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Abstract

In genomic research phenotype transformations are commonly used as a straightforward way to reach normality of the
model outcome. Many researchers still believe it to be necessary for proper inference. Using regression simulations, we
show that phenotype transformations are typically not needed and, when used in phenotype with heteroscedasticity, result
in inflated Type I error rates. We further explain that important is to address a combination of rare variant genotypes and
heteroscedasticity. Incorrectly estimated parameter variability or incorrect choice of the distribution of the underlying test
statistic provide spurious detection of associations. We conclude that it is a combination of heteroscedasticity, minor allele
frequency, sample size, and to a much lesser extent the error distribution, that matter for proper statistical inference.
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Introduction

Phenotype transformations are still very popular in genomic

research when drawing inference about genotype-phenotype

associations. The two most widely used transformations are

natural logarithm and rank-based inverse-normal transformation

(INT). Their popularity is underlined by them being easily

obtained; logarithm has an automated function in all statistical

software packages and INT in many, for example, in SAS and

SPSS. Often the only reason to transform a phenotype is ‘‘to

improve normality’’. Many researchers still believe that linear

regression is valid only for normally distributed model residuals or

even model outcomes. We give a few examples: ‘‘the Von

Willebrand factor was natural log-transformed to improve

normality’’ [1]; ‘‘Weight and body mass index scores were

transformed by the natural logarithm to normalise the distribu-

tion’’ [2]; ‘‘Natural logarithm transformations were used to

improve normality of the distributions for HDL and LDL

cholesterol, TG, and BMI’’ [3]. Sometimes phenotypes are

transformed without providing any reason at all [4]. Phenotype

transformations alter the regression model and the interpretation

of the parameter estimates. There is no direct way how to translate

the parameter estimates back into difference in the mean of the

phenotype, but attempts to do so are many, e.g. [5]. Nevertheless,

in the absence of believes about biological plausibility and in the

absence of a detailed scientific question to guide the model choice,

a phenotype transformation could be chosen for statistical

convenience, if merit.

Linear regression is frequently presented as an optimal method

in the context of normally distributed model residuals. But it was

discovered as a semiparametric method based on least squares.

The fact that residual normality is not necessary for validity of

linear regression in sufficiently large samples is well understood in

the statistical literature but it is still not widely known and accepted

in genetic epidemiology. The sample size in genetic epidemiology

studies is typically in thousands, using established cohorts. If study

data are stratified for analyses by race/ethnicity and sometimes

additionally by an environmental exposure, the sample size is still

at least in several hundreds. The behavior of t-tests with extremely

non-normal medical cost data suggests that major limitation is not

distributional but whether detecting and estimating a difference in

the mean of the outcome answers the scientific question at hand

[6]. Simulations for two-group comparisons showed lack of

justification for INTs in most situations [7].

In contrast to two-group comparison tests, there has been little

empirical research into the behavior of linear regression. In this

paper we first show that in linear regression in the genetic

association studies framework transformations are typically not

needed to improve adherence of the Type I error rate to the

nominal level. Further, we focus on a regression feature unique to

genetic data. Genotype, the major covariate of interest character-

ized by minor allele frequency (MAF), is prone to skewness. Many

genetic studies include single nucleotide polymorphisms (SNPs)

with low MAF, often as low as 0.05 or 0.01, known as rare

variants. New arrays are being developed specifically for fine

mapping, targeted at SNPs with lower MAF. For instance,

Metabochip is a custom SNP array based on the Illumina iSelect

platform and was developed for replication and fine mapping of

susceptibility variants associated with several metabolic and

cardiovascular traits. The MAF filters there may be set as low as

0.001, resulting in genotype skewness of 22. With rare variants

addressing of heteroscedasticity becomes crucial. In this paper we

discuss the choice of standard errors (SEs) to construct a test

statistic and the choice of the distribution of the test statistic under

the null hypothesis that improve adherence of the Type I error

rate to the nominal level.

We note that techniques involving collapsing or summing rare

variants, often referred to as pooling or burden tests [8,9], are

another route of addressing the situation with rare variants. The

lack of robustness of such methods to neutral and protective

variants in comparison to single variant test statistics has recently

been noted [10].
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To illustrate the situation, denote Z a positive continuous

phenotype, such as body mass index (BMI) or plasma lipid

concentrations. We define three model outcomes Y : The

untransformed phenotype Y~Z; The natural logarithm of the

phenotype Y~ log (Z); A rank-based INT of the phenotype

Y~W{1 rank(Z){c

n{2cz1

� �
, with W{1 denoting the standard normal

quantile function and n the sample size. We take c~3=8 [7,11].

The typical linear regression model in a genetic association study

is.

E½Y �~b0zbX XzbGG, ð1Þ

where bG is the parameter of interest quantifying the association

between a genotype G and the mean of an outcome Y . Further, X

is a small set of p covariates, such as age and gender. Denote

X~(1,X ,G) and b~(b0,bX ,bG). As long as the model for the

mean of the outcome (1) is correct, the ordinary least squares

estimator b̂b~(XT X){1XT Y is an unbiased estimator of b. It is a

weighted average of the model outcome Y with weights that

dependent on the covariate set X.

Figure 1. Typical scenarios with no heteroscedasticity. A sample
QQ plot for sample size of 500 and MAF 0.3.
doi:10.1371/journal.pone.0056976.g001

Table 1. Table of type I error rates for normally distributed errors with no heteroscedasticity.

no transformation transformation

MAF n a = 0.05 a = 0.001 a = 0.05 a = 0.001

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

0.01 200 0.054 0.246 0.085 0.0013 0.1240 0.0000 0.054 0.246 0.086 0.0013 0.1234 0.0000

500 0.052 0.100 0.044 0.0015 0.0171 0.0014 0.051 0.100 0.045 0.0012 0.0165 0.0014

1000 0.046 0.073 0.043 0.0008 0.0047 0.0003 0.046 0.073 0.043 0.0008 0.0044 0.0003

2000 0.050 0.062 0.050 0.0010 0.0022 0.0005 0.050 0.061 0.049 0.0010 0.0022 0.0003

5000 0.046 0.052 0.046 0.0014 0.0013 0.0007 0.047 0.051 0.046 0.0015 0.0013 0.0007

0.05 200 0.049 0.070 0.042 0.0010 0.0045 0.0002 0.050 0.070 0.043 0.0011 0.0042 0.0002

500 0.052 0.064 0.051 0.0010 0.0028 0.0008 0.052 0.064 0.050 0.0011 0.0027 0.0007

1000 0.051 0.053 0.047 0.0011 0.0020 0.0009 0.050 0.053 0.047 0.0012 0.0019 0.0010

2000 0.050 0.053 0.050 0.0011 0.0012 0.0009 0.050 0.053 0.050 0.0011 0.0012 0.0009

5000 0.054 0.055 0.054 0.0012 0.0012 0.0012 0.054 0.055 0.054 0.0013 0.0012 0.0012

0.1 200 0.049 0.061 0.045 0.0008 0.0020 0.0002 0.049 0.061 0.044 0.0008 0.0020 0.0002

500 0.048 0.052 0.046 0.0016 0.0020 0.0014 0.048 0.052 0.047 0.0016 0.0020 0.0013

1000 0.051 0.054 0.051 0.0013 0.0017 0.0012 0.051 0.053 0.051 0.0012 0.0017 0.0011

2000 0.051 0.052 0.051 0.0013 0.0016 0.0015 0.051 0.052 0.051 0.0014 0.0016 0.0015

5000 0.048 0.047 0.046 0.0007 0.0008 0.0006 0.047 0.047 0.047 0.0007 0.0008 0.0007

0.3 200 0.051 0.055 0.050 0.0008 0.0010 0.0006 0.051 0.054 0.050 0.0008 0.0010 0.0006

500 0.049 0.051 0.049 0.0008 0.0010 0.0006 0.049 0.051 0.049 0.0009 0.0010 0.0006

1000 0.050 0.052 0.052 0.0011 0.0010 0.0010 0.051 0.053 0.052 0.0011 0.0010 0.0010

2000 0.050 0.051 0.050 0.0006 0.0008 0.0007 0.049 0.051 0.050 0.0006 0.0007 0.0006

5000 0.051 0.051 0.051 0.0014 0.0014 0.0014 0.051 0.052 0.051 0.0013 0.0014 0.0013

0.5 200 0.055 0.060 0.056 0.0018 0.0027 0.0015 0.054 0.060 0.056 0.0017 0.0025 0.0015

500 0.051 0.052 0.052 0.0008 0.0011 0.0009 0.050 0.052 0.052 0.0007 0.0011 0.0010

1000 0.051 0.053 0.052 0.0012 0.0012 0.0012 0.051 0.053 0.052 0.0012 0.0012 0.0012

2000 0.052 0.053 0.052 0.0010 0.0010 0.0010 0.052 0.053 0.052 0.0010 0.0010 0.0010

5000 0.053 0.053 0.053 0.0016 0.0016 0.0016 0.054 0.054 0.054 0.0016 0.0016 0.0016

a is significance level. M1 uses model-based SEs combined with normal quantiles. M2 uses robust SE with normal quantiles. M3 uses robust SEs with t-quantiles with n|

MAF degrees of freedom.
doi:10.1371/journal.pone.0056976.t001
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We consider a test for no association between the genotype G

and the mean of the model outcome Y , i.e., bG~0 in model (1).

The natural test statistic is the standardized score obtained by

dividing the parameter estimate b̂bG by its estimated standard

error. For unbiased estimation of the standard error we need

either assumptions on variance of the outcome or to use an

empirical estimator. The model-based estimator is based on the

classical assumption of constant outcome variance and is the one

being typically used. The other is robust to that assumption,

empirically estimating the variability of the outcome [12,13]. This

method is most widely used in the context of the generalized

estimating equations [14]. It is appropriate to use when

heteroscedasticity is present, when variability of the outcome

given covariates is a function of the covariates rather than

constant. This is specially true with skewed covariates, such as

SNPs with low MAF. On the other hand this robust standard error

estimator may perform suboptimal for very small effective sample

sizes (small sample size, skewed covariates), being inefficient [15–

17]. For larger effective sample sizes, however, regardless of the

actual outcome variability, this robust estimator is always valid.

Heteroscedasticity does not cause bias in the parameter estimator

itself. It can only cause the estimators of the variability of the

parameter estimate to be inconsistent. Confidence intervals and

tests’ p-values may be invalid. Model-based standard errors as

compared to robust standard errors were recently discussed in the

context of gene-environment interaction in GWAS [18]. Popula-

tion substructure was suggested by elevated median interaction test

statistic when model-based standard errors were used. The

inflation was alleviated when robust standard errors were used.

Testing in a regression model framework requires specification

of the distribution of the test statistic under the null-hypothesis.

The asymptotic distribution of the test statistic is standard normal,

and another is a t-distribution with k degrees of freedom. Using a

t-distribution has impact for smaller k because it is approaching

the standard normal distribution with increasing k. Having

heavier tails, it will provide wider confidence intervals and larger

p-values. When using the model-based standard errors, the degrees

of freedom are k~n{2{p. As an analogy to the Welch-

Satterthwite approximation of degrees of freedom in a t-test under

heterogeneous variance [19], a Lipsitz formula provides an

approximation of number of degrees of freedom in linear

regression when using the robust standard errors [20]. The

computation of the degrees of freedom involves estimation of the

variability of the variance estimator for each parameter estimate

and is different for different parameter estimates within a single

regression model. Unlike the Welch-Satterthwite formula for the t-

test, we are not aware of any statistical software package making

Table 2. Table of type I error rates for Weibull errors with no heteroscedasticity.

no transformation transformation

MAF n a = 0.05 a = 0.001 a = 0.05 a = 0.001

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

0.01 200 0.045 0.269 0.104 0.0036 0.1489 0.0007 0.046 0.258 0.097 0.0016 0.1377 0.0001

500 0.048 0.117 0.058 0.0019 0.0298 0.0024 0.051 0.105 0.047 0.0012 0.0227 0.0017

1000 0.050 0.084 0.055 0.0012 0.0118 0.0021 0.052 0.075 0.049 0.0011 0.0072 0.0012

2000 0.052 0.069 0.056 0.0009 0.0054 0.0020 0.052 0.063 0.050 0.0007 0.0043 0.0012

5000 0.051 0.055 0.050 0.0013 0.0030 0.0012 0.049 0.054 0.049 0.0014 0.0019 0.0008

0.05 200 0.050 0.081 0.051 0.0017 0.0083 0.0011 0.050 0.076 0.045 0.0013 0.0062 0.0007

500 0.051 0.063 0.051 0.0012 0.0031 0.0011 0.051 0.061 0.049 0.0010 0.0022 0.0009

1000 0.054 0.058 0.054 0.0008 0.0029 0.0015 0.051 0.056 0.050 0.0009 0.0024 0.0014

2000 0.051 0.054 0.051 0.0009 0.0021 0.0016 0.050 0.052 0.050 0.0008 0.0013 0.0009

5000 0.049 0.051 0.050 0.0017 0.0017 0.0016 0.049 0.050 0.049 0.0013 0.0017 0.0015

0.1 200 0.050 0.063 0.049 0.0011 0.0035 0.0011 0.052 0.062 0.047 0.0009 0.0026 0.0005

500 0.050 0.056 0.051 0.0008 0.0010 0.0004 0.051 0.056 0.051 0.0004 0.0011 0.0006

1000 0.049 0.052 0.049 0.0012 0.0016 0.0014 0.048 0.051 0.049 0.0014 0.0017 0.0015

2000 0.051 0.053 0.051 0.0004 0.0008 0.0006 0.051 0.053 0.051 0.0006 0.0007 0.0006

5000 0.053 0.055 0.054 0.0013 0.0016 0.0016 0.053 0.052 0.052 0.0015 0.0014 0.0014

0.3 200 0.051 0.057 0.053 0.0011 0.0020 0.0009 0.049 0.054 0.050 0.0012 0.0018 0.0008

500 0.050 0.052 0.051 0.0016 0.0017 0.0015 0.050 0.053 0.050 0.0016 0.0020 0.0017

1000 0.050 0.050 0.049 0.0016 0.0020 0.0019 0.049 0.051 0.050 0.0014 0.0014 0.0013

2000 0.050 0.052 0.051 0.0012 0.0015 0.0014 0.049 0.051 0.050 0.0012 0.0014 0.0014

5000 0.050 0.050 0.050 0.0006 0.0006 0.0006 0.052 0.052 0.052 0.0007 0.0006 0.0006

0.5 200 0.053 0.057 0.054 0.0013 0.0018 0.0014 0.052 0.057 0.053 0.0013 0.0017 0.0011

500 0.049 0.052 0.051 0.0010 0.0011 0.0008 0.048 0.051 0.050 0.0008 0.0009 0.0008

1000 0.048 0.049 0.048 0.0015 0.0014 0.0013 0.051 0.051 0.050 0.0009 0.0009 0.0008

2000 0.051 0.052 0.051 0.0009 0.0011 0.0011 0.051 0.051 0.051 0.0008 0.0008 0.0008

5000 0.051 0.053 0.053 0.0014 0.0014 0.0014 0.054 0.054 0.054 0.0011 0.0010 0.0010

doi:10.1371/journal.pone.0056976.t002
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Figure 2. Extreme scenarios with no heteroscedasticity. Sample QQ plots for sample size of 200 and MAF 0.01. In panel A normal errors are
used. In panel B x2 or Weibull errors are used.
doi:10.1371/journal.pone.0056976.g002

Figure 3. Typical scenarios with heteroscedasticity and some skewness in genotype. Sample QQ plots for sample size of 5000 and MAF
0.3. Panel A uses normal errors and no transformations. Panel B uses normal errors and transformations. Panel C uses x2 or Weibull errors and no
transformations. Panel D uses x2 or Weibull errors and transformations.
doi:10.1371/journal.pone.0056976.g003
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the Lipsitz formula for linear regression readily available. We

approximate the effective degrees of freedom k with n|MAF.

An improper choice of the distribution of the test statistic under

the null-hypothesis has consequences for inference validity: if

distributional quantiles are too small, as could with normal

quantiles or overestimated effective degrees of freedom of a t-
distribution, decisions may be uncoservative with too low p-values,

resulting in spurious detection of associations; if distributional

quantiles are too large, as could with underestimated effective

degrees of freedom of a t-distribution, decisions may be

conservative with too large p-values, failing to discover the

associations.

In moderate to large sample sizes, there exists a third option for

specification of the distribution of the test statistic under the null-

hypothesis; Parametric bootstrap [21, 4.2.3] can provide a good

approximation to the distribution of the test statistic under

sampling from the true null-hypothesis model through the

distribution of the test statistic under sampling from the fitted

null-hypothesis model. However, similarly to any resampling

approach, this option typically requires additional coding and may

be unfeasible with larger number of models. We do not consider it

in our paper.

Results

Using simulation, we explore tests of association between a

genotype and a phenotype in linear regression in samples of

unrelated individuals. For a range of sample sizes and MAFs we

consider two types of error distributions with heavy tails - Weibull

and x2, and, for reference, normal distribution. We simulate non-

heteroscedastic and heteroscedastic data sets. We evaluate the

impact of phenotype transformations and compare three statistical

approaches for p-value computation. We also discuss power. We

demonstrate the methods with an actual genetic association study

data.

No Heteroscedasticity
Figure 1 for sample size of 500 and MAF 0.3 shows the typical

results for any of the error distribution. Phenotype transformations

were not needed to improve the Type I error rate adherence to the

Figure 4. Typical scenarios with heteroscedasticity and no skewness in genotype. Sample QQ plots for sample size of 5000 and MAF 0.5.
Panel A uses normal errors and no transformations. Panel B uses normal errors and transformations. Panel C uses x2 or Weibull errors and no
transformations. Panel D uses x2 or Weibull errors and transformations.
doi:10.1371/journal.pone.0056976.g004
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nominal level. All three approaches, that is model-based SEs

combined with normal quantiles, robust SEs with normal quantiles

and robust SEs with t-quantiles with n|MAF approximate

effective degrees of freedom, performed similarly well showing

adherence of the Type I error rate to the nominal level. Tables 1

and 2 summarize the type I error rates across MAF and sample

size for 5% and 0.1% significance levels.

We note that for a very small sample size of 200 and rare

variants with MAF 0.01 we saw too high Type I error rates when

using the robust SEs with normal quantiles, see Figure 2. Using the

robust SEs with t-quantiles with degrees of freedom of n|MAF
brought the Type I error rates closer to the nominal values. The

effective number of degrees of freedom is very low at 2. For

Weibull and x2 distributed errors the Type I error rates were too

large for low significance levels (0.01 and smaller) also when using

the model-based SEs. It indicates that in this extreme scenario the

asymptotic properties of the test statistic are not in place yet. At the

5% significance level they are, however, still correct. Phenotype

transformations improved the Type I error adherence when using

the model-based SEs, but the improvement was slight. When using

the robust SEs, there was no improvement with transformations,

using any test statistic distribution.

Heteroscedasticity
With heteroscedastic data and some skewness in the genotype,

the model-based SEs are not valid estimates of the variability of

the estimated parameter and thus using them provides invalid p-

values. Regardless of the sample size we saw too small p-values, i.e,

too large Type I error rates. See Figure 3 for sample size of 5000

and MAF 0.3. Transformations did not correct the Type I error

rates when using model-based SEs. On the contrary, they seem to

increase them even further, specially with the heavy tailed errors

with Weibull and x2 distribution. The p-values based on the

model-based SEs were improving with increasing MAFs, i.e., with

decreasing genotype skewness. With genotype skewness of 0 for

MAF 0.5, using model-based SE provided approximately valid

inference, see Figure 4. Even in this scenario, with Weibull and x2

error distribution the transformations provided utterly invalid

Type I error rates. With heteroscedasticity in phenotype, using

robust standard errors is a valid approach. Yet again, with

transformations and Weibull and x2 error distribution the Type I

errors substantially exceeded their expectation. Tables 3 and 4

summarize the type I error rates across MAF and sample size for

5% and 0.1% significance levels.

Using robust standard errors is a valid approach, though with a

very small sample size of 200 and rare variants with MAF 0.01 this

empirical estimators does not perform well, see Figure 5. We did

Table 3. Table of type I error rates for normally distributed errors with heteroscedasticity.

notransformation transformation

MAF N a = 0.05 a = 0.001 a = 0.05 a = 0.001

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

0.01 200 0.189 0.268 0.108 0.0282 0.1480 0.0021 0.189 0.268 0.108 0.0283 0.1473 0.0022

500 0.187 0.104 0.046 0.0264 0.0179 0.0014 0.187 0.104 0.046 0.0255 0.0180 0.0014

1000 0.184 0.074 0.046 0.0301 0.0051 0.0004 0.185 0.074 0.046 0.0304 0.0052 0.0004

2000 0.182 0.058 0.044 0.0260 0.0027 0.0003 0.181 0.058 0.044 0.0259 0.0026 0.0003

5000 0.185 0.056 0.049 0.0286 0.0014 0.0009 0.185 0.057 0.051 0.0280 0.0015 0.0010

0.05 200 0.170 0.077 0.047 0.0219 0.0069 0.0004 0.170 0.077 0.047 0.0217 0.0070 0.0004

500 0.173 0.061 0.051 0.0216 0.0022 0.0007 0.173 0.062 0.051 0.0215 0.0023 0.0007

1000 0.163 0.053 0.046 0.0214 0.0020 0.0010 0.164 0.052 0.048 0.0221 0.0021 0.0009

2000 0.171 0.054 0.050 0.0220 0.0015 0.0012 0.172 0.053 0.050 0.0231 0.0014 0.0012

5000 0.174 0.054 0.053 0.0210 0.0008 0.0007 0.176 0.055 0.054 0.0222 0.0011 0.0009

0.1 200 0.157 0.069 0.054 0.0176 0.0027 0.0004 0.157 0.070 0.054 0.0177 0.0026 0.0004

500 0.158 0.061 0.054 0.0179 0.0016 0.0007 0.159 0.060 0.055 0.0185 0.0015 0.0007

1000 0.161 0.058 0.056 0.0201 0.0018 0.0016 0.162 0.058 0.056 0.0203 0.0020 0.0015

2000 0.146 0.050 0.048 0.0153 0.0011 0.0009 0.147 0.049 0.048 0.0156 0.0011 0.0010

5000 0.155 0.053 0.052 0.0176 0.0011 0.0010 0.159 0.057 0.056 0.0181 0.0016 0.0014

0.3 200 0.098 0.059 0.054 0.0055 0.0027 0.0013 0.098 0.060 0.056 0.0057 0.0026 0.0013

500 0.094 0.053 0.051 0.0052 0.0012 0.0011 0.095 0.054 0.052 0.0061 0.0014 0.0009

1000 0.094 0.052 0.051 0.0051 0.0010 0.0009 0.093 0.052 0.051 0.0048 0.0009 0.0008

2000 0.092 0.052 0.051 0.0061 0.0015 0.0015 0.095 0.053 0.053 0.0061 0.0015 0.0015

5000 0.090 0.050 0.049 0.0049 0.0013 0.0013 0.098 0.052 0.052 0.0059 0.0013 0.0012

0.5 200 0.059 0.058 0.055 0.0018 0.0016 0.0012 0.060 0.059 0.057 0.0020 0.0016 0.0011

500 0.059 0.053 0.052 0.0017 0.0015 0.0014 0.059 0.053 0.051 0.0022 0.0017 0.0014

1000 0.058 0.053 0.052 0.0015 0.0013 0.0012 0.059 0.054 0.054 0.0017 0.0013 0.0013

2000 0.055 0.051 0.051 0.0011 0.0007 0.0007 0.059 0.053 0.053 0.0009 0.0008 0.0008

5000 0.056 0.050 0.050 0.0013 0.0008 0.0008 0.062 0.056 0.056 0.0022 0.0017 0.0017

doi:10.1371/journal.pone.0056976.t003
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not see better adherence of the Type I error rates to the nominal

levels with transformations. Using the robust SEs with t-quantiles

with n|MAF degrees of freedom provided the best adherence of

the Type I error rates to their nominal value.

Power
In non-heteroscedastic data we saw slight power increase with

transformations in distributions with heavy tails. On the other

hand, in data with heteroscedasticity we saw a large decrease of

power with transformations. This is common across MAF, sample

size, and all three approaches of combining SEs and quantiles. See

Figure 6, panels A and B.

In situations where a genotype has a large effect in a population

subset, transformations do not increase power, see Figure 6, panel

C for data with no heteroscedasticity and panel D for data with

heteroscedasticity. On the contrary, transformations attenuate the

signal.

Data
In Figure 7 we present the p-values obtained in the CHS

analysis. Panel A, not distinguishing among the three statistical

approaches of p-value computation based on SEs and quantiles,

illustrates the LDL-C transformation effect on the p-values as

compared to the p-values when no transformation was used. For

most SNPs the p-values are different. For few SNPs the

transformation has little impact, e.g., SNP rs3890182. Comparing

the three approaches, with lower MAF the p-values tend to spread

out more. For higher MAF the normal and t-quantiles with

799|MAF approximate effective degrees of freedom are similar.

To study in detail the low p-values of interest, see panel B. For

several SNPs, e.g., rs1800961 and rs174547, we see that the LDL-

C transformation and the method for computing p-values may

result in different conclusions about the association of LDL-C and

the SNP.

Discussion

Linear regression does not require normal distribution of

outcome or residuals for sufficiently large samples where Central

Limit Theorem applies. In genetic association models sufficiently

large is often under 500, depending on the targeted significance

level. Sample sizes of studies involved with genetic analyses are

mostly substantially larger. Transformations improving outcome

normality do not typically improve inference validity. On the

contrary, using them may provide invalid inference, specially with

heteroscedastic data. Unintuitivelly, under heteroscedasticity

transformations proved even less suitable for heavy tailed errors

than for normal errors. With this paper we would like to

Table 4. Table of type I error rates for Weibull errors with heteroscedasticity.

notransformation Transformation

MAF n a = 0.05 a = 0.001 a = 0.05 a = 0.001

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

0.01 200 0.106 0.269 0.115 0.0095 0.1588 0.0018 0.119 0.261 0.107 0.0065 0.1471 0.0008

500 0.113 0.120 0.063 0.0101 0.0329 0.0026 0.118 0.116 0.057 0.0090 0.0256 0.0020

1000 0.110 0.083 0.053 0.0098 0.0103 0.0024 0.114 0.083 0.052 0.0087 0.0081 0.0012

2000 0.114 0.065 0.051 0.0093 0.0060 0.0022 0.122 0.071 0.056 0.0091 0.0056 0.0017

5000 0.110 0.058 0.052 0.0087 0.0025 0.0015 0.138 0.075 0.068 0.0142 0.0046 0.0026

0.05 200 0.106 0.083 0.055 0.0080 0.0109 0.0013 0.112 0.086 0.055 0.0066 0.0089 0.0007

500 0.111 0.064 0.051 0.0071 0.0044 0.0018 0.122 0.074 0.060 0.0088 0.0048 0.0019

1000 0.110 0.057 0.053 0.0070 0.0028 0.0016 0.136 0.079 0.071 0.0118 0.0045 0.0031

2000 0.109 0.055 0.052 0.0069 0.0019 0.0011 0.160 0.096 0.093 0.0163 0.0043 0.0031

5000 0.111 0.053 0.052 0.0084 0.0022 0.0021 0.227 0.140 0.137 0.0293 0.0078 0.0074

0.1 200 0.097 0.068 0.052 0.0066 0.0054 0.0019 0.108 0.075 0.059 0.0069 0.0056 0.0019

500 0.096 0.058 0.052 0.0055 0.0024 0.0019 0.122 0.075 0.068 0.0086 0.0042 0.0030

1000 0.100 0.057 0.053 0.0061 0.0018 0.0015 0.146 0.089 0.085 0.0113 0.0053 0.0038

2000 0.100 0.054 0.053 0.0067 0.0016 0.0014 0.184 0.113 0.111 0.0215 0.0080 0.0068

5000 0.098 0.053 0.053 0.0073 0.0015 0.0015 0.315 0.217 0.216 0.0539 0.0209 0.0198

0.3 200 0.076 0.062 0.057 0.0029 0.0029 0.0017 0.094 0.081 0.074 0.0048 0.0045 0.0027

500 0.071 0.053 0.051 0.0024 0.0017 0.0012 0.118 0.095 0.092 0.0087 0.0053 0.0043

1000 0.072 0.051 0.050 0.0019 0.0010 0.0009 0.172 0.138 0.136 0.0130 0.0079 0.0071

2000 0.075 0.051 0.051 0.0029 0.0011 0.0010 0.264 0.214 0.213 0.0342 0.0183 0.0177

5000 0.072 0.049 0.049 0.0032 0.0015 0.0015 0.513 0.450 0.449 0.1234 0.0741 0.0735

0.5 200 0.056 0.057 0.055 0.0016 0.0023 0.0019 0.072 0.076 0.073 0.0031 0.0039 0.0034

500 0.054 0.052 0.051 0.0016 0.0017 0.0017 0.108 0.107 0.106 0.0053 0.0062 0.0051

1000 0.053 0.050 0.050 0.0013 0.0012 0.0012 0.157 0.154 0.153 0.0119 0.0114 0.0113

2000 0.053 0.052 0.052 0.0010 0.0010 0.0010 0.268 0.262 0.262 0.0277 0.0258 0.0254

5000 0.050 0.048 0.048 0.0008 0.0008 0.0008 0.551 0.544 0.544 0.1227 0.1156 0.1145

doi:10.1371/journal.pone.0056976.t004
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discourage researchers to use phenotype non-normality as an

argument to transform it. Model choice should be driven in the

first place by biological plausibility and relevance to the scientific

question, not by presumed statistical modeling needs.

The extend of the heteroscedasticity problem depends on the

skewness of the genotype. Simulations suggest that when ignoring

the combination of heteroscedasticity and rare variants statistical

inference results may be rather misleading. Specifically, we saw

largely inflated Type I error rate, resulting in spurious detection of

associations. Robust standard errors must be carefully considered

to construct a test statistic. With small sample size t-quantiles with

appropriate degrees of freedom might be preferred to normal

quantiles, improving adherence of the Type I error rate to the

nominal level. We encourage researchers to report in their papers’

method sections the choice of standard errors method and the test

statistic distribution. The excess of false positive findings that we

saw in the simulations due to rare genotype and heteroscedasticity

may be one of the many reasons why genetic association findings

are difficult to replicate.

Methods

For each individual i[f1,2, . . . ,ng we generate allele A1 and A2

as independent binary variables with probability MAF. We define

genotype with an additive model G~A1zA2, taking on values 0,

1, or 2. We consider MAF [f0:01,0:05,0:1,0:3,0:5g. The skewness

of genotype G with such minor allele frequencies is about 7, 3, 2,

0.6 and 0, respectively. We generate covariates Age as

Poisson(15)z20 and a Male indicator as binary with probability

0.5. We generate a positive continuous phenotype Z~mzE,
where m~b0zbAgeAgezbMaleMalezbGG:

First, we generate data with no heteroscedasticity, generating

the errors E as N(0,s2
1), zero-centered Weibull (b1,c1) and zero-

centered x2
k1

. Second, we generate data with heteroscedasticity.

Figure 5. Typical scenarios with heteroscedasticity and rare genetic variants. Sample QQ plots for sample size of 200 and MAF 0.01. Panel A
uses normal errors and no transformations. Panel B uses normal errors and transformations. Panel C uses x2 or Weibull errors and no transformations.
Panel D uses x2 or Weibull errors and transformations.
doi:10.1371/journal.pone.0056976.g005
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We consider the error distribution to be a mixture of normal or

centralized Weibull or centralized x2 distributions based on the

genotype G

E~

N(0,s2
1), zero{centered Weibull (b1,c1) and x2

k1
for G~0

N(0,s2
2), zero{centered Weibull (b2,c2) and x2

k2
for G~1

N(0,s2
3), zero{centered Weibull (b3,c3) and x2

k3
for G~2:

0
BBB@

For normal distribution we set s1~1,s2~1:5,s3~2. For

Weibull distribution we set b1~2,b2~2:5,b3~3 and

c1~c2~c3~1:5, and for x2 distribution k1~3,k2~4,k3~6.

See Figure 8 for density of the generated errors.

We set bAge~0:1 and bMale~2. The intercept b0 is in Weibull

case maxj~1,2,3fbjC((cjz1)=cj)g, in x2 case maxj~1,2,3fkjg, to

insure positive values of phenotype. We set bG~0 to study Type I

error rates. We set bG~0:2 to study power. Additionally, we

consider a scenario where a genotype has a fairly large effect in a

population subset, perhaps because of an unmeasured environ-

mental exposure E. We generate E as binary with P(E~1)~0:2
and set b?G~5.

For large number of simulations under the null hypothesis the

empirical p-values for valid tests should is uniform distributed on

(0,1). As a summary display of comparison of distribution of the

p-values and a uniform (0,1) variable we present quantile-quantile

plots. We use the { log scale to emphasize the area of interest of

small p-values and simplify the plots’ readability with base 10. We

highlight the significance level of 0.05, 0.01, and 0.001. We

consider sample size n = 200, 500, 1000, 2000 and 5000. We

systematically summarize type I error rates in tables across MAF

and sample size for significance levels 0.05 and 0.001. Our results

are based on 10000 simulations.

Because the quantiles of normal distribution and t-distribution

with larger number of degrees of freedom are very close, we do not

plot a separate curve for p-values based on model-based SEs and t-

quantiles as it is very similar to the one based on model-based SEs

and normal quantiles (the smallest sample size in our setting is 200,

resulting in 200-4 = 196 degrees of freedom). This is not so with

the robust SEs where the approximate number of degrees of

freedom can be very low (200|0:01~2), resulting in the t-

quantiles being much larger than corresponding normal quantiles,

especially for lower significance level. As the log transformation

and the INT provided similar results we show the log transfor-

mation results only. Similarly, as using the Weibull errors and the

x2 errors provided similar findings, we show the Weibull errors

findings only. Simulations were performed in R [22].

We demonstrate the methods using Causal Variants Across Life

Course (CALiCo) with data from Cardiovascular Health Study

(CHS) [23]. Specifically, we study the association between low-

density lipoprotein cholesterol (LDL-C) in 799 individuals of

Figure 6. Power in typical scenarios. Weibull distributed errors and MAF 0.3, model-based SEs and normal quantiles. Panel A shows no
heteroscedastic data. Panel B shows heteroscedastic data. Panels C and D show power in a situation when a genotype has a large effect in a
population subset. Panel C shows no heteroscedastic data. Panel D shows heteroscedastic data.
doi:10.1371/journal.pone.0056976.g006
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Figure 7. P-values in CHS for the association of LDL-C and 40 SNPs in 799 individuals of African American ancestry. Panel A shows p-
values. Panel B shows p-values on the 2log10 scale to emphasize small values, distinguishing among the three approaches of p-value computation.
SNPs are ordered by MAF.
doi:10.1371/journal.pone.0056976.g007

Figure 8. Density of errors E used in simulations. Panel A shows normal errors, panel B Weibull errors and panel C x2 errors.
doi:10.1371/journal.pone.0056976.g008
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African American ancestry and 40 SNPs as described previously

[24]. The linear regression models are minimally adjusted for age

and gender. As the log transformation and the INT provided

similar results we show the log transformation results only.
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