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Abstract

Motivation: In the last decade, de novo protein structure prediction accuracy for individual proteins has improved
significantly by utilising deep learning (DL) methods for harvesting the co-evolution information from large multiple
sequence alignments (MSAs). The same approach can, in principle, also be used to extract information about
evolutionary-based contacts across protein–protein interfaces. However, most earlier studies have not used the lat-
est DL methods for inter-chain contact distance prediction. This article introduces a fold-and-dock method based on
predicted residue-residue distances with trRosetta.

Results: The method can simultaneously predict the tertiary and quaternary structure of a protein pair, even when
the structures of the monomers are not known. The straightforward application of this method to a standard dataset
for protein–protein docking yielded limited success. However, using alternative methods for generating MSAs
allowed us to dock accurately significantly more proteins. We also introduced a novel scoring function, PconsDock,
that accurately separates 98% of correctly and incorrectly folded and docked proteins. The average performance of
the method is comparable to the use of traditional, template-based or ab initio shape-complementarity-only docking
methods. Moreover, the results of conventional and fold-and-dock approaches are complementary, and thus a com-
bined docking pipeline could increase overall docking success significantly. This methodology contributed to the
best model for one of the CASP14 oligomeric targets, H1065.

Availability and implementation: All scripts for predictions and analysis are available from https://github.com/
ElofssonLab/bioinfo-toolbox/ and https://gitlab.com/ElofssonLab/benchmark5/. All models joined alignments, and evalu-
ation results are available from the following figshare repository https://doi.org/10.6084/m9.figshare.14654886.v2.

Contact: arne@bioinfo.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein structure is crucial for our understanding of biological func-
tion. However, experimentally determining the structure of a pro-
tein is still time-consuming and expensive. Therefore, computational
methods will be the only method to determine the structure of most
proteins in the foreseeable future. Until recently, the only method to
reliably predict the structure of a protein was to model it using a
homologous template. However, reliable templates are not available
for close to half the residues in the human proteome (Perdig~ao et al.,
2015).

Proteins do, however, not act alone. They function by interacting
with other proteins and other molecules. Protein interaction can
vary from stable interaction, present in protein complexes, to transi-
ent interactions often used for regulation. Experimentally, the study

of stable protein interactions can be done using various techniques.
Structural determination methods, including crystallography and
Cryo-EM electron microscopy, can solve the structure of protein
complexes, while other methods can be used to identify that two
proteins interact without obtaining detailed structural information.

For several decades, the prediction of protein structure directly
from sequence information has been an unachievable dream.
Contact prediction methods based on co-evolution were introduced
in the 1990s (Göbel et al., 1994), but the progress was limited even
using deep learning (DL) (Eickholt and Cheng, 2012). The situation
changed about a decade ago when improved methods using co-
evolution achieved sufficient residue contact information to predict
the structure of many proteins (Morcos et al., 2011, 2012). Later,
DL (Skwark et al., 2014; Wang et al., 2017) and prediction of resi-
due–residue distances provided further improvements (Senior et al.,
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2020; Xu, 2019). Today, this means that for many, if not most, indi-
vidual protein domains, it is possible to predict the structure of
folded domains accurately (Greener et al., 2019). Recently,
Deepmind demonstrated at CASP14 that using an end-to-end learn-
able approach, high-quality prediction of almost all protein domains
is already feasible. After submitting the initial version of this manu-
script, two methods Alphafold (Jumper et al., 2021) and
RoseTTAFold (Baek et al., 2021), have become available to the gen-
eral public. In addition, the AlphafoldDB makes models for all pro-
teins from 20 organisms available through EBI (Jumper et al., 2021;
Tunyasuvunakool et al., 2021).

In principle, the same type of methods used for predicting the
structure of a single protein can predict the interaction between two
proteins (Hopf et al., 2014; Ovchinnikov et al., 2014). However,
one fundamental difference is that it is necessary to create paired
alignments to identify the interaction between two proteins, i.e.
identifying what pairs of proteins interact in the same manner. The
identification of interacting pairs is assumed to be relatively easy for
pairs of proteins that only exist as single orthologs in all genomes,
but the exact pairing is difficult when paralogs exist (Bitbol, 2018).

Prediction of protein interactions has been an even more signifi-
cant challenge than predicting the structure of individual proteins.
Many different techniques have been developed, but in short, they
can be divided into four categories: (i) docking primarily based on
shape complementarity (Tovchigrechko and Vakser, 2006), (ii)
template-based modeling (Kundrotas and Vakser, 2009) and (iii)
flexible docking (Schindler, 2016; Schueler-Furman et al., 2005).
Various energy functions have also been used to identify correct
docking poses (Anishchenko et al., 2018). In addition, co-evolution-
based methods have also been used to predict the structure of com-
plexes (Hopf et al., 2014; Schug et al., 2009).

Benchmarks have been developed to elucidate the advantages
and disadvantages of different docking methods (Liu et al., 2008).
Shape complementarity works excellently on native complexes, but
the accuracy drops fast when using the structures of unbound com-
plexes and even further if models of the proteins are used (Mintseris
et al., 2005; Tovchigrechko and Vakser, 2005). Template-based
modeling works excellently if a complex with significant sequence
identity exists in PDB but does not work for novel complexes
(Kundrotas et al., 2012; Yan et al., 2017).

Successful DCA-based methods to predict protein–protein inter-
actions preceded the large-scale prediction of single proteins by pre-
dicting the bacterial two-component signalling in 2009 (Schug et al.,
2009). These methods were then extended to several other com-
plexes by several groups (Hopf et al., 2014; Ovchinnikov et al.,
2014). However, it is still unclear how generally applicable these
methods are, but the potential to vastly increase the space of known
protein–protein interactions should involve using some type of co-
evolution-based methods. The computational cost limits flexible
docking, but a fold-and-dock protocol (Das et al., 2009) can be fast
enough.

In addition to determining the structure of a protein complex, it
is also crucial to determine which proteins interact. However, pro-
tein–protein interaction is not an easily defined entity. It might in-
clude anything from proteins regulating the expression of genes to
proteins strongly bound to each other in a large molecular machine.
Several interaction databases exist (Orchard et al., 2014; Szklarczyk
et al., 2019), and co-evolution has been used to predict these interac-
tions (Cong et al., 2019).

Here, we examine if it is possible to simultaneously fold and
dock two proteins using co-evolutionary information and not only
dock them. In addition, we use one of the best methods, trRosetta,
instead of DCA (Morcos et al., 2011) based methods to predict
intra- and inter-chain distances. One advantage of a fold-and-dock
methodology is that it is not dependent on the availability of individ-
ual structures and should therefore be less sensitive to structural
rearrangements upon binding. The disadvantage is that there are
many more degrees of freedom in the system. We find that for sev-
eral cases, it is possible to fold and dock the dimer simultaneously
accurately. Although the success rate is low (<10%), this is compar-
able to the accuracy of other docking methods, which utilizes the

structure of both individual proteins. In addition, the methods are
complementary.

2 Materials and methods

2.1 Dataset
To evaluate the performance of various docking methods, we use
the unbound structures for 221 hetero-dimeric only protein com-
plexes from Dockground 4.3 (Liu et al., 2008), as we cannot use the
fold-and-dock protocol for homodimers (see the figshare repository
(Elofsson, 2021)). It cannot be used for homodimers because,
in a homodimer, the intra- and inter-chain distances will be
predicted identically, i.e. the inter-distances will be a copy of the
intra-chain distances. Therefore, a different strategy to predict inter-
chain distances is needed to use a fold-and-dock protocol for
homodimers.

2.2 Evaluation
The main evaluation criteria to evaluate the success in docking used
here were the dockQ score (Basu and Wallner, 2016; Liu et al.,
2008), which gives 0 to a random prediction and 1 to a perfect pre-
diction. Here, it should be noted that a dockQ score over 0.23
roughly corresponds to an ‘acceptable’ model in CAPRI (Lensink
and Wodak, 2013), and we will therefore call all models with
dockQ >0.23 as correct and all others as incorrect. To evaluate the
quality of the individual models, we have used TM-score (Lensink
and Wodak, 2013; Zhang, 2005). We also use MM-align for com-
paring docked models (Mukherjee and Zhang, 2009).

We do also analyze the accuracies of the distances predicted by
trRosetta with actual distances. For simplicity, we have in several
cases redefined the distances (both predicted and real) as contacts
using a cutoff of 12 Å, i.e. only predicted or native distances shorter
than 12 Å are included. Here, the probability distance distribution
from trRosetta is converted using the weighted means of all
probabilities.

2.3 Paired alignments
An overview of the method is described in Figure 1. First, two mul-
tiple sequence alignments (MSAs) are created starting from two pro-
teins, which are assumed to interact. We search both sequences
against a proteomic database using jackhmmer (Eddy, 2011;
Mukherjee and Zhang, 2009). Several different alignment

Fig. 1. Pipeline of the Fold-and-Dock protocol. First, two multiple sequence align-

ments are created using, for instance, jackhmmer. Second, these are merged by iden-

tifying potential pairs of orthologs. Then trRosetta is used to predict all pairwise

distances. Here, the predicted (lower triangle) and actual (upper triangle) distance

map for 4gmj is shown. The two blue stripes represent the poly-G linker between

the two chains. Next, a model is created using pyConsfold,based on CNS

(Chaudhury et al., 2010; Adams et al., 2013), or pyRosetta. Here, the natural (dark

colours) and modeled (light colours) structure of the protein 4gmj is shown. The

model’s accuracy is good, dockQ score 0.42, and the TM-scores for the two chains

are 0.82 and 0.85, respectively. Finally, the models are scored using PconsDock, a

consensus-based docking score. Here, two examples are shown 1vrs (left) where no

consensus is seen and 1ay7 (right) where all five models are virtually identical
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parameters and databases were tried; see Supplementary Table S1.
The default database used is all reference proteomes from UniProt
(The UniProt Consortium, 2009) as of May 2020. This dataset con-
sists of 55 million sequences. In addition, we tried to use only bac-
terial proteomes (30 million sequences) or all (non-excluded)
proteomes from UniProt (199 million sequences) with a few align-
ment parameters, see above.

The critical component in our algorithm is the formation of
paired alignments, i.e. a set of aligned protein pairs assumed to
interact in the same way. Therefore, the next step is to create a
paired alignment for the two protein chains. The pairing is based on
all proteomes where both proteins have a hit. Here, the top hit of
each protein is used to create the merged MSA. We ignored pro-
teomes when both proteins had identical top hits, as this caused arte-
facts. We also tried to use a reciprocal best hit (Cong et al., 2019),
i.e. only including the top hits if the original proteins also were top-
ranked for these proteins in their proteome.

After the paired sequences are identified, they are merged
to form a paired multiple sequence alignment. Here, 20 glycines
are inserted between the two sequences to avoid edge effects. The
two alignments can be merged in two different orders, and both
were tried as in a few cases, one of the orders provided better
predictions.

Finally, the paired alignment was ‘trimmed’ to take away
sequences with too many gaps. By default, sequences with more
than 25% gaps in the merged alignment were excluded, but other
parameters were also tried (see Supplementary Table S1).

2.4 Distance predictions
Distance and angles were predicted using trRosetta from the paired
alignment. We also tried one alternative method to predict contacts,
RaptorX, to predict complex interactions (Jing et al., 2020).
However, this method does not provide distances, just contacts, and
therefore, it is necessary to add predicted secondary structures from
psipred when using these contacts. The distances were then used in
Rosetta as described in the original trRosetta protocol.

2.5 The fold-and-dock protocol
Fold and dock were performed using the same protocol and con-
straints as in trRosetta for the two chains separately (obviously, they
were treated as two separate molecular objects). The same optimiza-
tion protocol (minmover) was used. However, an additional set of
inter-chain constraints was added to form a weak flat-harmonic po-
tential between all inter-chain pairs of residues with a predicted con-
tact probability of over 50%. These constraints were necessary to
ensure that the two chains were modeled near each other; see the
GitHub repository for details. We also used pyconsFold (Lamb and
Elofsson, 2021) for fold-and-dock, both with distances predicted by
trRosetta and with contacts predicted by RaptorX.

2.6 Shape complementarity docking
For comparison, we used the GRAMM scan stage (Lamb and
Elofsson, 2021; Tovchigrechko and Vakser, 2006) with the default
parameters to generate an initial set of docking decoys for the same
dataset. We used the AACE18 contact potential (Anishchenko et al.,
2018). In addition, we used the predicted contacts (all with prob-
ability > 0.5 and distance shorter than the predicted distance plus
2 Å) as a constraint to GRAMM. We used both trRosetta and
RaptorX to predict the distances.

2.7 Template-based docking
We also used the TMdock (Kundrotas and Vakser, 2009) with the
standard full-structure template library for template-based docking.
To avoid including templates with high sequence identity to the tar-
get structure, we excluded all template hits where both chains in a
complex have significant (E-value < 10–2) similarity to the tem-
plates. If this is not done, the performance of TMdock would be
much higher.

3 Results

Our protocol described in Figure 1 starts from two multiple se-
quence alignments, created by searching with jackhmmer (Eddy,
2011) against all complete proteomes from UniProt (UniProt
Consortium, 2019). After that, a combined multiple sequence align-
ment is created by including the top paired hit from each proteome.
Next, 20 Glycine residues were added to separate the two sequences
in the combined multiple sequence alignment. The combined align-
ment can be created in two orientations, A-B and B-A. In addition, a
few alternative methods both for generating the alignments and
selecting the sequences were tried. These are discussed below. It
should be noted that the depth of the combined multiple sequence
alignment is often significantly smaller than for the individual
proteins.

Next, the combined multiple sequence alignment is used to pre-
dict distances and angles using trRosetta (Yang et al., 2020). These
are then provided to pyRosetta (Chaudhury et al., 2010) or
pyconsFold (Lamb and Elofsson, 2021) to fold and dock the two
proteins.

Below, we will discuss when this methodology works, when it
fails, compare the performance of different alignments, compare the
performance with other docking techniques, and finally introduce a
score, PconsDock, which can accurately be used to distinguish suc-
cessful and unsuccessful docking attempts.

3.1 Example of successful fold and dock
First, we demonstrate that the algorithm can accurately fold and
dock a pair of proteins in at least one case. Supplementary Figure S1
presents one successful example of the fold-and-dock protocol for
the human protein complex between NOT1 MIF4G and CAF1
(PDB: 4gmj) (Petit et al., 2012). The prediction is built on an align-
ment containing 1189 sequences (Meff¼523) created by three itera-
tions of jackhmmer (Eddy, 2011) and an E-value cutoff of 10-3

against all reference proteomes in UniProt (UniProt Consortium,
2019). Visually, it can be seen that the intra-chain distance maps are
similar and most intra-chains contacts are predicted accurately
(PPV>0.90 for both chains), resulting in well-folded models of
both chains (TM-score > 0.8 for both). In total, 139 out of 287
inter-chain contacts are accurately predicted (287 contacts predicted
with a PPV of 49%). The final docked model is also accurate
(dockQ score 0.42). However, as we will show below, unfortunate-
ly, many models are not as easy to model as 4gmj. Therefore, to test
the algorithm’s performance, we have used 222 heterodimeric pro-
tein pairs from dockground 4.3 (Liu et al., 2008; UniProt
Consortium, 2019).

3.2 Modeling accuracy depends on the size of the MSA;

docking performance does not
The Dockground heterodimeric dataset was used to test the per-
formance of the fold-and-dock methodology. First, we examined the
dependence of the size of the multiple sequence alignment on the
performance. The average TM-score for both chains increases with

Fig. 2. Performance of the fold-and-dock methodology versus the size of the joint

alignments. Average TM-score of the two chains (A) and dockQ scores (B) plotted

against the size of the multiple sequence alignment used to predict the contacts
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the size of the combined alignment (Fig. 2). At a depth of 100
sequences, the average TM-score is over 0.6, indicating that about
100 effective sequences are in most cases sufficient to obtain the fold
of a protein.

Next, we examined the quality of the predicted dimers (Fig. 2B).
A few models are docked correctly (dockQ score > 0.23). However,
most protein pairs are not accurately docked (dockQ score close to
0), and the average dockQ score is only 0.02. Further, there is no ap-
parent increase in the docking quality with more sequences in the
MSA. What distinguishes the handful of docked models accurately
is that they all seem to have between 100 and 1000 effective sequen-
ces in the merged alignments. However, it is also clear that many
other protein pairs have MSAs of the same size but are not correctly
docked. Next, we will examine how the docking is affected by the
use of alternative alignments.

3.3 Different alignments sometimes produce better

models
We examined different cutoffs, different minimum coverage of the
alignments, and a different number of predictions to be included.
We also tried to use a reciprocal best hits approach, i.e. only include
proteins if orthologs, as described elsewhere (Green et al., 2021). In
Figure 3, the folding and docking results for a selected subset of
approaches can be seen, and for additional ones in Supplementary
Table S1. It can be noted that we also tried several other combina-
tions, including the merging of predictions from alternative align-
ments, but none of these provided significant improvements, and for
simplicity, we, therefore, focus on the methods used in Figure 3
(marked with a * in Supplementary Table S1).

First, it can be noted that in some cases, one alignment method-
ology provides better contact maps than another. In Supplementary
Figure S1, the contact maps of N- and C-terminus of redox catalyst
DsbD (PDB : 1vrs) (Rozhkova et al., 2004) using one
(Supplementary Fig. S1A) or three (Supplementary Fig. S1B) itera-
tions of jackhmmer searches are shown. When using three iterations,
66 contacts are predicted, and 82% of these are correct. In contrast,
when using one iteration, zero inter-chain contacts are predicted.
The opposite can be noted for the RNase Sa complex with Barstar
(PDB : 1ay7) (Sevcı́k et al., 1998), where one iteration makes a
much better distance map than with three iterations (Supplementary
Fig. S1C and D).

In Figure 3A, it can be seen that six different alignments meth-
ods roughly produce the same number of correctly docked models
(three to ten). A similar trend can be seen for more methods in
Supplementary Table S1. Further, it is not always the same method
that produces the best model (see Fig. 3B). Here, it can also be seen
that for most of the 15 models where at least one method produces a
good model, only a few methods produce a good one. The excep-
tions are 1gpw, 2zae and 4gmj, where most methods produce good
docking results, indicating that the fold-and-dock methodology
could be improved if there was a methodology to identify the best
way to generate the multiple sequence alignment.

3.4 Comparison of docking protocols
We have also developed a CNS-based method to fold-and-dock two
proteins, named pyconsFold (Lamb and Elofsson, 2021). The advan-
tage of this method is that it is about 10 times faster than trRosetta,
and the docking results are similar (Fig. 4A). However, the quality
of the independent proteins is less accurate, average TM-score 0.44
versus 0.63 (Fig. 4B). We also used RaptorX to predict inter-chain
contacts using the web server (Jing et al., 2020). These results are
also in line with the other results, and the docking results are not
better than those obtained by trRosetta (Fig. 4).

So far, we have used the merged multiple sequence alignment to
fold and dock the protein pairs. However, it is not optimal to use
the multiple sequence alignment information to fold the individual
chains. Instead, one can use the complete multiple sequence align-
ment for each of the two chains to predict the two intra-chain dis-
tance maps and then use these. Figure 4 shows that including more
accurate intra-chain constraints improves the modeling of the indi-
vidual chains, the average TM-score increases from 0.63 to 0.72,
but the docking does not improve. Alternatively, it is also possible to
use the distance from the structures, if available, of the individual
proteins for the folding. Using this information improves the
TM-score to 0.92, but the average docking results are not improved.

4 Discussion

So far, we have shown that for 15 out of the 222 heterodimeric
models in dockground 4.3. It is possible to create an acceptable
(dockQ>0.23) model using predicted distances and a fold-and-
dock protocol. However, no single alignment method does more
than ten, i.e. if we can identify the optimal alignments for each tar-
get, it would be possible to improve the performance. Therefore, we
first set out to identify factors that separate correct and incorrect
models.

4.1 Features separating correct and incorrect models
Most protein pairs cannot be docked correctly, and often only a sub-
set of the alignments work. What are the significant factors that dis-
tinguish the successful and unsuccessful cases? Figure 5 shows some
features with some capacity for separation correct (dockQ>0.23)
and incorrect models by plotting density plots. Note that, there are
many more incorrect models, so we analyze the frequency of the fea-
tures and not the numbers for comparison.

First, it can be seen that the successful dockings tend to have a
multiple sequence alignment of 100 or more residues (see Fig. 5A).
It can be noted that about 25% of the protein pairs have less than
ten effective sequences in the merged alignments and 50% less than
100. Only three proteins with 100 sequences or less have a correct
model and no one with less than 35 effective sequences. The
TM-score of all correctly docked models is high (>0.67), not sur-
prisingly, as the TMscore increases with larger MSAs. However,

Fig. 3. Results of Fold and Dock using different alignments. (A) dockQ scores for all

models using six different alignments (see Supplementary Table S1). (B) The dockQ

scores for the 15 proteins where at least one of these six alignments produce an ac-

ceptable model (dockQ>0.23)

Fig. 4. Results of alternative docking and folding protocols. Average dockQ score of

the two chains (A) and TMscore scores (B). The default (N3) performance is com-

pared with pyconsFold (uses the pyconsFold program instead of Rosetta), RaptorX

(uses inter-chain contacts predicted by RaptorX instead of distances from

trRosetta), RaptorX and N3-pdb use the intra-chain distances from the native struc-

tures, and N3-merged uses intra-chain distances predicted by the full alignments for

each chain independently
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there are also many models with good TM scores but with incorrect
docking. Interestingly, many good single chain models with very few
sequences in the MSA exist. The highest TM-score for a model with
only one sequence in the MSA is 0.56.

Next, when studying the number of inter-chain contacts pre-
dicted, it is clear that there is a narrow range of contacts around 100
(average 125) in all successful models. These predictions are mostly
correct (MCC values over 0.5). In contrast, a large set (50%) of all
models have no contacts predicted. However, many incorrect mod-
els have a similar number of predicted contacts as the correct mod-
els, but these predictions are simply wrong (MCC values close to
zero). Interestingly, some unsuccessful models have more contacts
predicted than the successful ones, and most models (both correct
and incorrect) have about 500 contacts (<12 Å) in the native
structure.

Further, most correct models have high precision (�0.8) among
the predicted contacts, but the recall is low (�0.4) (Supplementary
Fig. S2). There is also a group of correct models with a PPV of �0.5
and a higher recall (�0.6). However, there are also a few correct
models with very few correctly predicted contacts. One model has
only two inter-chain contacts predicted, and one of them is wrong,
showing the even a single contact is sometimes sufficient for
docking.

4.2 Pseudo homodimers and repeats can cause

artefacts
As noted above, some unsuccessful models have very many inter-
chain contacts predicted, caused by artefacts similar to the one
shown in Figure 6A–C. This type of artefact seems to be caused by
homology between the two chains (sequence identity of 29% for
3qlu). This homology generates the coevolutionary signal from the

intra-chain contacts to be reproduced as inter-chain contacts. The
protein 3pv6 (sequence identity 29%) is even more complicated as
the artefact does not cover the entire first chain. Still, instead, the
first chain contains two homologous domains and the second chain
a third homologous domain. Another type of artefact is seen in
4yoc, where a larger number of incorrect predictions occur.

To study how similarity between the two chains affects the dock-
ing results, we used HHalign to compare the multiple sequence
alignments in a complex. In Figure 5F, it can be seen that a set of
(21) protein pairs exist with an HHalign probability of 99% or
higher. The vast majority of these models are wrong (19), and some
(9) of them have more than 1000 predicted contacts. We tried differ-
ent strategies to reduce these artefacts, including reciprocal best hits
(Supplementary Fig. S3). However, when this is done, the actual
inter-chain contacts are also lost. It is possible that other strategies,
similar to those used for homodimers (Quadir et al., 2021), could
work better. Until now, we have not succeeded in getting rid of the
artefacts without losing the actual contacts.

4.3 Consensus scoring can separate correct and

incorrect models
Is there a possibility to distinguish between correct and incorrect
models? When modeling individual proteins, it has often been useful
to compare the produced models to measure their reliability. These
quality estimates have been successful in CASP since CASP5
(Lundström et al., 2001; Wallner and Elofsson, 2005). Here, we esti-
mate to use the same idea for docking.

For consensus scoring, it is necessary to have at least two models
to compare and measure the similarity of models. We examined two
alternative sets of models and two alternative scoring functions. We
can compare the two alternative orientations of the merged align-
ments (chain A–B versus B–A) or generate five models with the same
orientation. The models can then be compared using dockQ (Basu
and Wallner, 2016) or MMscore (Mukherjee and Zhang, 2009) (see
Table 1).

All four methods are excellent at separating the correct and in-
correct models (AUC>0.93) for all methods. However, the methods
that use five models are slightly better (Supplementary Fig. S4) pos-
sibly due to the (few) cases where only one of the contact maps gen-
erates a good model, as in the reverse order maps, both models have
the same score. All four consensus methods identify a few more cor-
rect methods than the models from the best single alignment, and
the MMcons and dockQcons methods also identify one or two more
correct models than dockQpair and MMpair (Supplementary Fig.
S4A).

Next, we compared the quality of the first ranked models using
different ranking schemes (Table 1). Consensus ranking increases
the average dockQ from 0.022 to a maximum of 0.042. However,
the number of correct models is not increased. Only one of the four
consensus schemes identifies the same number of correct models,
showing that the consensus scoring is not optimal to identify the
best model, although it is an excellent measure to separate good and
bad models. We also examined the possibility to use the quality of
the individual models (as measured by their average TM-score), but
this was not better than PconsDock (see Table 1).

4.4 Successful models for all kingdoms of life
The basic information used to dock two proteins is coevolution in
conserved interaction patterns in protein–protein interfaces.
Detecting inter-chain coevolutionary signals requires identifying
protein pairs that interact in the same way, which is much easier if
there are few (or no) paralogs and the proteins are only involved in a
few (or only one) specific interaction. Presumably, this is easier for
prokaryotic protein pairs as these have fewer paralogs and, there-
fore, the interaction partners are more likely to be conserved among
the identified orthologs. However, it is also possible that using both
eukaryotic and prokaryotic sequences can help (Rodriguez-Rivas
et al., 2016).

Out of the 15 models with successful predictions, the majority
are predominantly unique to bacteria (as defined with more than

Fig. 5. Features separating good (yellow) and bad (blue) models. Good models are

defined as having a dockQ score over 0.23. All models from all the methods marked

with a star in Supplementary Table S1 are included. (A) Distribution of the number

of effective sequences (log10 of Meff), (B) average TM-scores of chain A and B, (C)

number of inter-chain contacts predicted, (D) MCC values describing the accuracy

of the inter-chain contacts, (E) number of contacts in the native interface and (F)

HHprob (similarity) between chain a and chain b in the complex

Fig. 6. Distance maps for predicted (lower left) and native (upper right) distances

for three proteins with artefacts 3qlu (A), 3pv6 (B) and 4yoc(C)
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75% of the sequences in the merged alignment being bacterial)
(Fig. 7A). However, four are mixed, as defined that no kingdom has
more than 74% of the sequences, three are mainly (>75%) eukary-
otic, and one consist mainly of archaea. The fact that successful pre-
diction exists in all classes shows that this methodology is not
exclusively useful for bacterial protein pairs, although the perform-
ance is, on average, slightly better for the prokaryotic protein pairs
(Fig. 7A).

Next, we tried to use a bacterial specific sequence database for
constructing the multiple sequence alignments (N3-bact) (Fig. 7B
and C). Here, it can be seen that the quality of a few models got
worse, and only one improved significantly. The dockQ score of
2o3b (Nuclease A from E.coli) improved from 0.00 to 0.23. The
paired multiple sequence alignment for 2o3b when using all refer-
ence proteomics is mainly eukaryotic, showing that in this case, the

inclusion of eukaryotic genomes generates noise, losing the signal. It
also shows that a smaller (Meff¼68 versus 306) multiple sequence
alignment is sometimes to prefer. One example of a lost signal is
when eukaryotic proteomes are excluded from the MSA of 2zae
(archaeal homolog of the human protein complex Rpp21-Rpp29),
whose dockQ scores drop from 0.42 to 0.01. In the original align-
ment, about 70% of the sequences are eukaryotic, and the size of
the MSA drops from 839 effective sequences to one sequence when
eukaryotes are excluded.

In the alignments discussed above, we have only used the refer-
ence proteomes, but it is also possible to use all complete proteomes
from UniProt. This dataset is more than three times larger, and most
of the additional proteomes are bacterial. Figure 7 shows that the
overall performance does not change significantly by using the larger
database. However, there are a few targets whose performance
increases significantly. The most striking improvement is obtained
for 2zae, whose dockQ score increases from 0.43 to an impressive

0.58 (Fnat 0.468 iRMS 1.975 LRMS 2.745 Fnonnat 0.326). The
prediction of 2zae is the best prediction obtained. Another example
is 2hrk (Arc1p and MetRS from yeast) which improves from 0.07 to

0.32. Anyhow, the inclusion of many more proteomes only makes a
significant impact on a few proteins.

We also examined the subcellular location of the successful tar-
gets. There is a tendency to have more membrane related (4/15 com-
pared with 9% in the dataset) interactions. The successful targets
include periplasmic (3/15), extracellular (3/15), cytoplasmic (4/15)
and one nuclear target. Given the low number of successful docking
cases, we cannot judge the significance of any preference for any
specific localization; the methodology can be applied to targets from
various locations.

4.5 Comparison to TMdock and GRAMM
How well does the fold-and-dock methodology compare with trad-
itional docking methods? First, we compared it to one shape com-
plementarity method, GRAMM and one template-based docking
method, TMdock (see Fig. 8). In the pure numbers, it can be seen
that the FFT-based GRAMM with the AACA18 potential for rank-
ing outperforms the other methods. Further, using the contacts (ei-
ther from trRosetta or RaptorX) as a scoring potential does not
improve the performance of GRAMM, rather than the reverse.
However, it should be noted that we only examined the most
straightforward way to score the models, and some other strategy
might improve the results.

The results of TMdock are highly dependent on homology to
known templates. Here, we excluded templates that were similar to
the targets (see Methods). If close templates are included, the result
for TMdock improves significantly.

In summary, none of the docking methods can be seen as wildly
successful as all methods predict less than 10% of the first-ranked
models correctly. However, there is room for improvement using a
combination as the results appear complementary (Fig. 8B). No sin-
gle model that GRAMM accurately predicts is accurately predicted

Table 1. Overview of methods used to rank models

Name Comparison method Models to compare AUC No. of correct

first ranked models

Average (dockQ) of

first ranked models

PconsDock-MMpair MMscore Reversed alignments 0.95 8 0.036

PconsDock-MMcons MMscore Five models 0.98 9 0.039

PconsDock-dockQpair dockQ Reversed alignments 0.92 7 0.042

PconsDock-dockQcons dockQ Five models 0.94 10 0.040

TMscore — Model ranked by

TMscores for both

chains.

N/A 8 0.030

N3 — Only first ranked

model from N3

N/A 10 0.022

dockQ dockQ Models ranked by

dockQ score.

N/A 15 0.069

Note: The four first rows represent methods based on consensus. The next three rows represent comparisons: TMscore is based on ranking by TMscore for the

individual chains, dockQ is the optimal performance (best model ranked first) and N3 uses only one alignment (N3).

Fig. 7. (A) Prediction qualities for models from different kingdoms of life using the

N3-predictions. (B) Predictions qualities for all models using different alignments

and sequence databases (see Supplementary Table S1 for details). (C) Comparison

of dockQ scores for individual models compared to the N3 models

Fig. 8. Comparison with GRAMM and TMdock. GRAMM-contact is the

GRAMM-scores using predicted contacts as a constraint, GRAMM is GRAMM-

docking ranked by the AACE18 scoring potential, TMdock-double is a template-

based docking method
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by the Fold-and-Dock method or vice versa. Therefore, a combined
method could, in the future, be used to improve the performance.

4.6 CASP14—successful prediction of H1065
We used the Fold-and-Dock approach to predict intra- and inter-
distance contacts using trRosetta for all relevant targets in CASP14.
For a few models, we got exciting fold-and-dock results; see the con-
tact map in Supplementary Figure S5. These contacts were then used
as a guide for further analysis and additional tests. This approach
did not perform better than other methods in most models, but for
one model (H1065), our third-ranked model was ranked as the best
of all models submitted to CASP14. The third model was generated
by TMdock (Anishchenko et al., 2017), refined using Rosetta mini-
mization. Input monomers were selected from the models produced
after the CASP modeling stage 2, considering ProQ4 scores and vis-
ual inspection. Submitted docking was obtained by running the best
server models, selected by ProQ4, using TMdock against a library of
interface-only structures. The selected model was the model most
resembling the first ranked model from the fold-and-dock approach.
According to the official CASP evaluation, the MMscore of the three
models are 0.60, 0.48 and 0.84, and the global QS scores are 0.092,
0.060 and 0.685, clearly showing that the third model is better
than the others. However, the structural similarity between the
third and the first ranked model (generated directly by PconsDock)
is high. This success shows that a potential path for further improv-
ing the fold-and-dock method includes an additional refinement
protocol.

5 Conclusions

Here, we present an analysis of a fold-and-dock protocol based on
predicted intra- and inter-chain distances using trRosetta. We show
that it is possible to produce acceptable models using the fold-and-
dock protocol for some targets. The success rate is comparable to
traditional docking methods. However, we do believe that the po-
tential of this type of fold-and-dock protocol is more extensive, as
the method is not dependent on the structure of the individual pro-
tein chains, i.e. fold-and-dock methods are applicable to predict the
structure of all complexes, including the ones involving flexible
proteins.

One limitation of this study is that the network used here
(trRosetta) is trained to predict intra-chain contacts, but we use it to
predict inter-chain contacts. We trained a network specifically to
predict inter-chain contacts, but the performance was not as good as
trRosetta, possibly because it was trained on a significantly lower
number of contacts. Further evidence is the observation that the
RaptorX methodology specifically trained to predict inter-chain
contacts does not perform significantly better than trRosetta.

The problem that remains unsolved is the choice of the best
alignment for folding and docking. In some cases, only specific
alignment gives correct folding and docking based on the proteins’
intrinsic evolutionary characteristic and interaction. Therefore, we
believe that improving this methodology involves improving the
merging of the two multiple sequence alignments. Alternatively,
somehow, extracting additional information from the individual
multiple sequence alignments. Identifying a priori the alignment
containing more information is still an open challenge.
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