing KIR-L,” there was at least one inhibitory KIR on some
of the transplanted NK cells that could not be ligated by the HLA-I
molecules on the patient’s cells. In this analysis, pediatric patients
with AML or ALL were found to have a survival advantage if they
and their allogeneic donor were KIR/KIR-L mismatched (Leung
et al., 2004).

The initial clinical analyses of KIR/KIR-L mismatch were
restricted to allogeneic HSCT (Ruggeri et al., 2002; Hsu et al.,
2005;Vivier et al., 2011) and allogeneic adoptive NK infusions
(Miller et al., 2005; Bachanova et al., 2010;Geller et al., 2011).
KIR genes and HLA-I genes are inherited independently because
they are encoded on different chromosomes (19q13.4 and 6p21.3
respectively; Purdy and Campbell, 2009). Moreover, there is a
great degree of polymorphism of these genes among individu-
als (Vilches and Parham, 2002; Purdy and Campbell, 2009). The
independent segregation and stochastic expression of KIR and
HLA-I genes can cause some individuals to have NK cells that
express KIRs for which that same individual has no correspond-
ing HLA (KIR-L). This situation has been designated by Leung
and colleagues as KIR/KIR-L mismatch. Various reports of clini-
cal trials have suggested that an autologous KIR/KIR-L mismatch
occurs in approximately 60% of patients (Moretta and Moretta,
2004; Leung et al., 2007;Venstrom et al., 2009; Delgado et al., 2010).
Leung et al. (2007) demonstrated a clinical benefit of autologous
KIR/KIR-L mismatch in pediatric patients that received ASCT for
lymphoma or solid tumors . Autologous KIR/KIR-L mismatch has
been implicated as a favorable prognostic factor in high-risk NBL
patients following autologous HSCT. In a retrospective study of
169 patients, Venstrom et al. (2009) found a significantly lower
risk of death and disease progression in patients lacking one or
more autologous KIR-L (46 and 34%,with p = 0.007 and p = 0.047
respectively) compared to patients who were fully autologous
KIR/KIR-L matched.

GENOTYPING FOR FAVORABLE KIR AND FcR ALLELES IN
PATIENTS RECEIVING HU14.18-IL2
Our lab has shown that hu14.18-IL2 IC therapy in mice elicits NK-
mediated anti-tumor responses that can be independent of T cells
(Neal et al., 2004b). We have also shown that murine NBL cells can
escape hu14.18-IL2 IC therapy by increasing MHC-I expression,
a mechanism capable of down regulating NK cell function via the
mouse equivalent of inhibitory KIRs - the inhibitory Ly49 recep-
tors (Neal et al., 2004a). Furthermore, the advantage of KIR/KIR-L
mismatch in allogeneic and autologous transplant setting has
been demonstrated (Ruggeri et al., 2002; Leung et al., 2007; Ven-
strom et al., 2009). These observations led us to hypothesize that
individuals with an inherited autologous KIR/KIR-L mismatch
would respond better to hu14.18-IL2 IC-mediated NK-based can-
cer immunotherapy than those without. We further hypothesized,
based on the known importance of FcR polymorphisms for higher
affinity alleles in mAb therapy, that we would see a correlation
between responses to hu14.18-IL2 IC immunotherapy and geno-
types for high affinity polymorphisms for both CD32 and CD16
FcRs.

To test these hypotheses our lab analyzed the relationship
between FcR genotype and KIR/KIR-L match or mismatch status
with regard to the clinical response of patients following hu14.18-
IL2 IC therapy using patient samples from the phase II COG NBL
study (Delgado et al., 2010). We performed FcR and KIR/KIR-L
genotyping on DNA isolated from clinical samples from patients
enrolled in this study (n = 38). For these analyses, an individual’s
KIR/KIR-L status is determined by genotyping for the presence or
absence of inhibitory KIR genes (2DL1, 2DL2, 2DL3, and 3DL1)
as well as their ligands, allelic groups of HLA genes: HLA-C1,
HLA-C2, and HLA-Bw4. The detection of inhibitory KIR genes is
currently done in our laboratory by a SYBR Green Real Time PCR
reaction with primers designed to amplify a specific gene locus
followed by analysis of the melting curve (Vilches and Parham,
2002; Alves et al., 2009; Hong et al., 2011). While the complexity of
the polymorphism of HLA genes is tremendous, the recognition
by KIRs distinguishes families of HLA alleles in a relatively simple,
bi-allelic fashion. In order to specifically address the broad HLA
specificities (HLA-C1, HLA-C2, and HLA-Bw4) as recognized by
KIRs, typing methods include PCR amplification with sequence-
specific primers (PCR-SSP), PCR amplification using a sequence-
specific oligonucleotide probe (PCR-SSOP), and sequence-based
typing (SBT). Additionally, SYBR Green Real Time PCR methods,
similar to that described above for KIR genotyping, can be used
to determine HLA-C1, HLA-C2, and HLA-Bw4 gene status (Hong
et al., 2011).

When we evaluated the KIR/KIR-L genotype of patients, we
found a statistically significant difference (p = 0.03) between the
outcome of patients that had an autologous KIR/KIR-L mismatch
and those that were KIR/KIR-L matched. Upon closer evaluation,
our data showed that of the seven patients that showed improve-
ment, all seven inherited an autologous KIR/KIR-L mismatch.
Although our study was small, we believe this to be a novel demon-
stration of autologous KIR/KIR-L status as a predictor of response
to immunotherapy beyond that shown previously in the setting
of adoptive allogeneic BMT or NK cell transfer or autologous
HSCT.

www.frontiersin.org May 2012 | Volume 3 | Article 91 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology_of_Anti-Cancer_Drugs/archive


Koehn et al. KIR and FcR in clinical-ADCC

We also evaluated FcR genotypes in the same cohort of patients
in our small phase II study of hu14.18-IL2 IC (Delgado et al.,
2010; Shusterman et al., 2010). In order to evaluate FcR geno-
type, analyses of SNP in the Fc receptor genes FcgR2A 131-H/R
(rs1801274) and FcgR3A 158-F/V (rs396991) are performed using
pyrosequencing and/or Taqman probes available from Applied
Biosystems (Delgado et al., 2010). We found a trend toward
better response in individuals that had high affinity CD32 alle-
les (p = 0.06). These analyses suggest that high affinity CD32
FcRs on neutrophils and monocytes may enhance their antibody-
dependent anti-tumor response. In contrast there was no trend
noted with high affinity alleles for CD16 (p = 1.0). This may have
been due to poor statistical power, as only 2 of the 36 patients typed
for CD16 showed the high affinity CD16 V/V genotype. More-
over, when we compared homozygotes for high affinity receptors
together with heterozygotes [V/V +V/F (n = 19)] to those patients
that were homozygous for low affinity genotypes [F/F (n = 17)]
we were unable to draw a significant correlation with response
(p = 0.41; unpublished analysis). Given these data and due to the
small sample size of our phase II study of hu14.18-IL2 IC, the study
could not determine whether there was any interaction between
KIR/KIR-L match or mismatch status and FcR genotype for CD16
or CD32.

Our preclinical data suggesting that IL2 and IL2Rs play a role
in the immune synapses that form between NK cells and tumor
cells coated with hu14.18-IL2 (Buhtoiarov et al., 2011; Gubbels
et al., 2011) may explain the apparent lack of importance of high
affinity CD16 in response to hu14.18-IL2. In vitro, hu14.18-IL2 IC
can mediate conjugation of NKL cells to tumor cells (Figure 1).
Upon IC treatment, the Fab portion of the IC binds to the anti-
genic target (GD2 in the case of 14.18-IL2 IC) on tumor cells and
the IL2 component of the IC interacts with IL2Rs on effector cells
bridging the two cells. This bridging results in the formation of
an AIS defined by the polarization of effector molecules including
adhesion molecules and IL2Rs on the NKL cells to the immune
synapse and the subsequent hu14.18-IL2 IC-facilitated NK cell-
mediated tumor cell killing (Gubbels et al., 2011). It is possible
that the beneficial effect of high affinity CD16 alleles may be less
important with IC than with a conventional mAb. Namely the
conventional mAb binds to tumor and then interacts with effec-
tors only through cell-bound IgG interacting with FcR on effector
cells; in contrast the IC causes changes to the immune synapse via
IL2/IL2R interactions in addition to Fc/FcR interactions, and also
activates the NK cell by localized IL2. As such, as long as IL2R are
present on the effector cells, even low affinity FcR may be sufficient
for potent immune synapse formation.

HYPOTHESES
Based on the data evaluating the roles of KIR/KIR-L and FcR
genotypes from our small phase II study of hu14.18-IL2 IC in
NBL patients (Delgado et al., 2010; Shusterman et al., 2010), we
hypothesize that the anti-tumor effect of mAb treatment, designed
to mediate ADCC in vivo, will be more productive in individuals
with a favorable KIR/KIR-L mismatch genotype. We also antic-
ipate that data will continue to show mAb treatment is more
beneficial for patients with higher affinity genotypes for CD32
and CD16. Furthermore, we hypothesize that the best responses

might be seen in individuals that have both favorable KIR/KIR-
L and high affinity FcR genotypes. Figure 2 is a schematic that
depicts our hypotheses. We believe that: (a) having both high
affinity FcRs and being autologous KIR/KIR-L mismatched would
result in the best response/greatest tumor cell lysis; (b) having
low affinity FcRs and being KIR/KIR-L matched would result in
the poorest response/least amount of lysis; and (c) having either
high affinity FcRs and being KIR/KIR-L matched or having low
affinity FcRs and being KIR/KIR-L mismatched would result in an
intermediate response/level of lysis. It is important to note these
hypotheses are not limited to anti-GD2 mAb therapy in the con-
text of NBL. The similar effects of FcγR polymorphisms on the
anti-tumor effects of other cancer-reactive mAbs in clinical use
(i.e., Rituxan, Trastuzumab, Cetuximab) suggest that patients with
a favorable genotype may be selected for any mAb-based tumor
therapy in which ADCC is a possible mechanism. We hypothesize
that KIR/KIR-L relationships may also prove to be predictive of
response for the anti-tumor effects of these other mAbs as well.

There are currently few predictive biomarkers to identify cancer
patients most likely to respond to mAb therapy. In breast cancer,
Trastuzumab is indicated for adjuvant and palliative treatment
and its use is restricted to the approximately 25% of patients
whose tumors express high levels of the HER2 receptor (Adams
and Weiner, 2005). Despite limiting Trastuzumab’s use for HER2
positive tumors, the response rate for Trastuzumab monother-
apy ranges from just 11 to 26% (Dougan and Dranoff, 2009).
Further improvements in selecting patients likely to respond to
Trastuzumab are warranted. In the setting of chemorefractory
colorectal cancer (CRC), K-ras mutations serve as a biomarker
predicting response to Cetuximab. CRC patients with tumors that
have K-ras mutations realized no significant survival benefit from
Cetuximab whereas patients with wild-type K-ras tumors achieved
longer progression free- and overall survival than best supportive
care alone (Karapetis et al., 2008). However, for CRC patients with
wild-type K-ras tumors, the response rate is still less than 14%
(Karapetis et al., 2008) highlighting the need for additional fac-
tors predicting mAb anti-tumor efficacy in CRC. In non-small-cell
lung cancer, K-ras mutational status does not predict benefit from
Cetuximab therapy (Khambata-Ford et al., 2010; O’Byrne et al.,
2011) and the potential utility of using FcR and KIR/KIR-L geno-
type status to predict Cetuximab efficacy could impact therapeutic
decision-making for thousands of NSCLC patients in the US each
year.

In order to address whether or not FcR and KIR/KIR-L geno-
typing can be used as predictive markers for favorable therapeutic
outcome, genotyping needs to be done for large clinical-ADCC-
based mAb immunotherapy trials that have adequate numbers of
patients enrolled and sufficient numbers of patients that benefited
from the therapy. Such large analyses should have the statistical
power necessary to test whether favorable FcR and KIR/KIR-L
genotypes interact to augment the anti-tumor effect mediated by
mAbs via ADCC. Furthermore, additional analyses of larger clin-
ical trials using ICs in which the mAb is directly linked to IL2
are needed in order to determine whether the added interactions
mediated by IL2Rs on NK cells can provide substantial benefit,
thereby circumventing the disadvantage for low affinity CD16 on
the NK cells.
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FIGURE 2 | Schematic depicting hypothesized impact of KIR/KIR-L and

FcR genotype on anti-tumor activity following mAb treatment. KIR
molecules are shown as either being matched or mismatched for the
appropriate Class I Major Histocompatibility Complex (MHC) antigen on the
tumor cell (HLA Class I in humans). The FcR genotypes shown correspond to
those for CD16 on NK cells. For any potential synapse between an NK cell and
a tumor cell, multiple interactions between many Fc components on
mAb-coated tumor cells and many CD16 molecules on the NK cell (similar to
the individual interaction shown) would need to be involved. Similarly, multiple
interactions between multiple HLA Class I molecules on the tumor cell and
multiple KIR receoptors on the NK cell (similar to the individual interaction
shown) would also be involved. Analogous relationships are predicted for the

interaction of Fc and the distinct CD32 polymorphisms expressed on
neutrophils, monocytes and macrophages. The overall response will reflect
the balancing of the signal activating tumor lysis (depicted as a green arrow)
with the inhibitory effect of KIR ligation (depicted as a red arrow). The poorest
response/least tumor cell lysis (designated +) would result from having low
affinity FcRs and being KIR/KIR-L matched (upper left quadrant). The best
response/greatest tumor cell lysis (designated +++) would result from
having high affinity FcRs and being autologous KIR/KIR-L mismatched (lower
right quadrant). Having either low affinity FcRs and being KIR/KIR-L
mismatched (upper right quadrant) or having high affinity FcRs and being
KIR/KIR-L matched (lower left quadrant) would result in an intermediate
response/level of tumor cell lysis (designated ++).

CONCLUSION
Recent advances in immunotherapeutic treatment for high-risk
NBL have shown clinical benefit. Additional research is needed
to develop therapeutic options to effectively eradicate the dis-
ease in those patients who are not currently being cured. Tumor
cell recognition and subsequent signaling utilized by NK cells
are multi-modal and complex. However, as our understanding
of NK cell biology advances, so does the clinical benefit real-
ized in the applied field of cancer immunotherapy. One such
example is our relatively nascent understanding of the clini-
cal implications of NK cell receptor biology, in particular the
KIR/KIR-L relationships. As the evidence for the importance of
KIR/KIR-L and FcR genotypes continues to mount, there exists
an opportunity to apply our understanding of these relationships

in the context of hu14.18-IL2 IC-mediated NK-based cancer
immunotherapy for improved NBL treatment. These principles,
and the potential interactions between KIR/KIR-L relationships
and FcR genotypes may also apply (and are testable) in the clin-
ical development of other tumor-reactive mAbs and ICs that
mediate clinically meaningful ADCC against other more common
cancers.
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