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The connectivity structure of neuronal networks in cortex is highly dynamic. This ongoing

cortical rewiring is assumed to serve important functions for learning and memory.

We analyze in this article a model for the self-organization of synaptic inputs onto

dendritic branches of pyramidal cells. The model combines a generic stochastic rewiring

principle with a simple synaptic plasticity rule that depends on local dendritic activity.

In computer simulations, we find that this synaptic rewiring model leads to synaptic

clustering, that is, temporally correlated inputs become locally clustered on dendritic

branches. This empirical finding is backed up by a theoretical analysis which shows that

rewiring in our model favors network configurations with synaptic clustering. We propose

that synaptic clustering plays an important role in the organization of computation

and memory in cortical circuits: we find that synaptic clustering through the proposed

rewiring mechanism can serve as a mechanism to protect memories from subsequent

modifications on a medium time scale. Rewiring of synaptic connections onto specific

dendritic branches may thus counteract the general problem of catastrophic forgetting

in neural networks.

Keywords: dendrites, synaptic plasticity, structural plasticity, rewiring, synaptic clustering, catastrophic

forgetting, neuroscience, spiking neural networks

1. INTRODUCTION

Long-term imaging studies of the living brain have revealed that the cortical connectivity structure
is dynamic, with dendritic spines being added and deleted on the time scale of hours to days
(Holtmaat et al., 2005; Stettler et al., 2006; Kasai et al., 2010; Loewenstein et al., 2011; Rumpel and
Triesch, 2016). It has been proposed that this ongoing cortical rewiring serves important functions
for learning and memory (Chklovskii et al., 2004; DeBello, 2008). According to this view, synaptic
rewiring defines the connectivity structure of cortical circuits and interacts with synaptic plasticity
of established synaptic connections.

Many theoretical studies of cortical rewiring have explored the implications of rewiring on
the network level using point neuron models (see section 3). However, rewiring can also shape
the connectivity structure on the sub-cellular level, defining the dendritic targets of synaptic
connections onto pyramidal cells (PCs). As dendrites of cortical PCs exhibit various types of non-
linear regenerative events, so-called dendritic spikes (Larkum et al., 2009), the specific placement of
synaptic connections at the dendritic tree of a PC can strongly impact its computational function
(Mel, 1994; Kastellakis et al., 2015; Bono et al., 2017). In particular, with regard to the organization
of synapses on dendritic branches, a popular hypothesis with strong experimental support is the
synaptic clustering hypothesis, which states that functionally related synapses tend to cluster on
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dendritic branches (Govindarajan et al., 2006; Kastellakis et al.,
2015). A theoretical justification for rewiring of synapses on
non-linear dendrites was provided by Poirazi and Mel (2001).
There, it was shown that a supervised structural plasticity
rule can optimize memory performance of a simple non-
spiking model of a pyramidal cell with non-linear dendrites.
Later, Legenstein and Maass (2011) showed that branch-specific
synaptic plasticity—without synaptic rewiring—can self-organize
non-linear computations in neurons with non-linear branches.

In this article, we study synaptic rewiring based on simple
synaptic plasticity rules in a spiking neuron model for PCs with
dendritic non-linearities. In computer simulations of the model,
we find that rewiring leads to a clustering of temporally correlated
inputs onto dendritic branches, thus supporting the synaptic
clustering hypothesis. Using this model, we argue that synaptic
clustering through rewiring could play an important functional
role in learning processes. It was shown by Cichon and Gan
(2015) that different motor learning tasks induce dendritic spikes
in different dendritic branches of PCs in mouse motor cortex.
A possible explanation for this finding is that synaptic inputs
are clustered onto dendritic branches in a task-specific manner
such that a dendritic branch receives predominantly synaptic
inputs that are activated at a specific task. This interpretation
is consistent with the synaptic clustering hypothesis. When this
segregation was pharmacologically disrupted, the animals could
still learn the current task, but performance on an earlier learned
task degraded, indicating a role of clustering for retaining older
memories. One may thus hypothesize that synaptic clustering
provides a mechanism to shelter previous memories from being
overwritten by novel plasticity events. Testing this hypothesis, we
found in another series of computer simulations that synaptic
clustering through our simple rewiring dynamics is able to shelter
previous memories from subsequent modifications.

To model synaptic rewiring, we take advantage of the synaptic
sampling theory (Kappel et al., 2015), which provides a general
framework for the interaction of synaptic plasticity and rewiring.
Synaptic plasticity in this framework has a strong stochastic
component (Yasumatsu et al., 2008; Dvorkin and Ziv, 2016).
This stochasticity naturally gives rise to a stochastic addition
and deletion of synaptic connections, which can be shown to
implement a stochastic search over connectivity structures. In
our application of this framework, we combine rewiring with
simple plasticity rules where plasticity events are triggered by
local dendritic spikes (Golding et al., 2002; Lisman and Spruston,
2005; Gordon et al., 2006). While the branch-specific plasticity
mechanism inevitably leads to the independent self-organization
of each dendritic branch, we show that the addition of a
spike-timing-dependent plasticity mechanism, as proposed by
Legenstein and Maass (2011), can orchestrate this process across
branches, leading to an increased capacity to store input patterns.

To probe conditions under which clustering emerges in
our model, we tested the model in various situations. While
synaptic clustering can occur under various input statistics,
we observed no clustering when individual synaptic inputs
were activated in an unreliable stochastic manner. Since these
statistics are presumably more characteristic for early sensory
areas, this may explain why some studies reported a lack of

synaptic clustering (Jia et al., 2010). Finally, we theoretically
analyzed the consequences of rewiring in our model. We found
that the proposed dynamics approximates a stochastic search
over connectivity structures that favors functionally clustered
synaptic configurations.

2. RESULTS

2.1. Synaptic Rewiring on Dendritic
Branches
Dendritic structures of pyramidal cells (PCs) can be divided into
integrative compartments (Losonczy and Magee, 2006; Major
et al., 2008; Larkum et al., 2009; Branco et al., 2010). The
compartmental model for PCs adopted in this article is illustrated
in Figures 1A,B. The axon of a presynaptic neuron i can contact
various dendritic branches k of the postsynaptic PC, establishing
a synaptic connection ki with synaptic efficacy wki. Presynaptic
spikes at such a synapse ki give rise to alpha-shaped currents
of amplitude wki at the branch. Each dendritic branch acts as
a leaky integrator that temporally and spatially sums synaptic
input currents from its incoming synapses. Note that we do
not consider any specific spatial structure of the branches. The
structures shown in the figures are provided for illustration
purposes only.

Besides this passive response to synaptic inputs, dendrites of
PCs show a variety of non-linear responses. In particular, we
model local N-methyl-D-aspartate (NMDA) spikes (Antic et al.,
2010) that include a brief sodium spikelet followed by a plateau
potential that lasts up to a few hundreds of milliseconds, see
Figure 1B [amplitude values of the plateau potentials are taken
from Antic et al. (2010), see Figure 1 there]. NMDA spikes are
elicited stochastically at dendritic branches based on the local
membrane potential (branch potential). The duration of the spike
grows linearly with stimulus intensity (Figure 1C), whereas the
amplitude exhibits an all-or-none highly non-linear behavior
(Antic et al., 2010). Currents from dendritic compartments
to the soma are driven by the difference between the branch
potential and the membrane potential of the soma. The somatic
compartment is again a leaky integrator that sums currents from
all dendrites (with a certain degree of amplitude attenuation, see
Equation 17). Somatic action potentials are elicited stochastically
with an instantaneous firing rate that depends exponentially on
the somatic membrane potential. See Jolivet et al. (2006) for a fit
of this model of action potential generation to layer V pyramidal
neurons in rat somatosensory cortex. Amore detailed description
of the neuron model is given in section 4.

The connectivity structure in the cortex is not static, rather
synaptic connections are rewired on a time scale of hours
to days (Holtmaat et al., 2005; Stettler et al., 2006; Minerbi
et al., 2009; Yang et al., 2009; Ziv and Ahissar, 2009; Kasai
et al., 2010; Loewenstein et al., 2011; Rumpel and Triesch, 2016;
Chambers and Rumpel, 2017). To investigate the consequences of
rewiring processes for information processing in PCs, we adopted
the synaptic sampling framework introduced by Kappel et al.
(2015, 2018). Each compartment has a set of potential synaptic
connections that could be realized by some parameter setting.
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FIGURE 1 | Schema of neuron model and plasticity/rewiring. (A) Input neurons (colored dots) are divided into different input assemblies (2 shown; color indicates

assembly assignment). Bottom: spike raster of input neurons. Dots represent spike times. (B) Schematic drawing of neuron model (spatial structure of branches for

illustrative purposes only) with dendritic membrane potentials Vb
i (top right) and somatic membrane potential Vsoma (bottom right). Branch b5 emits two dendritic

spikes with a duration of about 50ms. Branch b1 spikes once with a longer plateau phase. No synaptic cluster was established on branch b4. Therefore, this branch

did not elicit dendritic spikes. Somatic spikes are indicated for illustrative purpose by vertical lines. (C) The duration of a plateau potential grows linearly as a function of

the input intensity. The synaptic efficacy w of a single synaptic input was varied between 0 and 120 nA evenly spaced; a single strong synapse was used to mimic

strong synchronous input. Shown is the mean and standard deviation of the resulting plateau durations over 100 independent trials. Arrow (at 50 nA) roughly marks

the onset of this linear growth. Synaptic input exceeding this threshold has a fair chance of triggering a dendritic spike. (D) Mapping between the synaptic parameter

θki and the synaptic efficacy wki of synapse i onto branch k. Negative values of θki , corresponding to non-established synapses, are mapped to zero in the wki-space.

(E) Evolution of three synaptic parameters as a function of time t (top) and the corresponding wiring diagram at three points in time (bottom). At time t1 the values of

parameters θ1i and θ2i are positive (indicating a functional synapse) while the value of parameter θ3i is negative (indicating a non-established synapse). Parameter θ2i

crosses zero shortly before t2 (becoming non-established). (F) The plasticity process. Branch potential (black; sub-threshold potentials and a dendritic spike), the

somatic spike traces of input neurons i and j (top), and the evolution of synaptic parameters θki and θkj (bottom). Input neuron i is active shortly before and during the

dendritic spike. The synaptic parameter θki of this connection is therefore increasing. θkj decreases, since neuron j is not active during the plateau potential.

Frontiers in Computational Neuroscience | www.frontiersin.org 3 August 2020 | Volume 14 | Article 57

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Limbacher and Legenstein Stable Synaptic Clusters Through Rewiring

However, at each point in time, only a subset of these connections
is realized by functional synapses. More precisely, we maintain
one parameter θki for each potential synapse ki from input neuron
i to branch k of the neuron. This parameter encodes (a) through
its sign whether the synapse is functional and (b) the synaptic
efficacy wki of the synapse if it is functional. More precisely, the
synaptic weight wki is cθθki for a functional synapse (θki > 0) and
0 otherwise (θki ≤ 0). Hence, the mapping from the parameter
θki to the synaptic weight is given by wki = cθ max{0, θki} where
cθ = 1 nA is the slope of this mapping for θki > 0 (Figure 1D).

Recent experimental results show that synaptic modifications
contain a strong autonomous component (Dvorkin and Ziv,
2016). In accordance with previous modeling approaches
(Loewenstein et al., 2011), this component is modeled in the
synaptic sampling framework as a stochastic process. In general,
the stochastic synaptic dynamics is given in this model as a
stochastic differential equation (SDE) of the form

dθki(t) = η

(

fSki (t)+ fLki (t)
)

dt +
√

2ηTdWki, (1)

where η > 0 is a small learning rate (for parameter values,
see Table 2). This SDE can be read as follows: the change of
the synaptic parameter θki is the sum of three terms. The last
term models the synapse-autonomous component that does not
depend on any synaptic, presynaptic, or postsynaptic variables.
Instead, it is given by the increments of a standard Wiener
process Wki, thus implementing random walk behavior. The
temperature T is a constant that scales the strength of this
stochastic component. The term in the brackets defines the
deterministic part of the dynamics. For conceptual clarity, it is

divided here into two components. The first term fS
ki

describes
changes that are not directly relevant for the functional goal
of the plasticity process but rather used to enforce structural
constraints on the connectivity (for example, bound the number
of connections that can be established onto one branch). The
functional goal of the plasticity process is captured by the second

term fL
ki
, see below for an example. The deterministic terms

will be chosen such that they vanish for θki(t) ≤ 0. Hence, for
non-established synapses, only the stochastic term remains. The
random walk may at some point cross zero again, leading to the
creation of a synaptic connection which may be strengthened
or weakened depending on its functional relevance (Figure 1E).
The model thus integrates synaptic dynamics with rewiring in
one unifying framework. Note that the creation of new synapses
solely depends on the Wiener process. New synapses can also
directly be sampled from the set of non-established potential
synapses, which however loses some of the nice mathematical
properties of the model, see Bellec et al. (2018) for details.

Since in cortical PCs, the number of connections to a branch is
bounded, we use for the structural component fS

ki
of the plasticity

dynamics (1) a term that enforces a soft upper bound on the
number of synaptic connections onto each branch. This term
depresses weak synapses of a branch if the number of connections
to it is close to or exceeds a predefined constant Nsyn (set to 20 in
our simulations), and it vanishes if the number of connections is
well below Nsyn.

According to the Hebbian theory of synaptic plasticity,
synaptic connections are created and/or strengthened when the
presynaptic neuron contributes to activity of the postsynaptic
neuron (Hebb, 1949).More recent experiments, however, showed
that postsynaptic somatic spiking is neither necessary nor
sufficient to induce long-term potentiation (LTP) in pyramidal
cells in various brain structures, both, at distal basal dendrites
and at the apical tuft (Golding et al., 2002; Lisman and Spruston,
2005; Gordon et al., 2006; Gambino et al., 2014; Cichon and
Gan, 2015; Brandalise et al., 2016). These studies indicate
that local dendritic NMDA-dependent regenerative processes
are necessary as the postsynaptic signal to trigger long-term
potentiation (LTP). An important implication of this finding is
that the learning signal is at least partially local to dendritic
branches, leading to a synaptic organization that depends on
local dendritic integration. To model such LTP within the
stochastic rewiring framework, we include a term xi(t)Ŵk(t) in

the functional term fL
ki

of the plasticity dynamics (1). Here,

xi(t) is a trace of the spike train from presynaptic neuron i,
and Ŵk(t) = 1 indicates the presence of an NMDA plateau
potential at time t (Ŵk(t) = 0 otherwise). Hence, coincidence
of presynaptic activity with a dendritic plateau potential will
induce LTP (see Figure 1F, blue trace). While the dependence
for LTP on dendritic spikes is well-established in the literature,
less is known about long-term depression (LTD) in this regard.
Interestingly, while Golding et al. (2002) observed LTP when
pairing high-frequency stimulation of synaptic inputs with
dendritic spikes in a theta-burst pairing protocol, Holthoff
et al. (2004) reported long-term depression (LTD) with a single
presynaptic stimulation leading to a dendritic spike, indicating
that low-frequency pairing may lead to LTD, consistent with the
classical findings that weak synaptic stimulation leads to LTD
(Dudek and Bear, 1995) under the assumption that dendritic
spikes are elicited in the postsynaptic neuron occasionally. We
therefore included a term in our plasticity model that weakens
a synapse if its activity is below a certain level during a plateau

potential. Together, the functional component fL
ki

of the plasticity

dynamics (1) was given by

fLki (t)

=











cLŴk(t)(xi(t) if θki(t) > 0 (functional connection)

−γ (1− xi(t)),

0, if θki(t) ≤ 0 (non-established connection),

(2)

with γ > 0 being a constant that determines the threshold
activity that switches from LTD to LTP. Note that changes occur
only during the presence of a plateau potential [Ŵk(t) = 1].
The rule can be described qualitatively as follows: if there is
a dendritic spike at branch k, potentiate active synapses and
depress inactive synapses to this branch k. Weak synapses will
ultimately retract, and non-established potential synapses will
be established at random times according to the stochastic
process. We show in the section “Analysis of stochastic rewiring
dynamics” that this dynamic corresponds to a distribution pL
that defines functionally preferred parameter settings that lead to
synaptic clustering.

2.2. Synaptic Clustering Through Rewiring
We first investigated the patterns of synaptic connections that
emerge when synaptic rewiring is driven by the simple dendritic
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spike-dependent plasticity mechanism (2). We simulated a
neuron with 12 independent dendritic compartments that
received input from 320 input neurons. Input neurons were
divided into 8 disjoint assemblies of 40 neurons each, producing
Poisson spike trains at a background rate of 1Hz. Every 500ms,
one assembly was chosen randomly and activated for 300ms.
These neurons elevated their firing rate to 35Hz, leading to a
specific input firing pattern (Poisson spike trains were randomly
generated at every pattern presentation), see Figure 2A (top).

Input neurons were initially connected to dendritic branches
randomly such that 20 synapses were established on each branch
(Figure 2A middle). Synaptic parameters of these connections
were independently drawn from a uniform distribution over the
interval [4, 8). A soft upper bound of 20 synapses per branch was

enforced through the structural component fS
ki

of the synaptic
sampling update (1). At this initial configuration, brief dendritic
plateau potentials appeared occasionally and the neuronal firing
rate was low (≈ 6.19Hz). Dendritic plateau potentials were
elicited preferentially during presynaptic assembly activations,
but they were not specific to any of the input assemblies.
We observed a gradual assembly-specific clustering of synapses
onto individual branches during the simulation. After 17min
of assembly activations, each branch usually hosted a synaptic
cluster from one of the input assemblies, receiving approximately
20 synapses from that assembly with the weight close to the
maximum, while other assemblies were either not connected or
had weights close to zero, see Figure 2B. Many synapses that
were functional after rewiring were not connected to the branches
initially but were established during the rewiring process
(Figure 2C). In order to quantify the behavior of the model, we
performed 25 simulations with different randomly chosen initial
conditions and different random assembly activations. We say
that assembly synapses cluster on a branch if the branch receives
at least 10 synapses from one assembly with a total weight of
at least 50 nA. The value of 50 nA was chosen since synaptic
input exceeding this threshold has a fair chance of triggering a
dendritic spike (see arrow in Figure 1C). In our 25 independent
simulations, from the 8 input assemblies, between 5 and 8 were
represented on dendritic branches with a mean of 6.36 and a
standard deviation (SD) of 0.84. In all simulations, most of the
dendritic branches had a synaptic cluster from one assembly, and
some assemblies were clustered on several branches.

Since inputs to each branch were preferentially originating
from a specific input assembly after rewiring, branch inputs
were temporally correlated. This collective activity was sufficient
to trigger long-lasting dendritic plateau potentials and somatic
spikes (Figure 2B; voltage traces at active assemblies A1 and A2).
In total, three branches received synaptic clusters from assembly
A2 and two branches from assembly A1. This was reflected in the
firing rate of the neuron during the activation of these assemblies.
The firing rate of the neuron was highest (≈ 63.5Hz) during
the pattern presentation of assembly A2 and lowest (≈ 54.2Hz)
during the activation of assembly A1. To test the response of
the neuron to assemblies that were not clustered, we activated
assembly A5 that was active during the rewiring process but did
not evolve a synaptic cluster on any branch. Branches did not

elicit spikes during the pattern presentation of this assembly and
the neuronal firing rate was low (≈ 0.97Hz; Figure 2B; voltage
traces at active assembly A5).

We hypothesized that dendritic plateau potentials are crucial
for assembly-specific clustering of synapses in our model. To
verify this we conducted simulations of an altered model
with linear dendritic integration (i.e., the same model but
without dendritic spikes). We did not observe clustering of
functionally related inputs onto dendrites in this altered model
on a large range of relevant parameters (see section 1.1 in the
Supplementary Material for details), indicating that dendritic
plateau potentials are indeed necessary for assembly-specific
clustering of synapses onto individual dendrites.

In summary, these results show that synaptic rewiring
dynamics can give rise to (a) clustering of functionally related
inputs onto dendritic compartments and (b) segregation of
different assemblies onto different branches. This leads to
segregated assembly-specific activation of dendritic branches.
Note that this plasticity-driven self-organization of network
connectivity is independent of postsynaptic somatic spikes.

2.3. STDP Increases the Capacity of
Neurons to Store Assembly Patterns
With the plasticity dynamics considered above, since plasticity
depends solely on synaptic inputs and local dendritic potentials,
all branches are adapted independently without taking the
activity of other branches into account. This implies that synaptic
patterns at different branches can become correlated in the sense
that projections from one assembly cluster on two or more
branches of the neuron. Such adaptation may in general waste
dendritic resources such that all branches become occupied by a
subset of input assemblies while other assemblies are neglected.
This effect would become even more pronounced if assemblies
were not activated in an intermixed manner but sequentially. In
this case, early assemblies would occupy all branches, leaving no
representational space for later ones.

Previous work has shown that dendritic synaptic patterns can
be decorrelated by a simple additional spike-timing-dependent
plasticity (STDP) mechanism where each somatic spike induces
a small amount of depression in all synapses with a recent
presynaptic spike (Legenstein and Maass, 2011). This rule
is consistent with the experimental finding that in distal
dendrites, a pre-before-post spike pair leads to depression
(Kampa et al., 2007). The STDP update indirectly introduces
competition between dendritic branches such that branches
compete for becoming activated for each input pattern.
Briefly, consider an input pattern for which one branch
(or a few branches) has evolved a strong synaptic cluster.
Whenever this input is presented, the branch becomes active,
it produces dendritic plateau potentials which in turn will
lead to somatic spikes. For branches that did not yet evolve
a strong cluster for that input pattern, these somatic spikes
then depress via STDP active synapses and thus prevent the
emergence of a cluster for this pattern. On the other hand,
the branch with the strong cluster and plateau potentials is
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FIGURE 2 | Synaptic rewiring leads to synaptic clustering at dendritic branches. (A) Spike rasters of input neurons (top), initial wiring diagram of three selected

branches (middle left), dendritic membrane potentials Vb
i of these branches (middle right), and the somatic membrane potential Vsoma (bottom) for the successive

activation of assemblies A1, A2, and A5. Color of graph edges indicate to which of the assemblies (A1, A2, and A3; pattern presentation of assembly A3 is not shown)

a connection was established. Connections in gray are connections to one of the other assemblies. At this initial configuration, the input neurons were connected to

branches randomly. Brief dendritic spikes appeared occasionally (middle right) and the neuronal firing rate was low (bottom). (B) After 17min of rewiring dynamics,

inputs to each branch were originating predominantly from a specific input assembly Ai (middle left). Hence, temporally correlated branch input triggered long lasting

dendritic plateau potentials (middle right). In this simulation, none of the branches received synaptic clusters from assembly A5. As a consequence, the neuron

elevated its firing rate during pattern presentations of input assemblies A1 and A2, but rarely spiked during the pattern presentation of assembly A5 (bottom). (C)

Evolution of the synaptic weights wki of branch b2 (top), branch b6 (middle), and branch b12 (bottom). Shown is the mean synaptic weight from three selected

assembly (A1, A2, and A3 ) which clustered on the branch (saturated color), weights of individual synapses from that assembly (desaturated color), and weights of

synapses from other assemblies (gray). Colors correspond to colors in (A,B). Synaptic connections are reorganized during the rewiring process, i.e., synapses with

correlated activity are established on the branch while synapses of other assemblies retract over time. Occasional small gray bumps close to 0 in the second half of

the simulation originate from synapses from other assemblies that are reconnected, but they quickly retract due to their irrelevance for activating the branch.

protected in the sense that potentiation from the dendritic-
spike-dependent plasticity rule overcompensates the depression.
This branch (or a few branches with a strong cluster) has
thus won the competition for becoming activated by this
input pattern.

To test the effect of this mechanism on synaptic rewiring,
we performed 25 simulations as described above but with STDP
added to the parameter dynamics (see section 4 for a definition
of the STDP update). We found that the average number of
represented assemblies increased from 6.36± 0.84 to 7.40± 0.57
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(mean ± SD). This is a significant increase of the number of
assemblies that are stored on the dendrites [t(24) = 5.01, p <

0.0001, unpaired t-test]. A schematic drawing of the simulated
neuron and the wiring diagram after 17min of rewiring dynamics
of four selected branches of one of the conducted trials is shown
in Figure 3A. Each assembly in this simulation evolved a synaptic
cluster onto exactly one dendritic branch. Four branches did
not receive a synaptic cluster from any of the assemblies (inset
Figure 3A). Since these branches did not specialize to a specific
input assembly, they could, in principle, adapt later to respond
to novel input assemblies. To test whether these results are
sensitive to the specific values of parameters in our rewiring
model, we performed a sensitivity analysis. This analysis showed
that the number of synaptic clusters is quite robust to parameter
variations (see section 1.2 in the Supplementary Material).
We also tested effects of the pattern duration and the delay
between patterns. We found that our rewiring mechanism is,
up to some point, quite robust to variations in the pattern
duration and the delay between patterns (see section 1.3 in the
Supplementary Material).

We next asked whether the neuron was able to differentiate
after the rewiring process between stored and novel input
patterns. We presented three firing patterns of memorized

assemblies A1, A2, A3 and three firing patterns of novel random

assemblies R1, R2, R3 to the neuron (Figure 3B). Each novel
assembly was created by randomly choosing 40 distinct neurons

from all 320 input neurons. Hence, assemblies R1 to R3 were
not necessarily disjoint and they shared a significant amount
of neurons with assemblies A1 to A8. The neuron responded
with a high firing rate during the activation of memorized
assemblies but spiked only occasionally for patterns of novel
random assemblies (Figure 3D). Branches that did not receive a
synaptic cluster from any of the assemblies still maintained rather
strong individual synapses originating from multiple assemblies,
but since their collective activity was not correlated; it was not
sufficient to trigger long lasting dendritic plateau potentials in
these branches (Figure 3C, bottom trace Vb

2 ).
In summary, STDP increases the capacity of the neuron in

terms of the number of assemblies that are stored on dendrites.
If there are more branches than assemblies in the input, some
branches remain assembly-unspecific and are therefore available
to store novel assemblies. Unless otherwise stated, all of the
following simulations presented below are conducted with the
STDP update.

2.4. Rewiring Protects Stored Information
One effect of the synaptic clustering observed in our simulations
was that activation of different input assemblies led to dendritic
spikes in different dendritic branches, see Figures 2A,B, 3B.
Similarly, Cichon and Gan (2015) observed task-specific
segregation of dendritic activity in tuft branches of layer V
pyramidal neurons in mouse motor cortex. More specifically,

FIGURE 3 | Synaptic rewiring with spike-timing-dependent depression and neuron response to stored and novel input patterns. (A) Schematic neuron drawing wiring

diagram of four selected branches after 17min of rewiring dynamics (as in Figure 2B). Branches b3, b4, and b5 received synaptic inputs predominantly from

assemblies A3, A2, and A1, respectively. Branch b2 remained without a synaptic cluster from any assembly. Inset: Schematic drawing of all branches of the neuron.

Branch color indicates assembly origin of a synaptic cluster. All assemblies were represented on the branches and each assembly established only a single cluster.

Four branches remained without a synaptic cluster from any assembly. (B–D) Pattern-specific neuron responses after rewiring. (B) Input neurons spike raster.

Assemblies A1, . . . ,A3 were also activated during the previous rewiring period. The last three firing patterns were generated by novel random assemblies Ri . (C)

Dendritic membrane potentials Vb
i of four branches during the presentation of three test patterns of assemblies Ai and Ri . Dendritic plateau potentials were elicited

preferentially during the activation of memorized assemblies Ai and appeared only occasionally at novel random assemblies Ri . (D) Somatic membrane potential Vsoma

during the presentation of input patterns of memorized assemblies (A1, A2, and A3) and for patterns of novel random assemblies (R1, R2, and R3). The neuron

responded with a high firing rate (≈ 27.6Hz) to patterns of memorized assemblies and with a low firing rate (≈ 11.3Hz) during the activation of novel random

assemblies.
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they observed that different motor learning tasks induce
dendritic spikes on different branches. The processing of
different behaviors is therefore separated onto different
dendritic branches. Importantly, when this segregation was
pharmacologically disrupted, the animals could still learn
the current task, but performance on an earlier learned task
degraded, indicating a role of this clustering for retaining older
memories. The authors thus argued that this segregation may
provide a mechanism to shelter previous memories from being
overwritten by novel plasticity events.

To test whether simple rewiring rules can indeed support
memory protection, we performed simulations as described
above. Input assembly activations and background noise were
generated as before, however, assemblies were activated in a
sequential manner. In other words, we first activated exclusively
assembly A1 250 times, then assembly A2, then assembly A3, etc.
(with a delay between each pattern presentation as in the previous
simulations; Figure 4A). Figure 4B shows schematic drawings
of the 12 simulated branches at various times of the rewiring
process. The color of a branch in Figure 4B indicates which of
the 8 sequentially presented assemblies had evolved a synaptic
cluster at the branch at the specified time. Clearly, branches were
recruited sequentially to store input patterns. Branch b2 received
a synaptic cluster from the first assembly, whereas none of the
other branches was evolving large weights for this assembly.
Beginning at 125 s, assembly A2 was activated while assembly A1

was silent. Shortly afterwards, branch b4 developed large synaptic
weights for this input pattern while the synapse cluster at branch
b2 remained stable. This stabilization is due to the fact that (a)
synapses from assembly A2 to branch b2 were weak, and dendritic
plateau potentials were consequently induced rarely, and (b),
presynaptic activity from assembly A1 was weak, and depression
due to inverse STDP was thus very small. As further assemblies
became activated every 125 s, new branches were recruited to
store these patterns while synaptic weights on old branches kept
stable. In this simulation, all assemblies were represented on
the branches. Four branches remained without a synapse cluster
from any of the assemblies. We have repeated the experiment
for 25 independent trials. The mean number of represented
assemblies over these trials was 6.92± 0.89 (mean± SD).

We hypothesized that competition between branches through
STDP is essential for this capability. Due to the competition,
only one or a few branches evolve a synaptic cluster from a
specific assembly while all other branches remain neutral to
assemblies. This is especially important when assemblies are
presented in a sequential manner. Without competition, most of
the branches would adapt to respond to the first active assembly.
Most branches would thus be occupied and not available for
novel assemblies. To quantify the effect of dendritic competition,
we repeated the experiment without STDP. In this case, the mean
number of represented assemblies reduced to 4.04 ± 0.72 (mean
± SD over 25 independent trials). As expected, most of the

FIGURE 4 | Dendritic-spike-dependent rewiring protects stored information by segregating functionally unrelated inputs onto different dendritic branches. When input

assemblies were activated sequentially, novel assemblies clustered on free branches while previously established clusters were retained. (A) Input assemblies Ai
activated in a sequential manner. We first activated exclusively assembly A1, then assembly A2, then A3, etc. (B) Schematic drawing of the 12 simulated branches at 8

different time points (branch color indicates assembly origin of synaptic cluster at the branch). Branches were recruited sequentially. (C–E) Network connectivity graph

and somatic membrane potential Vsoma of three selected branches (b2, b7, and b12) at three different time points. Graph edge color indicates to which of the input

assemblies a connection is established. The somatic potential shows the response of the neuron to one test pattern of assembly A1, assembly A4, and assembly A7.

The neuron successively reorganized its synaptic connections such that it responds to any of the patterns that have been presented previously.
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branches evolved synaptic clusters from the first shown assembly
A1 early on.

Due to the random fluctuations of weights, there is always
a chance that synapses are overwritten. This behavior can
be interpreted as gradual forgetting. If a synaptic cluster is
inactive for an extended time, then the synaptic connections
gradually degrade. If, however, that assembly is again activated,
the synapses to that assembly will again stabilize provided that
the weights are large enough to trigger a dendritic spike. To
investigate the impact of the random fluctuations of weights in
the weakening of older memories over time, we have performed
simulations with various noise strengths and analyzed the weight
decrease (see section 1.4 in the Supplementary Material for
more detail). In section 1.5 of the Supplementary Material,
we show a simple way to reduce gradual forgetting in our
model and in section 1.6 of the Supplementary Material we
propose a simple consolidation mechanism. Both of these
methods integrate nicely with our rewiring framework. Synaptic
connections of old memories are well-protected against changes
induced by the noise term in this extended model (see sections
1.5, 1.6 in the Supplementary Material).

2.5. Synaptic Clustering Depends on Input
Statistics
In the above simulations, input assemblies were activated in
temporal isolation and each assembly activation was clean in the
sense that all assembly neurons had an elevated firing rate and
assemblies were disjoint. Under these conditions, our rewiring
model led to robust synaptic clustering. We next determined the
sensitivity of this result on these input statistics.

Influence of co-active assemblies: We first asked whether
input assemblies can be clustered onto different dendritic
compartments even when single assemblies are never activated
in temporal isolation. As above, we simulated a neuron with 12
independent branches and a population of 320 input neurons
divided into 8 disjoint neuronal assemblies of 40 neurons
each. Input patterns and background noise were generated as
before. At times of assembly activation, a medium number
of assemblies was chosen uniformly at random from the
set of all input assemblies and were simultaneously activated
for 300ms. For up to four simultaneous active assemblies,
the rewiring dynamics separated connections from different
assemblies onto different branches with some decrease of
clustering. In 25 independent simulation runs, the mean
number of represented assemblies on the neuron was 6.08 ±

0.94 for two simultaneously activated assemblies, 5.64 ± 0.84
for three simultaneously activated assemblies, and 4.08 ±

1.20 for four simultaneously activated assemblies (Figure 5A).
Our rewiring mechanisms consequently segregates uncorrelated
inputs onto different branches even when assembly patterns are
not temporally isolated.

Influence of stochastic assembly activation:While evidence for
synaptic clustering has been reported in various cortical areas
(Chen et al., 2011; Kleindienst et al., 2011; Fu et al., 2012), some
studies found no evidence for it in early sensory areas (Jia et al.,
2010).We hypothesized that this discrepancymay be contributed

to different input statistics in different cortical areas. In particular,
we conjectured that inputs to neurons in early sensory areas may
be more stochastic (or unreliable) than in higher cortical areas.
To study this issue quantitatively, we investigated how clustering
in our model depends on the reliability of assembly activations.
To this end, we repeated the experiment with simultaneously
activated assemblies but with a reduced number of active neurons
in each assembly activation. When an assembly was activated for
300ms, a fraction p of assembly neurons was chosen randomly
which increased their firing rate to 35Hz as before, while the
rest remained at the background rate of 1Hz. In successive
simulations, we reduced the fraction p of active neurons in
each assembly from 1.0 (all neurons were active at each pattern
presentation) down to 0.5 (half of the neurons were active at
each pattern presentation). The mean number of represented
assemblies as a function of the neuron activation probability
in each assembly is shown in Figure 5B (25 independent
trials). The number of assembly-synapse clusters on dendritic
branches decreased with the neuron activation probability. A
moderate stochasticity is tolerated by the rewiring dynamics for
temporally isolated patterns and two simultaneously activated
assemblies. No stochasticity is tolerated, however, when more
than two assemblies are activated simultaneously at times of
pattern presentation (Figure 5B). In all simulations, a number of
branches did not receive any synaptic cluster. This was expected
as the neuron had 12 branches while only 8 assembly patterns
were presented as input. These branches hosted rather stable
synaptic connections originating from various input assemblies.
In conclusion, this result predicts a continuum of synaptic
clustering in PCs where the extent of synaptic clustering depends
on the reliability of presynaptic assembly activations. This finding
may provide an explanation for diverse results on synaptic
clustering in cortex.

Influence of assembly overlap: In the simulations so far,
we considered disjoint input assemblies. In contrast, it was
proposed that associative memories learned within short time
intervals will be represented by overlapping populations of
neurons (Silva et al., 2009; Rogerson et al., 2014). This claim
was recently verified by experimental studies of medial temporal
lobe (Ison et al., 2015), the hippocampus (Cai et al., 2016), and
the lateral amygdala (Rashid et al., 2016). Their results show
that linking of memories relies on the overlap of distributed
neuronal assemblies.

To test whether synaptic clustering emerges also for input
assemblies with various amounts of neuron overlap, we
considered a setup where some of the neurons of each assembly
were chosen from a shared pool of neurons. As a result,
some neurons of the shared pool participated in two or more
input assemblies (see section 4 for details). By increasing the
fraction of shared neurons in the assemblies, we were able to
increase the assembly overlap. When repeating this procedure
in 25 independent trials, the overlap between a given pair of
assemblies was 3.11 ± 2.48% (mean ± SD), 6.15 ± 3.53%, 9.38
± 4.19%, and 12.5 ± 5.11% for a fraction of shared neurons
per input assembly of 25, 50, 75, and 100%, respectively. After
17min of assembly activations, we determined the number
of represented assemblies on the neuron. The results for 25
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FIGURE 5 | Synaptic clustering depends on input statistics. (A) Mean number of represented assemblies as a function of the number of simultaneous active

assemblies. The difference in the mean number of represented assemblies for two and three simultaneous active assemblies were not significant. However, the

number of represented assemblies significantly decreased compared to temporally isolated pattern presentations in all cases [F(3,96) = 53.9, p < 0.0001, one-way

analysis of variance (ANOVA); p < 0.0001, one active assembly vs. two simulations active assemblies, 1 vs. 3, 1 vs. 4, 2 vs. 4, 3 vs. 4; not significant (ns) p = 0.35, 2

vs. 3; n = 25 trials]. These results show that the rewiring mechanism segregates uncorrelated input assemblies onto different branches even when a medium number

of assemblies are activated simultaneously. (B) Mean number of represented assemblies as a function of the assembly neuron activation probability (mean and SD

over 25 independent trials). Results are shown for temporally isolated pattern presentations (violet solid line), two simultaneous active assemblies (brown dashed line),

three simultaneous active assemblies (pink dashed dotted line), and four simultaneous active assemblies (gray dotted line). In all four cases, the number of

represented assemblies significantly decreased at a neuron activation probability of 0.9 [t(24) = 5.09, p < 0.0001, one active assembly, activation probability of 1.0 vs.

activation probability of 0.9; t(24) = 4.99, p < 0.0001, two active assemblies; t(24) = 10.8, p < 0.0001, three active assemblies; t(24) = 19.2, p < 0.0001, four active

assemblies, paired t-test]. (C) Mean number of represented assemblies as a function of the mean overlap between a given pair of assemblies (mean and SD over 25

independent trials). Results are shown for intermixed pattern presentations (blue solid line) and for patterns presented in a sequential manner as in Figure 4 (orange

dashed line). In both cases, the number of represented assemblies significantly decreased for a mean assembly overlap of 6.15% [t(24) = 3.84, p = 0.0008,

intermixed, disjoint assemblies vs. non-disjoint assemblies with mean overlap of 6.15%; t(24) = 2.87, p = 0.008, sequentially, paired t-test].

independent trials are summarized in Figure 5C (solid line).
Our results show that synapses are organized on dendrites in a
clustered manner; this is true even for assemblies that share a
significant portion of neurons, where the number of represented
assemblies decreases slightly with increasing assembly overlap.

In section 2.4, we showed that our rewiring rule can
support memory protection by recruiting branches sequentially
as new assemblies were activated. To test whether this
ability of the model depends on disjoint input assemblies,
we repeated the experiment described in section 2.4 but
with overlapping assemblies and various assembly overlaps.
Overlapping assemblies were created as described above. After
17min of assembly activations, the mean number of represented
assemblies was 6.80±0.75, 6.08±1.16, 5.32±1.16, and 4.52±1.17
for mean assembly overlaps of 3.11 ± 2.48%, 6.15 ± 3.53%,
9.38 ± 4.19%, and 12.5 ± 5.11%, respectively (mean and SD
over 25 independent trials). For all considered overlaps, synapses
were still segregated in an assembly-specific manner. However,
the number of represented assemblies significantly decreased
for mean assembly overlaps of 6.15% (Figure 5C, dashed line).
In summary, our model predicts that associated memories
with overlapping assembly representations are segregated in an
assembly-specific manner onto different dendritic branches and
that this segregation can indeed support memory protection.

2.6. Analysis of Stochastic Rewiring
Dynamics
The stochastic rewiring dynamics considered in this work is
described by the general SDE (1), reiterated here for convenience:

dθki(t) = η

(

fSki (t)+ fLki (t)
)

dt +
√

2ηTdWki, (3)

where the first term fS
ki

describes structural constraints on

the connectivity, the second term fL
ki

captures the functional
goal of the plasticity process, and the third term models
stochastic contributions.

It has been shown by Kappel et al. (2015) that the long-
term behavior of this dynamics can be described concisely if
the deterministic parameter changes are defined through two
probability distributions:

fSki (t) =
∂

∂θki
log pS(θ)

∣

∣

∣

∣

θ(t)

and fLki (t) =
∂

∂θki
log pL(θ)

∣

∣

∣

∣

θ(t)

,

(4)
where pS is a probability distribution that defines the structural
constraints (the structural prior on parameters), and pL is
a distribution that defines functionally preferred parameter
settings (the functional likelihood of parameters). Preferred
parameter settings have high probability in these distributions,
others have low probability. Note that without the noise term,
Equation (1) together with Equation (4) constitute continuous-
time gradient ascent dynamics on the objective log pS(θ) +

log pL(θ) = log(pS(θ)pL(θ)). With the inclusion of the noise
term, Equation (1) defines Langevin sampling dynamics (Welling
and Teh, 2011), that is, parameter configurations are visited in the
long run according to the distribution

p∗(θ) ∝ (pS(θ)pL(θ))
1/T . (5)

In other words, the probability density to observe some specific
θ is given—after an initial transient period (often called burn-
in time) where parameters move from the potentially low-
probability initial setting to a high-probability region—by p∗(θ).
We say that the network samples network configurations
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from p∗(θ). Since this p∗(θ) contains the product of the two
distributions pS and pL, high-probability parameter settings are
only possible if they fulfill both the structural and the functional
demands as defined by these distributions. Since θ defines both
the synaptic strengths and the connectivity structure (a synapse
ki is connected if θki > 0), this stochastic process automatically
samples network connectivity structures.

The structural prior corresponding to the structural plasticity

term fS
ki

is discussed in detail in section 4. The functional term

fL
ki
(t) is given by

fLki (t) =































cLŴk(t)(xi(t)− γ (1− xi(t))), if θki(t) > 0

(functional connection)

0, if θki(t) ≤ 0

(non-established

connection).

(6)
Synapses that contribute or are co-active with dendritic plateau
potentials are potentiated, while others are depressed and
eventually retract, making room for new connections.

To interpret this functional term from the perspective
of the sampling distribution of the stochastic dynamics, we
want to exhibit a corresponding functional likelihood pL. We
show in section 4 that this distribution factors into branch-
specific distributions

pL(θ) =
∏

k

pL(θk), (7)

so each branch optimizes its likelihood independently from other
branches. For the functional likelihood, we consider the situation
where the neuron is exposed for an extended time tmax to input
spike trains xi according to some distribution and it stochastically
responds with branch spikes. We can interpret the functional
dynamics using the following functional likelihood (see section 4)

pL(θk) =

1

ZL
exp

〈

ĉL
tmax

∫ tmax

0
Ŵk(s)

(

∑

i

wkixi(s)− γ
∑

i

wki(1− xi(s))

)

ds

〉

X,Ŵk

,

(8)

where ZL is a normalizing factor (we consider here parameters
bounded in the range [θmin, θmax] to keep this factor bounded)
and ĉL > 0 is a constant. The angular brackets 〈·〉X,Ŵ denote
an average over stochastic realizations of inputs xi and branch
spikes Ŵk. Because of the function Ŵk in the integral, only times
at which a plateau potential is present at the branch contribute to
the integral. In combination with the first term in the brackets,
the probability of the functional likelihood is high if efficacies of
those synapses are large that are active slightly before or during
a plateau potential. In combination with the second term in the
brackets, the probability of the functional likelihood is high if
efficacies of those synapses are small that are inactive slightly
before or during a plateau potential. The constant γ > 0 trades
off the importance of large active vs. small inactive synapses.

Hence, the rewiring dynamics prefers parameter settings
where inputs that jointly recruit dendritic regenerative events
(i.e., temporally correlated inputs) have strong synaptic
connections to the branch. Under the assumption that such
inputs are also functionally related (corresponding for example
to a specific motor behavior), the rewiring dynamics contributes
to functional synaptic clustering (Kastellakis et al., 2015). While
cortical connectivity is sparse even at the local scale, it has been
estimated that potential (i.e., possibly realizable) connectivity
is huge—a spatial scale of a few hundred microns—and every
pair of PCs could be potentially connected (Chklovskii et al.,
2004; Kalisman et al., 2005). Our analysis shows that in this
large space of potential connectivity structures, synaptic rewiring
based on simple dendritic-spike-dependent plasticity rules could
implement a stochastic search algorithm that favors functionally
clustered synaptic configurations, as proposed by Chklovskii
et al. (2004).

3. DISCUSSION

We have proposed in this article a model for synaptic rewiring
in neurons with dendritic non-linearities. We have observed
that simple plasticity rules that depend on postsynaptic dendritic
spikes lead to robust synaptic clustering. The use of the synaptic
sampling framework allowed us to analyze the connectivity
dynamics as a sampling process from a distribution of network
configurations. Our analysis revealed that synaptic clusters are
preferred configurations in this sampling process. Cichon and
Gan (2015) found that dendritic spike events for different motor
tasks were segregated onto different tuft branches of layer V PCs
in mouse motor cortex. They also found that this segregation was
necessary to avoid a detrimental effect of training on a previously
learned task. Our model can explain these findings. First, we
found that branch activity is segregated onto different dendritic
branches if it is elicited by different input assemblies. Second,
we found that this segregation allows memory retention in the
sense that synaptic clusters are retained after memorization of
new assembly input patterns.

3.1. Synaptic Plasticity and Rewiring
Throughout this article, we assumed that strong presynaptic
activity coincident with a postsynaptic dendritic spike leads to
LTP whereas a postsynaptic dendritic spike paired with weak
presynaptic activity leads to LTD.While these plasticity dynamics
are qualitatively consistent with experimental findings both for
LTP (Golding et al., 2002; Lisman and Spruston, 2005; Gordon
et al., 2006; Gambino et al., 2014; Cichon and Gan, 2015;
Brandalise et al., 2016) and LTD (Holthoff et al., 2004), the exact
plasticity rules and their relation to dendritic regenerative events
are still to be determined. For example, experimental results of a
study by Cichon and Gan (2015) indicated that at distal dendrites
of layer V PCs, presynaptic activity during dendritic spikes leads
to LTP, which is consistent with our model. However, different
from previous findings, they found that LTD was induced by
presynaptic activity that preceded the dendritic spike. To test
whether our model is sensitive to such alterations in the plasticity
rules, we reran the simulations for Figure 3 with such depression
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(see section 4 for details). We found that the model behaved
comparably (7.28±0.60 represented assemblies, mean± SD over
25 independent trials).

We found that the number of input patterns that can be stored
by a neuron is increased if dendritic-spike-dependent plasticity is
extended by an STDP mechanism where pre-before-post spike
pairs induce depression. This phenomenon has already been
described and analyzed in a modeling study by Legenstein and
Maass (2011). In general, the back-propagating action potential
provides a means for communicating global information to the
dendritic branches, that is, it can indicate to all branches that
the neuron is active for the current input pattern. With STDP, a
pattern that does already activate enough branches to elicit strong
firing of the neuron will depress synapses at inactive branches.
This competition reduces the number of activated branches per
pattern and thus increases the number of patterns that can be
stored in a single neuron. While we showed that clustering is still
observed without this mechanism (Figure 2), it is beneficial in a
sequential learning paradigm, as it keeps branches free to store
patterns presented later in the sequence (Figure 4).

3.2. Protection of Memories
Our results indicate that synaptic clustering may protect older
memories (Figure 4). It can thus avoid catastrophic forgetting,
a well-known deficiency of standard incremental learning
algorithms for neural networks (McCloskey and Cohen, 1989;
French, 1999; Kirkpatrick et al., 2017). The mechanism is
simple: a branch with a synaptic cluster from a specific input
pattern is silent to most other patterns. Since LTP and LTD
is conditioned on the local dendritic spike, memories on a
branch are protected for most other input patterns. At the
same time, other branches can develop specificity to novel
patterns as plasticity there is decoupled from protected branches.
However, this does not shelter memories completely. There
are still mechanisms in our model that are detrimental to old
memories. In particular, the noise term in Equation (1) will
inevitably corrode memories. We did indeed observe weakening
of older memories over time if they were not repeated, but on
a time scale much longer than the one of pattern presentation
(sections 1.4, 1.5 in the Supplementary Material). This suggests
that synaptic clustering may provide a mechanism to avoid
catastrophic forgetting temporarily. Additional consolidation
mechanisms seem necessary to protect memories over long time
scales, and we have investigated one way how consolidation
can be integrated in our rewiring framework (section 1.6 in
the Supplementary Material). An alternative role of dendritic
structures in extending memory lifetime was proposed in Bono
and Clopath (2017). We have demonstrated in this article that
simple dendritic-spike-dependent rewiring can protectmemories
in a pattern memorization setup. In future work, one could apply
these ideas to larger deep-learning networks in the context of
continual learning tasks, possibly using simplified neuron and
plasticity models with similar properties.

3.3. Related Work
Many theoretical studies have linked rewiring processes to
cortical connection statistics (Deger et al., 2012; Fauth et al.,

2015), computation and memory (Knoblauch et al., 2014; Zheng
and Triesch, 2014; Deger et al., 2016; Miner and Triesch, 2016;
Spiess et al., 2016), and homeostasis (Gallinaro and Rotter, 2018).
These studies were, however, based on point neuron models,
where the phenomenons considered in the current study cannot
be observed. It has been proposed by Rhodes (2008) that neurons
with non-linear dendrites could serve as a recoding stage in order
to orthogonalize input representations, that is, to reduce the
overlap between different input patterns. It is discussed there that
a dendritic-spike-dependent rewiring could be used to provide
efficient wiring diagrams for this operation. Our model exhibits
one possible implementation of such a rewiring strategy. In a
theoretical study, the impact of active dendrites on the memory
capacity of neural networks was investigated (Poirazi and Mel,
2001). They calculated that non-linear dendrites can vastly
increase the number of patterns that can be stored by a simple
non-spiking model of a pyramidal cell. They also considered a
supervised structural plasticity rule, the “clusteron” (Mel, 1992),
that was designed to cluster synaptic inputs while optimizing the
memory performance of the neuron. Their simulations showed
that this rule leads to memory capacities as predicted by their
theoretical considerations. Our model shows that such clustering
emerges also in a more detailed spiking neuron model with a
simpler online dendritic-spike-dependent rewiring principle that
does not need supervision. We exhibited a potential functional
relevance of this clustering in terms of protection of memory
but did not consider memory capacity per se. It would be
interesting to study similar capacity questions in the proposed
model. Memory capacity of networks of neurons with non-linear
dendrites was also studied byWu andMel (2009). They also used
a simple non-spiking neuron model which basically consisted of
a “dendritic” layer with a threshold non-linearity and a somatic
layer which summed the outputs of the binary dendritic elements.
This article did not consider rewiring. Nevertheless, a simple
plasticity rule was used that depended on the dendritic activation,
which resembles some similarity with dendritic-spike-dependent
plasticity considered here. Interestingly, they found that memory
capacity could be increased if not only the dendritic activation
but also the number of activated synapses at the dendrite was
used to gate LTP. In our rewiring framework, such a rule could be
applied to weak synaptic connections, but not to non-established
connections as their dynamics are assumed independent of pre-
and postsynaptic activity.

3.4. Relation to Experimental Literature
and Experimentally Testable Predictions
The proposed model gives rise to a number of experimentally
testable predictions. We have shown that temporally correlated
input leads to the clustering of corresponding synaptic
connections on single dendritic branches. This suggests that
neuronal assemblies should connect to PCs preferentially in
a branch-specific clustered manner. To verify this prediction,
methods for labeling memory engrams (Tonegawa et al., 2015)
could either be combined with tracing techniques or with engram
reactivation and target cell Ca2+ imaging at dendritic branches.
Another prediction of our model is that synaptic clustering
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depends on input statistics. This finding may explain that no
evidence for clustering has been observed in early sensory cortical
areas (Jia et al., 2010). One could test this prediction more
directly through glutamate uncaging at tuft dendrites. Our model
predicts that concerted correlated uncaging at single branches
should lead to a clustered strengthening of synapses at the
branch. Conversely, a more unreliable uncaging where each
uncaging site is activated only with a certain probability would
not have this effect. Various experimental studies have indicated
that associated memories are stored in overlapping assemblies
(Ison et al., 2015; Cai et al., 2016; Rashid et al., 2016). Our
model predicts that such associations should also be visible in
the clustering structure, that is, neurons that respond to each of
two associated memories would exhibit synaptic co-clustering of
these memories within dendrites. This prediction is consistent
with the findings of a modeling study by Kastellakis et al. (2016).

3.5. Conclusions
We have shown through computer simulations and theoretical
analysis that synaptic clustering emerges from simple rewiring
dynamics based on dendritic-spike-dependent synaptic
plasticity. This result provides support for the synaptic clustering
hypothesis. We further found that this clustering in turn may
serve as a mechanism to protect memories from subsequent
modifications on a medium time scale. More generally, our
results emphasize the importance of dendritic structures in
learning and memory and demonstrate the effectiveness of
synaptic rewiring to find sparse network structures in the
high-dimensional search space over potential connectivities.

4. MATERIALS AND METHODS

Here, we provide details to the models and simulations.

4.1. Neuron Model
We assume a spiking neuron model with Nb independent
dendritic compartments. Here and in the following, we will
indicate variables and parameters of dendritic branches with a
b superscript or subscript. Presynaptic spikes are transformed at
the synapse ki—the synapse from presynaptic neuron i to branch
k of the postsynaptic neuron—into alpha-shaped postsynaptic
currents, which are weighted by the corresponding synaptic
efficacies wki. The total current at branch k is given by

Ibk (t) =
∑

i

wki

∑

f

α

(

t − t
(f )
pre,i

)

(9)

where t
(f )
pre,i is the f th spike-time of presynaptic neuron i. The

two sums run over all presynaptic neurons i and all firing times

t
(f )
pre,i < t of neuron i. Each individual alpha-current is given by

α(s) =
s

τsyn
exp

(

1−
s

τsyn

)

H(s), (10)

where H denotes (here and in the following) the Heaviside step
function (for parameter values, see Table 1). The membrane

TABLE 1 | Neuron parameters for computer simulations.

Branch parameters

Vb
th Stochastic threshold −55 mV

Eb
L Leak reversal potential −70 mV

Rb Membrane resistance 40 M�

Cb Membrane capacity 250 pF

τs Time constant of sodium spikelet 4 ms

Vds Amplitude of plateau potential −30 mV

Vs Initial amplitude of sodium spikelet (rel. to Vds) 5 mV

cds Scale factor for plateau duration 0.04 s2/mV

ρb
0 Instantaneous firing rate at threshold 2.5 Hz

βb Sensitivity of spike emission 0.5 mV-1

1ds
min Minimum duration of a plateau potential 20 ms

1ds
max Maximum duration of a plateau potential 300 ms

Soma parameters

Vsoma
th Stochastic threshold −55 mV

Esoma
L Leak reversal potential −70 mV

Rm Membrane resistance 40 M�

Cm Membrane capacity 250 pF

Rl Longitudinal resistance along dendrites and

apical trunk

2 �

1soma
abs Absolute refractory period 5 ms

ρsoma
0 Instantaneous firing rate at threshold 2.5 Hz

βsoma Sensitivity of spike emission 0.5 mV-1

Synapse parameters

τb
syn Synaptic time constant of branch 2 ms

θmin Lower bound of synaptic parameter −2

θmax Upper bound of synaptic parameter 8

potential of each branch (Vb
k
; branch potential) follows the

dynamics of a leaky integrator of the current with resting
potential EbL. In particular, the dynamics of potentialVb

k
of branch

k is given by

Cb

dVb
k
(t)

dt
= −

1

Rb

(

Vb
k (t)− EbL

)

+ Ibk (t), (11)

with membrane resistance Rb and membrane capacity Cb (the
membrane time constant is given by τb = RbCb).

Branch spikes are elicited by the branch in a stochastic
manner. In particular, the voltage-dependent instantaneous
firing rate f b

k
(t) is given by

f bk (t) =







ρb
0 exp

(

βb(Vb
k
(t)− Vb

th
)
)

, if
dVb

k
(t)

dt
> 0

0, else,
(12)

where Vb
th
is the threshold for branch-spike initiation, ρb

0 is the

instantaneous firing rate at threshold, and βb is the sensitivity of
spike emission (for parameter values, see Table 1). We denote the

times of branch-spike onsets at branch k as t
(1)
k
, t
(2)
k
, . . . . A branch

spike includes a brief sodium spikelet followed by a plateau
potential that lasts for up to a few hundreds of milliseconds, see
Figure 1B. Assuming that branch k has initiated its last dendritic
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spike at time t̂k(t), the evolution of Vb
k
(t) immediately after

initiation is given by

Vb
k (t) = ηk

(

t − t̂k(t)
)

for t̂k(t) < t ≤ t̂k(t)+ 1ds
k (t̂k(t)), (13)

where the function ηk describes the form of the branch spike (see
below). The duration of the dendritic spike is proportional to the
slope of Vb

k
(t) at the last spike time of the branch, i.e.,

1ds
k (t̂k(t)) = cds

dVb
k
(t)

dt

∣

∣

∣

∣

∣

t=t̂k(t)

, (14)

where cds is a scaling parameter. In our simulations, we clipped
the duration between a minimum of 1ds

min = 20ms and a

maximum of 1ds
max = 300ms to avoid unnaturally brief and long

plateau durations (for other parameter values, see Table 1). The
functional relation between input strength and the duration of
the plateau potential 1ds

k
(t̂k(t)) is shown in Figure 1C. The shape

of the dendritic spike is given by a brief sodium spikelet followed
by a plateau (Antic et al., 2010):

ηk(s) = Vs exp

(

−
s

τs

)

H(s)+ Vds

[

H(s)−H
(

s− 1ds
k (t̂k(s))

)]

.

(15)
The first term in Equation (15) models the sodium spikelet,
and the second term models the plateau potential. The sodium
spikelet decays exponentially with time constant τs with initial
amplitude Vs (added to the amplitude Vds of the plateau
potential). For t > t̂k(t) + 1ds

k
(t̂k(t)) the membrane potential

Vb
k
(t) again follows the dynamics given by Equation (11). As an

example, the evolution of the dendritic membrane potential for
an arbitrary chosen input is depicted in Figure 1B.

During the time of the plateau potential, the dendritic branch
is absolute refractory, that is, no further regenerative event can be
initiated. The propagation of dendritic plateau potentials toward
the soma produces a sustained depolarization of the cell body. In
general, the currents from dendritic compartments to the soma
are driven by the difference between the membrane potential at
the branch and the membrane potential of the soma. The somatic
compartment sums currents from all dendrites (with a certain
degree of amplitude attenuation).

The membrane potential at the soma of the neuron is given by

Cm
dVsoma(t)

dt
= −

1

Rm

(

Vsoma(t)− Esoma
L

)

+ Isoma(t), (16)

where Esoma
L is the resting potential. Themembrane time constant

of the neuron is given by τm = RmCm and Isoma(t) is

Isoma(t) =
1

Rl

∑

k

max{0,Vb
k (t)− Vsoma(t)}, (17)

where Rl represents the total of the longitudinal resistance
along the dendrites and apical trunk. Note that we restrict the
currents to non-negative values since we only simulate forward
currents, i.e., currents from the dendritic branches to the soma.

Somatic spikes are characterized by their spike times t(f ). The
instantaneous firing rate is given analogously to the branch spike
mechanism by

f soma(t) =

{

ρsoma
0 exp

(

βsoma(Vsoma(t)− Vsoma
th

)
)

, if dVsoma(t)
dt

> 0

0, else.

(18)

Immediately after t(f ), the somatic potential enters a refractory
period of duration 1soma

abs
in which Vsoma(t) is set to Esoma

L . For

t > t(f ) + 1soma
abs

the dynamics is again given by Equation (16).
To illustrate the dynamics of the membrane potential, a neuron
which receives arbitrary input was simulated. The results of this
simulation are shown in Figure 1B.

4.2. Plasticity and Rewiring
Here, we summarize the plasticity and rewiring dynamics in
the network.

4.2.1. Synaptic Parameters and Efficacies
Each dendritic compartment has a set of potential synaptic
connections that could be realized by some parameter setting.
However, at each point in time, only a subset of these connections
is realized by functional synapses. More precisely, we maintain
one parameter θki for each synapse ki from input neuron i to
branch k of the neuron. This parameter encodes (a) whether
the synapse is functional and (b) the synaptic efficacy wki

of the synapse (if it is functional). In particular, θki > 0
indicates a functional synapse, while θki ≤ 0 indicates that the
connection is not established. The synaptic weight wki is cθθki
for a functional synapse, and 0 otherwise. Hence, the mapping
from the parameter θki to the synaptic weight is given by wki =

cθ max{0, θki} where cθ = 1 nA is the slope of this mapping for
θki > 0 (for other parameter values, see Table 2).

4.2.2. Parameter Dynamics
The stochastic dynamics of parameters are given by

dθki(t) = η

(

fSki (t)+ fLki (t)
)

dt +
√

2ηTdWki, (19)

TABLE 2 | Plasticity parameters for computer simulations.

η Learning rate 0.002

T Temperature parameter 0.3

cL Scale factor of functional plasticity term 1.5

γ Scale factor for depression of functional plasticity

term

0.2

λ Scale factor for steepness of sigmoid in structural

plasticity term

10

cw Scale factor for steepness of sigmoid in synapse

count

0.55 nA-1

cθ Slope of θ to w mapping (for θ > 0) 1 nA

cSTDP STDP, LTD factor 3.2

STDPth Threshold for STDP initiation −67 mV

τx Time constant of presynaptic trace 20 ms
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where η > 0 is a small learning rate and Wki denote increments
of a standard Wiener process, thus implementing random walk
behavior. The temperature T > 0 is a constant that scales
the strength of this stochastic component. In the simulations,
the parameters θki were clipped to the range [θmin, θmax]. The
upper bound is necessary to avoid that the synaptic efficacies
become arbitrary large. The lower bound is useful to avoid
that parameters become very negative. Such parameters would
be stuck for a long time in the negative domain and hence
would be unlikely to be re-established, which would slow down
the rewiring dynamics. The term in the brackets defines the
deterministic part of the dynamics. It is divided here into two

components. The first term fS
ki

describes changes that are used to
enforce structural constraints on the connectivity. The functional
goal of the plasticity process is captured by the second term

fL
ki
. The deterministic terms are chosen such that they vanish

for θki(t) ≤ 0. Hence, for non-established synapses, only the
stochastic term remains.

For the structural term, we define a soft count of synaptic
connections on branch k

N(θk) =
∑

i

2

(

σ (cwwki)−
1

2

)

, (20)

where σ denotes the logistic sigmoid function σ (x) = 1
1+exp(−x)

.

For a non-established synapse (wki = 0), the term in the brackets
is 0 and this potential connection is not counted. For increasing
efficacies larger than 0, this term approaches 1 with the scaling
constant cw defining the speed of this approach. Using this soft
count, the structural term is given by

fSki (t) = −2λcwcθ[1−σ (λ(Nsyn−N(θk(t))))]σ̇ (cwwki(t))H(θki(t)),
(21)

where the constant Nsyn defines a soft upper bound on the
number of active synapses per branch (we used Nsyn = 20 in all
simulations), the constant λ > 0 defines how hard this soft bound
is enforced, and σ̇ denotes the derivative of the logistic sigmoid.

The functional term combines a presynaptic activity trace with
a postsynaptic term that indicates the presence of a dendritic
spike. The exponential presynaptic activity trace with time
constant τx > 0 is given by:

xi(t) =
∑

f ∈ Fi(t)

exp



−
t − t

(f )
pre,i

τx



H
(

t − t
(f )
pre,i

)

, (22)

where Fi(t) = {f : t
(f )
pre,i ≤ t} is the set of all indices of input

spikes with spike times before t. The presence of a postsynaptic
dendritic spike is formalized as a function Ŵk which is 1 if a
plateau potential is present at time t and 0 otherwise. More
formally, using t̂k(t) to indicate the time of the last branch spike

initiation before t, i.e., t̂k(t) = maxf {t
(f )

k
: t

(f )

k
≤ t}, we define

Ŵk(t) = H
(

t − t̂k(t)
)

−H
(

t − t̂k(t)− 1ds
k (t̂k(t))

)

, (23)

where 1ds
k
(t̂k(t)) is the length of this plateau potential as defined

in Equation (14). The functional term is then given by

fLki (t) = cLŴk(t)(xi(t)− γ (1− xi(t)))H(θki(t)) (24)

with constants cL > 0 and γ > 0.

4.2.3. STDP
Denoting the postsynaptic somatic spike times by t(1), t(2), . . . , we
define the postsynaptic spike trains as sums of Dirac delta pulses,
i.e., S(t) =

∑

f δ(t − t(f )). Using this notation, the STDP update

term is given by

fSTDP
ki (t) =

{

−cSTDPxi(t)S(t), if Vb
k
(t) ≥ STDPth

0, otherwise,
(25)

where cSTDP > 0 is a constant, xi is an exponential trace of
the presynaptic spike times with time constant τx as defined in
Equation (22), and where STDPth is the threshold for STDP
initiation (for parameter values, see Table 2). Note that this
update models the induction of depression for a pre-before-post
spike pair (an inverted STDP rule) as found for synapses in the
distal dendrites (Kampa et al., 2007). The plasticity dynamics with
STDP for the parameters θki is therefore

dθki(t)=ηH(θki(t))
(

fSki (t)+ fLki (t)+ fSTDP
ki (t)

)

dt+
√

2ηTdWki.

(26)
Note that we include the term H(θki(t)) in Equation (26) in
order to stress again that only functional synapses are subject to
non-stochastic parameter changes.

4.2.4. Alternative Plasticity Rule
To test the dependence of the results on the specific form of
the plasticity rule, we considered an alternative rule that models
findings in a study by Cichon and Gan (2015). Here, presynaptic
activity during a dendritic spike still leads to LTP, but, LTD is
induced by presynaptic activity preceding a dendritic spike. The
functional term in this plasticity rule combines two presynaptic
activity traces [with fast (LTP) and slow (LTD) decay] with
postsynaptic terms that indicate the onset and the presence of
a dendritic spike. The fast decaying presynaptic activity trace
xLTP
ki

(t) with time constant τxLTP = 20ms is incremented at each
presynaptic spike of neuron i that appears within the time period
of a dendritic spike of branch k. The trace is given by:

xLTPki (t) =
∑

f ∈ FLTP
ki

(t)

exp



−
t − t

(f )
pre,i

τxLTP



H
(

t − t
(f )
pre,i

)

, (27)

where F
LTP
ki

(t) = {f : t
(f )
pre,i ≤ t ∧ Ŵk(t

(f )
pre,i) = 1} is the set of all

indices of input spikes of neuron i with spike times before t and
during the presence of a dendritic spike in branch k (recall that
the functionŴk is 1 during a dendritic spike and 0 otherwise). The
slow decaying presynaptic activity trace xLTD

ki
(t) is defined alike.

However, this trace is only incremented at each presynaptic spike
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if there is no postsynaptic dendritic spike. The trace xLTD
ki

(t) with
time constant τxLTD = 500ms is defined as

xLTDki (t) =
∑

f ∈ FLTD
ki

(t)

exp



−
t − t

(f )
pre,i

τxLTD



H
(

t − t
(f )
pre,i

)

, (28)

where F
LTD
ki

(t) = {f : t
(f )
pre,i ≤ t ∧ Ŵk(t

(f )
pre,i) = 0} is the set of

all indices of input spikes of neuron i with spike times before
t and in the absence of a postsynaptic dendritic spike. Similar
to somatic spike trains, we formalize the dendritic spike train
as a sum of Dirac delta pulses at times of dendritic spike onset

3k(t) =
∑

f δ(t− t
(f )

k
), were t

(f )

k
denotes the onset time of the f th

spike of dendrite k. The functional term is then given by

f̂Lki (t) = [c+
L
xLTPki (t)Ŵk(t)− c−

L
xLTDki (t)3k(t)]H(θki(t)), (29)

where the constants c+
L

= 6 and c−
L

= 2 scale the contribution of
potentiation and depression. The structural term and the STDP
term are not altered and are kept as defined above (Equation (21)
and (25), respectively). The alternative plasticity dynamics for the
parameters θki is therefore,

dθki(t)=ηH(θki(t))
(

fSki (t)+ f̂Lki (t)+ fSTDP
ki (t)

)

dt+
√

2ηTdWki.

(30)

4.3. Experimental Design and Statistical
Analysis
All simulations as well as statistical analyses were performed
using Python v3.5.3 with SciPy v0.18.1 and NumPy v1.13.0. The
model was simulated with a time step of 1ms. We used the Euler
method for the integration of the deterministic neuron dynamics,
and we used the Euler-Maruyama method for the integration
of the stochastic dynamics of the synaptic parameters. Every
neuron state, that is, membrane potential, remaining refractory
period, etc., as well as the synaptic parameters are represented
by fixed size state vectors that are update at each time step of
the simulation.

D’Agostino-Pearson tests were used to assess normality.
Statistical analyses were performed using different tests as
appropriate, as stated in the main text and the figure legends. All
of the data is presented as mean ± SD. Significant levels for all
significance tests were set at p ≤ 0.05.

Simulation parameters are listed inTables 1, 2. All simulations
were based on the same parameter sets. Parameters used in
the simulations with the alternative plasticity rule are given in
section 4.3.3. To investigate the impact of the parameters on
the simulation results we performed a one-at-a-time sensitivity
analysis (see section 1.2 in the Supplementary Material for
more detail).

4.3.1. Details to Simulations for Figure 2
A total of 320 input neurons were divided into eight disjoint
assemblies of 40 neurons each. Neurons within each input
assembly were preferentially active together. More precisely, at
times tstart + k(1tact + 1tdelay), with 0 ≤ k < Np and Np

being the number of input patterns, one assembly was chosen
uniformly at random from the set of all input assemblies and
each neuron in the assembly emitted a 35Hz Poisson spike
train (randomly generated at every pattern presentation) for
1tact = 300ms. In addition, to model background activity,
each neuron from the whole input population was spiking at
a rate of 1Hz. The delay between two pattern presentations
(the delay between successive active assemblies) was set to
1tdelay = 200ms. During this time and from t = 0 to tstart =

200ms only the background noise was active. We assume that
each input neuron could potentially establish a connection to
each branch. Note that this is a reasonable assumption if the
neurons are considered to be located within the same cortical
column (Chklovskii et al., 2004; Kalisman et al., 2005). Input
neurons were initially connected to branches randomly, such that
exactly 20 synapses were established on each branch. Synaptic
parameters of these connections were independently drawn from
a uniform distribution on the interval [4, 8). The soft maximum
of synapses per branch (Nsyn) was also set to 20. A total of Np =

2,000 patterns as described above were presented to the neuron.
Neuron and plasticity parameters were set according to Tables 1,
2, respectively.

4.3.2. Details to Simulations for Figure 3
Patterns were generated and parameters were set as in
simulations for Figure 2. In these simulations, however, we added
the STDP update (Equation 25) to the parameter dynamics. All
of the following simulations, that is, simulations with alternative
plasticity rule, simulations for Figures 4, 5, were conducted with
the STDP update.

4.3.3. Details to Simulations With Alternative

Plasticity Rule
We repeated the simulations for Figure 3 but with an alternative
functional term in the plasticity dynamics (according to Equation
29). We presented a total of Np = 2,000 patterns to the neuron
and we used the following plasticity parameters: c+

L
= 6, c−

L
= 2,

τxLTP = 20ms, τxLTD = 500ms. All other parameters were set
according to to Tables 1, 2. Results of these simulations are given
in the Discussion.

4.3.4. Details to Simulations for Figure 4
Input assembly activations and background noise were generated
as in the simulations described above (simulations for Figures 2,
3), but instead of choosing one assembly at random at times of
pattern presentation, we activated the assemblies sequentially. In
other words, we first activated exclusively assembly A1 250 times,
then assembly A2, then assembly A3, etc. The delay between
two pattern presentations was set to 1tdelay = 200ms as
before. Parameters were set according to Tables 1, 2. At the end
of all pattern presentations of an assembly, we evaluated for
each branch which, if any, assemblies had synaptic clusters on
that branch.

4.3.5. Details to Simulations for Figure 5A
Patterns were generated similar as in simulations for Figure 2,
but instead of choosing one assembly at random at times of
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pattern presentations, up to 4 assemblies were chosen uniformly
at random from the set of all input assemblies and were
simultaneously activated. In addition, in successive simulations,
we reduced the fraction p of active neurons in each assembly
from 1.0 down to 0.5 (in steps of 0.1). The fraction p of assembly
neurons was chosen randomly at each pattern presentation.
These neurons increased their firing rate to 35Hz as before, while
the rest remained at the background rate of 1Hz. In each of these
simulations we presented a total of Np =2,000 patterns to the
neuron. Neuron and plasticity parameters were set according to
Tables 1, 2, respectively.

4.3.6. Details to Simulations for Figures 5B,C
These simulations were performed with non-disjoint input
assemblies. Non-disjoint assemblies were created by randomly
choosing for each assembly either 10, 20, 30, or all 40 neurons
from a shared pool of input neurons consisting of 80, 160, 240,
and 320 neurons, respectively. Since the number of neurons
per assembly and the total number of input neurons were kept
as before (40 assembly neurons and 320 input neurons), this
procedure led to an overlap between assemblies, where the
overlap between a given pair of assemblies was 3.11 ± 2.48%
(mean ± SD, over 25 independent trials), 6.15 ± 3.53%, 9.38 ±

4.19%, and 12.5 ± 5.11% for a shared neuron pool of size of 80,
160, 240, and 320, respectively. Patterns of these assemblies were
then created as given in details to simulations for Figure 2. A total
of Np =2,000 patterns were presented to the neuron. Parameters
were set according to Tables 1, 2.

4.4. Details to Analysis of Stochastic
Rewiring Dynamics
4.4.1. Structural Prior
We first consider the structural plasticity term fS

ki
. Note

that this term is meant to model the physical constraint
that the number of synapses on a branch is bounded. We used

fSki (t) =

{

−2λcwcθ[1− σ (λ(Nsyn − N(θk(t))))]σ̇ (cwwki(t)), if θki(t) > 0 (functional connection)

0, if θki(t) ≤ 0 (non-established connection),
(31)

where σ denotes the logistic sigmoid function, σ̇ denotes its
derivative, and N(θk) counts the number of active synapses at
branch k in a smooth manner (see section 4). The constants λ

and cw will be discussed below. Equation (31) has a very simple
interpretation. When the number of synapses at the branch
is below Nsyn, the term in the brackets is approximately 0,
and the structural term has a tiny influence on the dynamics.
However, when the number of synapses is above Nsyn, this
term is approximately 1, which will tend to decrease synaptic
efficacies until the desirable synapse population size at the branch
is reestablished. Due to the last term, σ̇ (cwwki(t)), which is 0.25
for zero weights and then decreases to 0, weak synapses depress
faster than stronger ones. This is reasonable since strong synapses
are expected to play a more important role in the function of the
neuron, and it is consistent with the experimental finding that
large dendritic spines tend to be more stable than small ones. The
constant cw defines how fast this term decreases to 0.

We show below that this structural term in the stochastic
dynamics corresponds to a structural prior pS(θ) that factorizes
into one structural prior per branch

pS(θ) =
∏

k

pS(θk), (32)

with each distribution given by

pS(θk) =
1

ZS
σ (λ(Nsyn − N(θk))), (33)

where ZS is a normalizing constant. We can interpret this
distribution as follows. At each branch, the synapse count N(θk)
on the branch is compared to the maximum number of synapses
Nsyn. All configurations where the actual number of synapses is
below Nsyn have approximately the same probability, while the
prior goes to zero quickly for counts above that number. The
parameter λ > 0 scales the steepness of the sigmoid and therefore
how strictly this bound is enforced. In other words, using this
structural prior, the stochastic plasticity dynamics tend to sample
network configurations where the number of synapses per branch
is at most Nsyn.

We now show that the structural plasticity term fS
ki

follows
from the structural prior given in Equations (32), (33). According
to Equation (4), we have,

fSki (t) =
∂

∂θki
log pS(θ)

∣

∣

∣

∣

θ(t)

=
∂

∂θki

∑

l

log

(

1

ZS
σ (λ(Nsyn − N(θ l)))

)

∣

∣

∣

∣

∣

θ(t)

=
∂

∂θki
log

(

1

ZS
σ (λ(Nsyn − N(θk)))

)
∣

∣

∣

∣

θ(t)

=
∂

∂θki
log
(

σ (λ(Nsyn − N(θk)))
)

∣

∣

∣

∣

θ(t)

= −
(

1− σ (λ(Nsyn − N(θk)))
) ∂

∂θki
N(θk)

∣

∣

∣

∣

θ(t)

= −2λcwcθ[1− σ (λ(Nsyn − N(θk(t))))]σ̇ (cwwki(t))H(θki(t)).
(34)

4.4.2. Functional Likelihood
We next link the functional plasticity term fL

ki
to the functional

likelihood Equations (7), (8). This link is again established using
Equation (4). First, we note that

∂

∂θki
log pL(θ) =

〈

ĉL
tmax

∫ tmax

0

∂

∂θki
Ŵk(s)





∑

j

wkjxj(s)− γ
∑

j

wkj(1− xj(s))



ds

〉

X,Ŵk

.

(35)
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Under the simplifying assumption that Ŵk(t) does not depend on
θki (which is approximately satisfied if each input has only a small
influence on the branch potential), we obtain

∂

∂θki
log pL(θ) ≈

〈

ĉLcθ

tmax

∫ tmax

0
Ŵk(s)

(

xi(s)− γ (1− xi(s))
)

H(θki)ds

〉

X,Ŵk

.

(36)

Assuming slow parameter updates, we approximate this with a
self-averaging online update

∂

∂θki
log pL(θ)

∣

∣

∣

∣

θ(t)

≈ cLŴk(t)
(

xi(t)− γ (1− xi(t))
)

H(θki(t)).

(37)
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