
Quantum Simulation of Tunneling in
Small Systems
Andrew T. Sornborger

Department of Mathematics and College of Engineering University of Georgia, Athens, Georgia 30602, USA.

A number of quantum algorithms have been performed on small quantum computers; these include Shor’s
prime factorization algorithm, error correction, Grover’s search algorithm and a number of analog and
digital quantum simulations. Because of the number of gates and qubits necessary, however, digital
quantum particle simulations remain untested. A contributing factor to the system size required is the
number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we
show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one
single-qubit operator per time step for the potential evolution, eliminating at least half of the quantum gates
required for the algorithm and more than that in the general case. Such simulations are within reach of
current quantum computer architectures.

Q
uantum simulations on quantum computers are one of a set of algorithms that give exponential
improvement in computational resources relative to the best classical algorithm1–4.

Algorithms for studying many types of quantum field theory have been considered in both analog form in
which a quantum Hamiltonian (typically manybody or multiple spin) is mapped either directly or via a suitable
pulse-sequence to a computational Hamiltonian5–21 and digital form in which a quantum system’s Hamiltonian is
split into free and interacting operators, then, using Trotter’s formula, is simulated on a quantum computer22,23.

Small quantum simulations have already been realized on NMR24–31, atomic32,33, ion trap34–38 and photonic39,40

quantum computers in both analog and digital forms.
A concerted effort has also been made to investigate digital quantum particle simulations3 for the simulation of

chemical dynamics41,42. Algorithms for state preparation43, the simulation of temporal dynamics41 and the mea-
surement of observables44 have all been developed. However, this type of simulation has remained untested due to
the large number of gates and/or ancillary qubits needed to compute the kinetic and potential operators41,45. In this
paper, we focus on reducing the number of gates required for the simulation of temporal dynamics to the bare
minimum, while still simulating interesting physics.

For a review of the current state and outlook for quantum simulation, see46–50 and51.
The standard digital quantum simulation algorithm for a particle on a one-dimensional grid3,45 encodes the

position efficiently in n 5 log2 N qubits, where N is the size of the lattice of discretized particle locations, xk 5 kDx,
k 5 0, … ,N 2 1. The method uses a split operator approach to integrate a Schrödinger equation with a time-
independent Hamiltonian that is first-order accurate in the time step, Dt3:

y tð Þj i~e{iHt yinitj i

~e{i VzKð Þt yinitj i

~ e{iVDte{iKDteO Dt2ð Þ
� � t

Dt
yinitj i:

Higher order methods that give more accurate time integration have been developed52–54, but methods of order
higher than two require more gates per time step. For simplicity, we will only consider first-order methods here.
States in the qubit Hilbert space

yj i~ . . . y2y1y0j i~ . . . y2j i y1j i y0j i,

where jyiæ g {j0æ, j1æ}, represent particle location in the binary representation, jxæ 5 Sjg0,…,n 2 1 2jyjjyæ. The
matrix exponential for the kinetic operator is calculated using a quantum Fourier transform (QFT)
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e{iKt~Fe{iTtF{,

where F{ is a discrete Fourier transform operator and T is diagonal
with entries proportional to 2q2/2m, and q denotes the Fourier mode
wavenumber. The resulting periodic, shift invariant unitary trans-
form, e2iKDt, gives an approximation to the time evolution on the
lattice due to the kinetic energy operator that is accurate to N’th
order in space. This leads to the digital quantum particle simulation
algorithm:

y tð Þj i : ~ e{iVDtFe{iTDtF{� � t
Dt y 0ð Þj i:

The QFT takes of order n2 gates to calculate55 and general algorithms
implementing the diagonal T and V operators require ancillary
qubits56, although it has been shown that the quadratic kinetic energy
operator may be computed with n2 two-qubit gates with no ancillary
qubits45.

The point of this paper is to describe a quantum particle simu-
lation that can be used as a proof-of-principle demonstration. To do
this, it must be implemented in current quantum computer archi-
tectures where the number of qubits is limited and the number of
gates that may be performed before decoherence destroys the com-
putation is also limited. We consider the special case of square-well
potentials. We show that a set of square-well potentials may be
implemented with a sole, single-qubit operator and no ancillary
qubits (see Methods). This virtually eliminates the calculation of
the potential operator. Thus, simulations of important physical phe-
nomena such as tunneling and the evolution of quasi-stable states
may be performed with considerably fewer gates than simulations
requiring arbitrary potentials. Additionally, we present a reduction
of the number of gates required for the diagonal part of the kinetic
operator in the case of 4 or fewer qubits.

Results
A Two Qubit Tunneling Simulation. Let us consider the smallest
possible tunneling simulation. An n 5 2 qubit simulation of N 5 4
lattice points may be performed with the circuit

One Time Step of a Two-qubit Digital Quantum Single-particle
Tunneling Simulation.

In this circuit and below, Vij and Wij are controlled phase gates
applied to qubits i and j and Hi and Zi are a Hadamard gate and a Z-
rotation on qubit i, respectively (see Methods). In total, each time
step in this tunneling simulation requires 10 operations, 7 single
qubit operations and 3 two-qubit operations. The circuit for a single
time step is shown above. This circuit implements a double-well
potential with the gate P0~exp {ius0

zDt
� �

acting on the lowest
order qubit.

In Fig. 1, we plot lattice occupation probabilities from two simula-
tions with a double-well potential with Dt 5 1/10: one a free-particle
simulation with v 5 0 and the other a tunneling simulation with v 5

10. This value ofDt traded off accuracy for gate number (see Methods
section for a discussion of simulation errors), but the qualitative
dynamics did not change even for more accurate (and costly) simu-
lations. The initial state was jyinitiæ 5 j01æ, corresponding to a par-
ticle in one of the wells. The free-particle probability distribution
spreads across all lattice points as it evolves, whereas the particle
tunnels from the well at lattice point 1 (j01æ) to the well at lattice
point 3 (j11æ) in the tunneling simulation. These results show that
differences in the evolution of the probability distribution are evident
within 4 time steps. Thus, such a proof-of-principle simulation may
be implemented on a quantum computer with 4 3 10 5 40 gates (28
single-qubit and 12 two-qubit).

Multi-Qubit Quantum Tunneling Simulations. Larger simulations
require more gates. For instance, a three-qubit simulation requires 6
gates per QFT (3 singlequbit and 3 two-qubit), 6 gates for the
diagonal kinetic energy operator (3 singlequbit and 3 two-qubit),
and one single-qubit gate for the potential as shown in the circuit
diagram below.

where P1~exp {ius1
zDt

� �
is shown, representatively, for a double-

well potential, but other square-well potentials could be generated by
acting on different qubits. The QFT and diagonal kinetic energy
operators are

In Fig. 2, we show results from a three-qubit simulation with a
double-well potential, where each well is resolved with two lattice
points. The time step Dt 5 1/5 and v 5 5. Here, a tradeoff was also
necessary to find a simulation that captured the oscillatory and tun-
neling time scales and had few gates. The initial state was jyinitiæ 5

j110æ. Because the initial state only occupies half of one well, oscil-
latory dynamics are visible within the well. After a few time steps, the
oscillatory state tunnels between wells. Oscillatory dynamics are
evident within 4 time steps, but 5 time steps are required before
the oscillatory state tunnels appreciably to the second well and 7 time
steps are needed to see oscillation of the tunneled state. Thus,
between 4 3 19 5 76 or 7 3 19 5 133 gates would be required in
order to see interesting tunneling effects in such a simulation. Four-
qubit simulations can be envisaged using circuits based on similar
methodology, although the number of gates would most likely be
prohibitive for current quantum computer architectures.

Discussion
Only n 5 log2 N qubits are required for an N lattice-point particle
simulation, therefore this algorithm is efficient in the number of
qubit resources required. In general, n2 gates are needed for the
kinetic operator (see Methods), but for fewer than n 5 4 qubits,

Figure 1 | Particle probability distributions as a function of time for the
first four steps of a two qubit simulation for v 5 0 (free particle) and v 5
10 (particle in double well). The double-well potential and gray scale used

to plot the probabilities are depicted to the right.
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further efficiency is possible using the basis approach that we out-
lined. Furthermore, as noted above, our algorithm virtually elimi-
nates the calculation of the potential operator. With very few qubits,
interesting tunneling dynamics may be simulated with a gate count
that is within reach of current quantum architectures.

Much recent work has been done to understand the resources
necessary to perform fully error-corrected quantum particle simula-
tions using various error correction schemes57. We note that, as in the
non-fault-tolerant case, the simulations presented here would also
require the fewest resources in fully error corrected quantum archi-
tectures, since the number of logical qubits and gates is as small as
possible in the error-corrected case as well.

Methods
Square-well Potentials. A set of square-well potentials may be implemented with a
sole single-qubit operator and no ancillary qubits. To see this, consider the single-
qubit Z-rotation on the highest order qubit

e{iVDt~e{iusn{1
z Dt~e{iuszDt

6I6I . . . ,

where v is a parameter, a superscript indicates the qubit to which the operator is

applied and sz is the Pauli z-matrix sz~
1 0
0 {1

� �
:The operator e2iVDt, when acting

on a lattice state, implements a square-well potential by rotating qubit states with j0æ
(j1æ resp.) highest order qubit with positive (negative resp.) phase velocity v. The
single-qubit operator acting on the next highest order qubit

e{iVDt~e{iusn{2
z Dt~I6e{iuszDt

6I . . .

implements a double-square-well potential, and so on, with the last potential in this
series implementing a Dirac comb-like potential.

By simulating this class of square-well potentials we reduce the complexity of the
potential calculation from a potentially large number of gates and ancillary qubits to
just one single-qubit operation. In contrast, the phase kickback algorithm used in41

requires a total of 2n qubits (n for the quantum state and n ancilla qubits) as well as n2

extra gates for a QFT on n ancilla qubits.
Although the main point of this paper is the simplification of the simulation by

reducing the potential computation to one gate, further gate reductions can be made
to the kinetic operator when considering few qubit systems. This can be done by
forming a diagonal Hamiltonian using a basis of diagonal operators. This method is
only efficient for n # 4 and scales as 2n 2 1. Therefore, for n . 4, ancillary qubits or
the Benenti-Strini (BS)45 method (that scales as n2) should be used. However, for small
systems of qubits, forming a basis of diagonal operators takes fewer gates. Note that
for n 5 2, 3 and 4, we would need 4, 9 and 16 (resp.) operators for BS, but at most 3, 7
and 15 (resp.) are required using a basis along the diagonal. Furthermore, fewer multi-
qubit operations are necessary with this method, although a three-qubit operator may
be necessary for three-qubit simulations and three- and four-qubit operators for four-
qubit simulations. Here, we use the method to construct the diagonal operator D for
the kinetic energy operator, however, arbitrary potentials could also be constructed
this way. Because our goal is to find interesting simulations with few gates, we do not
pursue more complex potentials here.

In our two-qubit simulations (see Results), we use a double well potential,
exp {iVDtð Þ~exp {ius0

zDt
� �

. The QFT may be computed with the operators55

F{~H1V01H0,

where Hi is a Hadamard operator on the i’th qubit and the controlled-phase gate V01

5 diag(1, 1, 1, v) with v 5 exp(2pi/4). Note that F{ results in a bitswapped Fourier
transform (in our notation, F is the inverse Fourier transform matrix).

The kinetic operator is then K 5 FDF{, with

D~exp {i {2p=4ð Þ2diag 0,4,1,1ð ÞDt
� �

ð1Þ
(Note that this operator is also bit-swapped and we have taken m 5 1/2).

The diagonal operation D may be achieved up to an overall phase with the operator

D~W01Z1Z0

where the single-qubit operators

Z0~e{icc0s0
zDt

Z1~e{icc1s1
zDt

and W01 is a controlled-phase operator on qubits 0 and 1,

W01~e{icc2 diag 1,1,1,{1ð Þ01Dt ,

where c~ {2p=4ð Þ2
� ffiffiffi

4
p

. The coefficients (c0 5 21, c1 5 24 and c2 5 4) in the unitary
operators Z0, Z1 and W01 (resp.) were obtained by noting that the vectors (1, 1,21,21),
(1,21,1,21) and (1, 1, 1,21) that form their diagonal elements are a basis for zero mean
vectors (i.e. neglecting the constant phase proportional to (1, 1, 1, 1)) for R4.

To calculate the QFT in the three-qubit case, the unitary operators are the single-qubit
Hadamard gates and the two-qubit controlled-phase operators Vij 5 Vij(v), where v 5

exp(2pi/8) (see circuit diagram in Results). To calculate the quadratic diagonal operator
in the three-qubit case (see Results), the unitary operators are the single-qubit operators

Z0~exp {icc0s0
zDt

� �

Z1~exp {icc1s1
zDt

� �

Z2~exp {icc2s2
zDt

� �
and the two-qubit controlled-phase operators

W01~exp {icc3diag 1,1,1,{1ð Þ01Dt
� �

W02~exp {icc4diag 1,1,1,{1ð Þ02Dt
� �

W12~exp {icc5diag 1,1,1,{1ð Þ12Dt
� �

,

where

c~{ 2p=8ð Þ2
. ffiffiffi

8
p

and

c0~{1:42

c1~{5:66

c2~{22:63

c3~22:63

c4~11:31

c5~{5:66:

Note that, in principle, a seventh three-qubit operator would also be necessary propor-
tional to the vector (1, 1, 1, 1, 1, 1, 1,–1) along the diagonal, but for the (bit-swapped)
diagonal of the 8 lattice point simulation, (0, 16, 4, 4, 1, 9, 9, 1), its coefficient is identically
zero. This circuit requires a total of 19 gates (10 single-qubit and 9 two-qubit).

Once we have computed the unitary operators for one time step of the kinetic,
Uk(Dt), and potential, Uv(Dt), evolution, it is straightforward to calculate the exact

Figure 2 | Particle probability distribution as a function of time over ten time steps in a three-qubit double-well simulation. The potential schematic is

shown to the right, as in Fig. 1. Gray scales are as in Fig. 1. The double-well potential has two lattice points per well and, for the given initial state, an

oscillation is induced in one of the wells then tunnels to the other well.

www.nature.com/scientificreports
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Hamiltonian evolution: Uexact(Dt) 5 exp(log(Uk(Dt))1log(Uv(Dt))). We then
determine RMS errors relative to the exact evolution for the two and three-qubit
simulations. These are given in Table 1. The simulations that we present in Figs. 1 and
2 have a total, integrated error of 64% and 20%, respectively. For both simulations, we
checked that state evolution was qualitatively similar to the exact simulations for the
chosen values of Dt. Clearly, for high-precision simulations, smaller errors would be
desirable. To achieve this, one would use smaller values for Dt at the expense of an
increase in gate count.
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Table 1 | RMS Error per time step for a range of values ofDt for the
2 and 3 qubit simulations described in Results

Dt 0.2 0.1 0.05 0.025 0.0125

Error 2 qubit 0.40 0.16 0.06 0.03 0.01
Error 3 qubit 0.08 0.02 0.007 0.003 0.002
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