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Both in vivo and in vitro recordings indicate that neuronal membr
and down states. At the network level, populations of neurons ha
synaptic activity and intrinsic neuron properties play an important r
ena is not known. Using a computational model, we explore the inte
Model neurons of the integrate-and-fire type were extended by add
large amplitude synchronous spontaneous fluctuations that make
bimodal membrane potential distributions. The effect of sensory s
applied during an up state or deeply inside a down state. Externa
two extreme regimes in which it remains permanently in either the
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INTRODUCTION
Neural activity in the absence of sensory stimulation can be structured
(Arieli et al., 1996) with, in some cases, the membrane potential making
spontaneous transitions between two different levels called up and down
states (Metherate and Ashe, 1993; Steriade et al., 1993a,b,c; Timofeev et
al., 2001; Wilson and Groves, 1981). These transitions have been observed
in a variety of systems and conditions: during slow-wave sleep (Steriade
et al., 1993a,b,c), in the primary visual cortex of anesthetized animals
(Anderson et al., 2000; Lampl et al., 1999), in the somatosensory cortex
of unanesthetized animals during quiet wakefulness (Petersen et al., 2003)

and in slices from ferrets (Sanchez-Vives and McCormick, 2000) and mice
(Cossart et al., 2003).

A hallmark of this subthreshold activity is a bimodal distribution
of the membrane potential, with peaks at the mean potentials of the
depolarized and hyperpolarized states. However, there are considerable
differences in the degree of regularity of the transitions observed in differ-
ent experiments. In slow-wave sleep and in some slices (Sanchez-Vives
and McCormick, 2000), these are rather regular whereas they exhibit an
irregular pattern in experiments done with anesthetized animals (Lampl
et al., 1999).

Another characteristics of the up–down dynamics is that the transitions
occur synchronously (Lampl et al., 1999; Stern et al., 1998), although
the degree of synchrony depends on the particular experiment. In slow-
wave sleep, there is a high degree of long-ranged synchrony (Amzica
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potentials can make spontaneous transitions between distinct up
een observed to make these transitions synchronously. Although
the precise nature of the processes responsible for these phenom-
y between intrinsic neuronal properties and synaptic fluctuations.
a nonlinear membrane current. Networks of these neurons exhibit
neurons jump between up and down states, thereby producing

lation on network responses depends on whether the stimulus is
ise can be varied to modulate the network continuously between
r the down state.

-down state transitions

nd Steriade, 1995; Volgushev et al., 2006), whereas recordings from
he visual cortex of anesthetized animals show less and shorter-ranged
ynchrony (Lampl et al., 1999).

Transitions between up and down states can also be evoked by sen-
ory stimulation (Anderson et al., 2000; Haider et al., 2007; Petersen et
l., 2003; Sachdev et al., 2004). An interesting result of these exper-
ments is that sensory-evoked activity patterns are similar to those
roduced spontaneously (Petersen et al., 2003). Similarly, in thalam-
cortical slices from mice, the cortical response to stimulation of the
halamic fibers is comparable to the spontaneous activity in the slice
MacLean et al., 2005). Studies in rats and cats report another interest-
ng feature, the response to the stimulus depends on the state of the
pontaneous fluctuations (Petersen et al., 2003; Sachdev et al., 2004;
aider et al., 2007). The effect appears to be species dependent; in

ats, if a sensory stimulus is applied when the recorded neuron is in
down state, responses are stronger than if it is applied during an

p state (Petersen et al., 2003; Sachdev et al., 2004). In contrast, in
ats, the stronger response occurs during the up state (Haider et al.,
007).

The origin of the spontaneous transitions has been claimed to lie in

oth the intrinsic properties of neurons (Bazhenov et al., 2002; Crunelli
t al., 2005; Mao et al., 2001; Sanchez-Vives and McCormick, 2000) and
heir synaptic inputs (Cossart et al., 2003; Metherate and Ashe, 1993;
anchez-Vives and McCormick, 2000; Seamans et al., 2003; Wilson and
awaguchi, 1996). It seems plausible that their particular temporal struc-

ure results from interactions between these two components. Previous
odeling studies have included intrinsic properties and synaptic currents

n a fairly biophysically detailed fashion (Bazhenov et al., 2002; Compte
t al., 2003; Hill and Tononi, 2005; Kang et al., 2004; Timofeev et al.,
000). However, the very detailed description of neurons and networks in
hese models somewhat obscures how the interaction between the intrin-
ic properties and synaptic currents give rise to large and synchronous
embrane fluctuations.

Here, we use a reduced model to investigate the interplay between
ynaptic activity and an intrinsic neuronal property and to study network
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responses to sensory stimulation. Our goal is to understand the conditions
under which up and down-state transitions emerge in a network of model
neurons when plausible assumptions are made. Instead of postulating the
existence of a specific current or set of currents, we assume the exis-
tence of a nonlinear feature in the intrinsic membrane currents of the
neurons that interacts with synaptic currents. Aside from this nonlinearity,
the neuron model is of the usual integrate-and-fire (IF) type. The sim-
plicity of the model allows us to isolate the mechanisms responsible for
transitions and to reach an understanding of their roles and interactions.
The model produces synchronous spontaneous transitions between two
distinct membrane potential states and generates responses to sensory
stimulation. These responses depend on the state of the network at the
time of the application of the stimulus. The termination of the up state
occurs by dominant inhibition. External noise can be used to induce a
variety of regimes, from networks that remain in a silent down state to
active networks similar to a perpetual up state.

MATERIALS AND METHODS
The model
We consider a network of IF neurons, with the addition of a nonlinear
membrane current, receiving synaptic input composed of slow and fast
excitatory and inhibitory conductances. The network consists of random
connections with finite range.

Below its threshold value, the membrane potential V of each model
neuron obeys the equation

τm
dV
dt

= −gL(V − VL) − ga(V − Va)

−Isyn,E − Isyn,I − Inoise − Inl + Istim. (1)

Here τm is the membrane time constant, gL is the leak conductance, and
VL is the leak reversal potential. We measure all conductances in units of
the leak conductance of excitatory neurons, that is, gL = 1 for excitatory
neurons by definition and all other conductances are relative to this one.
The adaptation current, which is the second term on the right side of
Equation (1), is only included for excitatory neurons. Its conductance ga

obeys the equation

τa
dga

dt
= −ga, (2)

and it is augmented by an amount ga → ga + ∆ga whenever the neuron
fires an action potential. Isyn,E and Isyn,I are the excitatory and inhibitory
synaptic currents. Inoise represents an external noise, and Istim(t) stands
for the current produced by sensory stimulation. Inl describes a nonlinear
property of the neuron (see below). The potential V (t) obeys Equation (1)
until it reaches the spike generation threshold Vth. At that point, an action
potential is discharged, and the potential V (t) is reset to Vreset where it is
held for a refractory time τref.

Four synaptic currents, AMPA, NMDA, GABAA and GABAB (Metherate
and Ashe, 1993), are used in the model,
Isyn,E(t) = gAMPA(V (t) − VAMPA) + gNMDA(V (t) − VNMDA)

Isyn,I(t) = gGABAA (V (t) − VGABAA ) + gGABAB (V (t) − VGABAB ).

When a neuron fires an action potential, the synaptic conductances of its
postsynaptic targets are modified by

gx → gx + ∆gx,

where ∆gx is the unitary synaptic conductances for X = AMPA, NMDA, and
GABAA, GABB. Otherwise, the synaptic conductances decay exponentially

τx
dgx(t)

dt
= −gx(t) (3)
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igure 1. (A) nonlinear membrane current. The combination of a nonlinear
ntrinsic current, such as a cubic nonlinearlity with a single real root (dashed
ine) and a linear “external” contribution (dotted line) can give rise to an effec-
ive bistability (solid line). In this example, the linear term has an excitatory
ffect. B-C: bistability and disorder. In both panels, the solid line is the current
nl computed using the mean values of Ṽ1, Ṽ2, and Ṽ3. (B) Ṽ3 was given
he maximal (dotted line) and minimal (dashed line) values of its distribution;
he black segment denotes the corresponding interval, (−46, −42) mV. The
hreshold of the membrane potential takes values in the interval (−45, −41)
V (red segment). (C) Ṽ2 was given the maximal (dashed line) and minimal

dotted line) values of its distribution; the black segment denotes the corre-
ponding interval, (−60, −56) mV. The reset potential takes values in the
nterval (−56, −52) mV (red segment). In the legend, c is a constant.

ith synaptic time constant τx. Nonlinearities characterizing NMDA and
he GABAB receptors are not included, because the emphasis is on their
imescales not their voltage dependences.

We assume that the neurons have a bistable character in the network
Figure 1A, solid line), but this does not necessarily imply that isolated
eurons exhibit bistability. Although intrinsic currents may contribute to

his phenomenon, bistability can arise from an interplay between intrinsic
nd network-generated currents. For example, bistability can be obtained
y combining a voltage-dependent intrinsic current (Figure 1A, dashed

ine) and a linear synaptic or modulatory current (Figure 1A, dotted line).
n instantiation of this mechanism, in which the nonlinearity was given
y a transient Ca2+ current, has been studied previously (Crunelli et al.,
005). In a more complex example, bistability arises from the dynamics
f the extracellular K+ concentration (Frohlich et al., 2006). Here, we
ssume that such a combination of currents can be described by the term

nl(t) = c(V (t) − Ṽ1)(V (t) − Ṽ2)(V (t) − Ṽ3)

here Ṽ1 < Ṽ2 < Ṽ3 and c is a parameter that determines the strength
f the current. This current is illustrated in Figure 1A (solid line) and, as
iscussed above, it can be interpreted as the sum of a nonlinear current
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that does not produce bistability (dotted lines) and a linear contribution
(dashed lines) that causes the sum to show bistability, that is, multiple zero
crossings. The increase in the magnitude of this current at potentials larger
than about −45 mV or at very hyperpolarized potentials is not relevant
because the model neuron never operates in these ranges.

In the absence of other currents, Inl(t) induces three fixed points, at
the values V1, V2, and V3, which are related but not equal (due to the
leak current) to Ṽ1, Ṽ2, and Ṽ3. In the absence of fluctuating currents, the
neuron will fire only if V (t) stays in the region above the unstable fixed
point at V2 (this requires Vreset to be above this fixed point) and if Vth

is less than the upper stable fixed point at V3. If the threshold satisfies
Vth > V3, the membrane potential will remain stuck at the value V3. On
the other hand, if V is in the region below the unstable fixed point at V2,
it will be attracted to the quiescent fixed point at V1. In the network we
study, fluctuations produced by both the synaptic currents and the external
source of noise Inoise allow the neuron to fire even if its threshold is above
the upper fixed point.

Most neuron parameters within the network are distributed stochas-
tically. Because the relationship between the neuron parameters Vreset,
Vth, and Vi (or equivalently Ṽi) for i = 1, 2, 3 is different for each neuron,
most neurons transition from one state to the other with some regularity,
but others tend to remain either silent or firing most of the time. Figure
1B shows the range of ∼ V3 (black segment) and Vth (red segment) used
in the network. There is a small bias toward neurons with Vth >∼ V3.
Similarly, Figure 1C shows the range used for ∼ V2 (black segment) and
Vreset (red segment).

Each neuron receives independent noise Inoise consisting of two Pois-
son trains, one excitatory and one inhibitory. The noise model has four
parameters: two unitary conductances (∆gsyn,E and ∆gsyn,I) and two rates.
This noise is filtered according to Equation (3) through synapses with slow
synaptic time constants (i.e., τNMDA and τGABAB ).

We have implemented sensory stimulation by the application of a pulse
of excitatory conductance to a subpopulation of the excitatory neurons in
the network. Minimal stimulation was defined as the minimal conductance
of a pulse required to evoke an up state from a down state with high
probability.

Parameter values and simulations
Most of the results presented were obtained for fixed values of the model
parameters, although the results presented in Figure 4A (see figure cap-
tion) and the analysis of the network with zero adaptation conductance
are an exception. Otherwise, only the noise term was varied to observe
how it affects network activity.

The network contains 4000 neurons of which 17% are inhibitory and
the rest excitatory. Each neuron is connected with a probability of 2%
to other neurons contained within a disk centered about its location and
containing about 31% of the total number of neurons. This results in each
neuron, on average, connecting to 25 other neurons. The network size is
50 × 80, with periodic boundary conditions.
All the neurons have a membrane time constant of 20 ms and a
refractory time τrefr = 5 ms. Other passive properties are distributed uni-
formly, and we use a ± notation to indicate the interval within which each
parameter falls uniformly. The membrane threshold Vth takes values in the
interval −45 ± 2 mV, the reset potential Vreset in the interval −55 ± 1 mV,
and the leak potential VL in the interval −68 ± 1 mV. The parameters
of the nonlinear current, with conductance measured in units of the
leak, are c = 0.03 mV−2, and the Ṽ s were chosen as Ṽ1 = −72 ± 2 mV,
Ṽ2 = −58 ± 2 mV, and Ṽ3 = −44 ± 2 mV.

All excitatory synapses include both AMPA and NMDA components. On
the other hand, we assigned GABAA receptors to 55% and GABAB receptors
to 45% of the inhibitory synapses. The synaptic time constants are τAMPA =
2 ms, τNMDA = 100 ms, τGABAA = 10 ms, and τGABAB = 200 ms. Recall that
all conductances are measured in units of the leak conductance of exci-
tatory neurons. For excitatory neurons, �gE,AMPA = 0.27, �gE,NMDA =
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.0495, ∆gE,GABAA = 0.84, ∆gE,GABAB = 0.1848. For inhibitory neurons,
gI,AMPA, �gI,NMDA = 0.05, ∆gI,GABAA = 0.017, ∆gI,GABAB = 0.017, and

I,L = 1.4. In addition, for excitatory neurons ∆ga = 0.14, Va = −80 mV,
nd τa = 100 ms. The reversal potentials for the inhibition, VGABAB and
GABAA fall uniformly within the intervals −90 ± 2 mV and −80 ± 2 mV,

espectively. VAMPA and VNMDA are both set to zero.
The parameters of the noise model were varied to study how network

ehavior was modulated by noise. We started with a network characterized
y the following values: ∆gsyn,E = 0.09, ∆gsyn,I = 0.179 for the con-
uctances and νsyn,E = 66.66 Hz, νsyn,I = 24.31 Hz for the rates. Other
etworks were obtained by multiplying the inhibitory noise conductance
gsyn,I by factors that are given in the Results.

We have also considered a network with zero adaptation conductance
∆ga = 0 ). In this case the values of the synaptic conductances were
aken as follows: For excitatory neurons, ∆gE,AMPA = 0.20, ∆gE,NMDA =
.02, ∆gE,GABAA = 0.21, ∆gE,GABAB = 0.21. For the inhibitory neurons,
gI,AMPA = 0.12, ∆gI,NMDA = 0.025, ∆gI,GABAA = 0.008, ∆gI,GABAB =
.0085.

The network was stimulated by applying conductance pulses to 17%
f the excitatory neurons (either in a localized or in a distributed way) for
0 ms. The size of the pulse for minimal stimulation is gmin ∼ 1 − 1.1. The
esult of this calibration can be observed in Figure 9.

For individual neurons the transition from one state to the other was
efined to occur at V = −60 mV, where V is the potential of the neuron.
his value separates the two peaks in the membrane potential distribution
see Figure 3A).

At the network level, the down–up transition was taken at the point
here the average membrane potential is equal to the mean of its min-

mum value in the down state and its peak value in the up state, and a
imilar criterion was used to define the up–down transition.

Simulation times were typically from a few seconds to 25 seconds,
nd in some cases up to 100 seconds. Time was divided into bins of size
t = 0.1 ms. The simulation was done using a computer code written in
and run under the Linux operating system.

ESULTS
pontaneous activity
he network has a variety of activity regimes depending on the values of
he model parameters. The set of parameter values given in the Methods
efines a network that generates spontaneous up states at a rather regu-

ar frequency of approximately 0.6 Hz (Figure 2). These transitions can be
een most easily in global quantities such as the population rate and aver-
ge membrane potential (Figures 2A, B, and E, respectively). The latter
an be used as a surrogate for the local field potential. The phenomenon
s quite robust, and the appearance of a signal in global quantities implies
hat a large population of neurons transition between up and down states
ynchronously (Figure 2D). However, the up states are not identical, nor
re the times that the network spends in these states always the same.
his indicates that the state of the network at the onset of these up states
s variable.
Traces of the membrane potential of individual neurons (Figure 2D)

how less regular up–down dynamics than global quantities. Even when
he synchrony is evident in the average membrane potential, there is some
ariability in the timing of the transitions for different neurons. In these
espects, this example resembles the observations by Lampl et al. (1999)
n primary visual cortex that the correlations of the membrane potential
f pairs of nearby neurons are weaker than those observed, for example,

n slow-wave sleep, and that even the degree of subthreshold synchrony
xhibited by a given pair can change with time. However, the model can
upport more correlated populations. Figure 4A presents an example
n which the distribution of firing thresholds and some of the unitary
onductances were changed to obtain more synchronous transitions.

The four neurons shown in Figure 2D were selected to illustrate the
ifferent membrane potential distributions displayed in Figure 3A. These
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Figure 2. A regular network. (A) Population rate over 25 seconds; the other
traces correspond to the time interval from t = 5 to t = 10 seconds (box).
(B) Expanded population rate. (C) Rastergram (100 neurons). (D) Membrane
potential of 4 neurons. (E) Average membrane potential. The mean rate in the
up state is 6–7 Hz for the excitatory neurons and 13–14 Hz for the inhibitory
neurons.

distributions are all bimodal, but they show different splits between the
two peaks. For the neurons shown in the two upper panels of Figure
2D, corresponding to the upper two panels in Figure 3A, both peaks are
comparable, but the other two neurons, shown in the lower panels of
these figures, remain in the down or in the up state most of the time.

Figures 3B and C present histograms of the duration of the up states
for two neurons that have bimodal membrane potential distributions. The
distribution for the duration of up states across the entire network is shown
in Figure 3D. Although bimodal neurons have distributions concentrated
around a preferred duration, as in (Stern et al., 1998), the data taken
over the whole network has a more varied distribution with a tail reach-

ing durations of a few seconds (Figure 3D). (Cossart et al., 2003) have
observed an even longer tail including durations of about 10 seconds.
Although we have not tried to reproduce this observation, it is conceivable
that a proper choice of the distribution of neuron properties could generate
a subpopulation of neurons with longer up states.

To illustrate the evolution of the synaptic conductances, we plotted the
network average of the inhibitory conductance versus the correspond-
ing average of the excitatory conductance (Figure 4B). In this plot, time
advances counter-clockwise along the lines. The first second of the sim-
ulation has been included in this figure, resulting in the initial transient
seen as the line departing from the origin. After this transient, the plot
consists of a series of ellipses each describing the evolution of the synap-
tic conductances during one transition to the up state and back to the
down state. The excitatory conductance is the first to grow followed by
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igure 3. Characterization of the slow fluctuations of the regular network.
A) Potential distributions of the four neurons shown in Figure 2D. Note that
he neuron shown at the bottom (brown line) stays most of the time in the
p state. (B–C) Histograms for the duration of the up states of two bimodal
eurons. The simulation time was 100 seconds. (D) Histogram of the duration
f the up states computed from all the neurons in the network.

nhibition until the latter becomes strong enough causing the excitatory
onductance to decrease.

The transition from the down to the up state results from the interaction
etween the nonlinear property of the neurons and synaptic activity in the
opulation. When the network is in the down state, most, but not all, of the
eurons are silent. The activity of the small number of active neurons (plus
ossible current fluctuations coming from the noise) propagates through
he network causing neurons to transit to the up state. Eventually, a large
umber of neurons make this transition, and the population rate increases.
uring the transition to the up state, the excitatory conductances are the

irst to increase, but they are soon followed by the inhibitory ones (Figure
B). After some time, inhibition becomes strong enough to destabilize
he up state of individual neurons, and eventually the network returns to

he down state. Most of the inhibitory neurons do not fire in the down
tate. Rather, the network is maintained in this state because of a lack of
xcitation (as observed in (Timofeev et al., 2001)) and due to the effective
istability of the neurons.

Transitions from the up to the down state can also be interpreted in
erms of an oscillatory property of networks of normal IF neurons. When
ur network is in the up state, it behaves like a network of IF neurons
ept depolarized at a potential approximately equal to the average poten-
ial of the up state. It has been shown that synaptic delays introduce an
scillating mode in such networks (Brunel and Wang, 2003). For normal IF
eurons, the population rate oscillates in complete cycles, with inhibition
ollowing excitation, at a frequency determined by the synaptic time con-
tants. In our model, the neurons start to fall into the down state as the
etwork approaches the negative phase of the oscillation, so the cycle is
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Figure 4. (A) A more synchronous network. The distribution of the mem-
brane threshold and some of the unitary conductances have been changed to
induce more synchronous transitions. The synaptic inhibitory conductances
were 70% of those described in the Methods. In addition, ∆gsyn,I = 0.197
and Vth = −45.5 ± 2. Note the sharp increase in the average membrane
potential (top trace) correlated with neuron firing, which is similar to the LFP
observed in (Destexhe et al., 1999). (B) Evolution of the average conductances
in the regular network of Figures 2 and 3. The average inhibitory synaptic
conductance gi versus the average excitatory synaptic conductance ge, with
time as an implicit parameter. The red dots indicate the data at the sampling
times. Both conductances increase as the network makes a transition from
the down to the up state.

interrupted. Whereas the time the network stays in the up state is mainly
determined by the mechanism just described, the time that it spends in
the down state is defined by different factors; the number of neurons fir-
ing during the down state, the distribution of neuron parameters, and the
connectivity of the network.

The termination mechanism described above does not require neu-
ronal adaptation. This was checked by removing all adaptation, using
the values of the synaptic conductances given in the Methods section.
In the absence of adaptation, the transition to an up state starts with a
rise of the excitatory conductance followed by inhibition. When the inhibi-
tion becomes sufficiently strong, the network goes back to a down state.
Adaptation was included in the model for the sake of biological realism,
but it is not an essential element of the up-down dynamics of the model.

Noise modulation
The dynamics of up–down transitions can be modulated by changing the
relative strength of the excitatory and inhibitory components of the noise.
We limited this analysis to changes of the inhibitory unitary conductance of
the noise, �gsyn,I, leaving the other three parameters in the noise model

fixed. Changing the excitatory unitary conductance yields qualitatively
similar results. Taking the network in Figures 2 and 3 as the starting
point, we first look at the effect of reducing �gsyn,I. Figure 5 presents a
network in which this was reduced by 15%. The top trace is the popu-
lation rate during 25 seconds, and the rest of the figure is an expansion
of the time interval between 5 and 10 seconds. Another 5 seconds time
interval (20–25 seconds) is shown in Figure 6. Decreasing the inhibitory
component of the noise makes the network transitions more irregular. For
example, the network makes a single transition to the down state from
5–10 seconds, but it exhibits four up states of different durations during
the interval from 20–25 seconds.

If the inhibitory noise conductance is decreased even more, the sys-
tem eventually reaches a regime in which neurons either fire tonically or
become inactive. Setting �gsyn,I to 50% of its value in the regular net-
work produces the active network shown in Figure 7. This network is

i
t
c
u
(
i
d
e
2
s
a
t
r
m

www.frontiersin.org
igure 5. A more irregular network I. The inhibitory conductance of the noise
odel was decreased by 15% with respect to that of the regular network in

igures 2 and 3. The traces are shown with the same convention as in Figure
, and the four neurons in D are the same as those in Figure 2D. The expanded
ox and panels B–E show the interval between 5 and 10 seconds during the
imulation. A synchonous transition occurs after t = 8 seconds.

synchronous, the average membrane potential is below the value of the
ean potential of the up state (Figure 7B), and a subpopulation of neurons

n the network fire continuously while the others tend to stay in the down
tate most of the time. Three of the neurons described in Figure 2 have
reatly reduced activity, while the other has become more active (com-
are the traces in Figure 7C with those in Figure 2D). Another relevant
eature of this regime is that the average inhibitory synaptic conductance
s larger than the excitatory (Figure 7D). These two features, namely the
xistence of a population of silent neurons and the dominance of inhi-
ition, have been observed in a recent experiment during the activated
tate characteristic of cortical networks in awake animals (Rudolph et al.,
007).
The transition from the regular network to the active network shown
n Figure 7 is reminiscent of the transition from slow-wave sleep oscilla-
ions to the activated state (Steriade et al., 2001; Timofeev et al., 2001),
ontrolled by neuromodulators (Steriade and McCarley, 1990). In partic-
lar, release of acetylcholine reduces or blocks potassium conductances
McCormick, 1992; Steriade et al., 1993) leading to a greater excitabil-
ty of cortical neurons. This issue has been considered in biophysically
etailed models by blocking resting potassium conductances (Bazhenov
t al., 2002) or reducing other potassium conductances (Compte et al.,
003). The fact that the network becomes dominated by inhibition and
plits into a firing and a silent population after the transition to the tonically
ctive state was not apparent in those models. Although we have con-
rolled the network dynamics by changes in the noise parameters, similar
esults could be obtained if the neuron excitability were increased by other
eans.
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Figure 6. A more irregular network II. Same as Figure 5, but now the
expanded box and panels B–E show the last five seconds of the simulation.
Four up-state transitions occur during this time.

Figure 7. An active network. The inhibitory conductance of the noise was
reduced to 50% of its value in the regular network. Neurons tend either to
fire tonically or be inactive. (A) Raster. (B) Average membrane potential. (C)
Membrane potential traces for the same neurons as in Figures 2, 5, and 6. (D):
Evolution of the average conductances. The average inhibitory conductance is
now larger than the excitatory in agreement with experimental observations
(Rudolph et al., 2007).
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igure 8. A rather silent network. The inhibitory conductance of the noise
as increased by 10%. Neurons still make transitions between up and down

tates, but the synchrony is lost. (A) Average firing rate. (B) Raster. (C) Average
embrane potential. (D) Sample membrane potential traces for the same

our neurons shown in previous figures. The bottom trace (brown), which
orresponds to the neuron that stayed mostly in the up state in the more
ctive networks (brown traces in Figures 2, 5 and 7) now makes transitions
nd develops a bimodal potential (panel G). (E) Histogram of up state durations.
hese are shorter than in more active networks. (F) Evolution of the average
onductances, which are much smaller than in the previous networks. There
s no longer any structure in the conductance plane.

If �gsyn,I is made 10% larger than its value in the regular network,
he network becomes more tied to the down state (Figure 8). Although
here is still some spiking and individual neurons still transition between
he two states, the coherence has been lost, as evident in the trace of the
verage membrane potential (Figure 8C) and in the values of the average
ynaptic conductances which are about a factor 10 smaller than in the
nitial network (Figure 8F). In the following section, we address the issue

f the excitability of this network. As we will see, stimulating the system,
hile it is in this regime evokes up states similar to those generated

pontaneously in the regular network.

ensory stimulation
ensory stimulation can evoke responses similar to the up state seen
uring spontaneous activity (Petersen et al., 2003). Up states can also be
voked in slices by stimulating thalamic fibers (MacLean et al., 2005).
he activity patterns produced in this way have several similarities to
hose generated spontaneously. The response of barrel cortex neurons to
ensory stimulation was seen to depend on whether it is applied during an
p or a down state of the recorded neuron (Petersen et al., 2003). Electric
timulation of the thalamus gives a similar result (Sachdev et al., 2004).
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we show the responses for a stimulation frequency of 10 Hz (fourth row of
Figure 9. Periodic sensory stimulation of the silent network and charac-
terization of the evoked slow fluctuations. (A) The population rate of the
silent network when it is minimally stimulated every 2 seconds. During the
25 seconds of this simulation the stimulus failed to evoke an up state only
once (at t = 8 seconds). (B) Raster for the first 15 seconds of the simulation.
(C) Average potential. (D) Histogram of the durations of the up states. (E)
Membrane potential histograms for the same four neurons shown previously.
The black dots show data from Figure 3. (F) Evolution of the average conduc-
tances is indicated by the green dots. For comparison, the red dots are data
from Figure 4B.

To study these issues within our model, we first considered whether
stimulation of the silent network of Figure 8 is able to evoke up states
with properties similar to those seen in the spontaneous activity of the
more regular network of Figure 2. In a second part of our analysis, we
stimulated the regular network either during an up or a down state and
compared the spiking responses. Up and down states are defined for this
purpose using the average membrane potential, which is our surrogate
for the local field potential, a global quantity that well characterizes the

state of the network. Notice that this procedure is different from what
is normally done in experiments, where the stimulus is applied during
the up or the down state of the recorded neuron rather than the network
(Petersen et al., 2003). If the synchrony of the transitions is strong, there
should not be much difference between these two procedures. However
if it is not, as in (Lampl et al., 1999), it seems more sensible to stimulate
during the up or the down states defined at the population level because,
in this way, the time of application is correlated with a specific network
state.

We first stimulated the silent network of Figure 8, which is in a regime
corresponding to a down state, by applying minimal conductance pulses
every 2 seconds. This evoked up states most of the time (Figure 9). Note
that during the 25 seconds of this simulation the stimulus failed to evoke
an up state only once (at t = 8 seconds in Figures 9A–C), and, even in
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his case, the trace of the average potential (Figure 9C) shows that many
eurons in the network made a transition to that state. It is likely that
he network transition was not completed because the stimulus failed to
ropagate and recruit a sufficient number of neurons. Because each time
hat a pulse is applied the state of the network is different, the temporal
rofiles of global quantities are variable. A notable difference from the
pontaneous up state is the existence of two peaks in the population
ate (Figure 9A). Presumably, the first peak is due to the response of the
eurons receiving a direct stimulation, and the time between the peaks
orresponds to the time needed for the propagation of the evoked activity
hrough the network until a substantial number of neurons also responds
o the stimulus. A response with two peaks is also present in experiments
see Figure 5 in (Petersen et al., 2003)).

There is considerable similarity between the regular (Figure 2) and the
timulated silent (Figure 9) networks, even when the stimulation period
s only roughly equal to the average spontaneous up–down state period,
nd when the spontaneously evoked up states are not strictly periodic. To
acilitate comparison, the black dots shown with the potential distributions
Figure 9E) and the red dots in the conductance plane (Figure 9F) are
esults from Figure 2.

In the example of Figure 9, the period of the stimulation was long
nough to allow the network to recover back to the silent (down) state. If
he stimulation frequency is increased, the second pulse can occur while
he network is in a state close to the up state evoked by the first pulse, and
he response can change dramatically. The effect of stimulation frequency
n the generation of up states is described in Figure 10. The traces and
astergram at the top correspond to a single pulse applied at t = 2 s to
he silent network shown in Figure 8. The next four rows present the
esult of stimulating with different frequencies; pulses have been applied
very 1.3 second, 1.4 second, 100 ms, and 50 ms (from top to bottom).

n the first case, the second pulse fails to evoke an up state because the
etwork falls into the down state and there is little excitation. Although a
ubpopulation of neurons fires most of the time, there is a delay before the
ctivity spreads to enough neurons to produce a synchronous transition to
he up state. The trace of the average potential (Figure 10, right column)
hows that, although many neurons made the transition, the excitation
id not extend to a large portion of the network. In the example of the
hird row of Figure 10, the second pulse is applied after 1.4 seconds,
nd the extra 0.1 seconds provides enough time for the network to gather
ufficient excitation to produce a second up state. Even so, it takes a
ather long time for the activity to spread across the network and evoke a
lobal up state. Had we applied the second pulse a little later (e.g., after
.5 seconds), the transition would have been faster (data not shown).
he third pulse in this example comes too soon after the preceding up
tate, so its effect on both the firing and the subthreshold responses is
mall, and again it fails to evoke a synchronous transition. An example
t an even lower frequency has already been seen in Figure 9 where, as
e discussed, up states are evoked with high probability. On the other
and, as the frequencies become higher, the second pulse arrives on the
ecaying phase of the up state and its effect is minute. As an example,
igure 10). The effect of each pulse is small, but the frequency is relatively
igh so the effect of consecutive pulses accumulates and up states are
voked sooner than in the previous examples. In the final example, a train
f pulses at 20 Hz is applied for more than 2 seconds (Figure 10, bottom
anel). At this frequency, the increase of the average potential evoked
y a pulse roughly compensates its decay, and the network stays in a
epolarized state intermediately between the down and the up states.

The previous discussion shows that the response to sensory stimula-
ion depends on how deeply into the up or down state the network is at the
ime of the application of a pulse. After a transition from an up to a down
tate, the network has to recover before being able to evoke another up
tate. This recovery occurs through the neurons that are able to continue
iring most of the time. Too close to the previous up state, there is still
ome inhibition that prevents these neurons from firing, but after some
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Figure 10. The effect of stimulation frequency on the generation of up
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states. In the top row, a single pulse has been applied. In the following rows,
from top to bottom, the stimulus has frequencies of 0.77, 0.71, 10 and, in the
bottom panels, 20 Hz. Each of the top four rows contains the population rate
and the rastergram (left column) and the average membrane potential (right
column). At the bottom, the population rate and average membrane potential
are stack to allow for a greater time resolution. In the second row, the second
pulse at 0.77 Hz fails to generate an up state. In the third row, the second pulse
at 0.71 Hz succeeds in evoking an up state. Comparison of these traces with
those obtained at 0.5 Hz in Figure 9 shows that the activity propagates more
slowly (the second peak in the population rate occurs after a longer time).
For stimulation at 10 Hz and above (fourth row and bottom), the membrane
remains depolarized during all of the stimulation time.

time the network arrives in its down state (where there is no appreciable
inhibition), and the active neurons increase their firing and put the network
into a more responsive state.

The response to sensory stimulation is much larger if a pulse arrives
when the network is in the excitable phase of its down state than when it

is in an evoked up state. On may wonder whether the same is true when
the stimulation is applied to a network capable of generating spontaneous
transitions, such as the regular network described in Figures 2 and 3.
The result of this analysis is shown qualitatively in Figures 11 and 12
and more quantitatively in Figures 12D. The left column in Figures 11
shows three spontaneous up states. To exhibit the dependence of the
response on the spontaneous fluctuations, we stimulated on the second
up state (at t = 3.4 second) and compared the response with the responses
to stimulation in two down states, at t = 2.8 and 4.0 seconds.

In the right column of Figure 11, we see that stimulating during the
spontaneous up state has little effect. As the traces of the population rate
and the average membrane potential indicate, the effect of the stimulation
is localized in time. Shortly after the stimulation, these traces continue their
temporal course without undergoing any relevant change, and the third
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igure 11. Stimulation during an up state of the regular network. Left:
egular network showing spontaneous regular transitions to the up state (same
etwork as in Figures 2 and 3). Right: Stimulating during an up state of the
etwork at t = 3.4 seconds. The stimulus has little effect on the network when
pplied during the up state. At the bottom of this figure we show the effect of
he stimulus on the membrane potential traces of three neurons. The arrow
ndicates the stimulation time.

pontaneous up state remains almost unperturbed.
The stimulus has a very different effect when it is applied during a

own state (Figure 12A–C). In the two cases presented here (stimulus
pplied during the first (left column) and during the second (right col-
mn) down states), a new up state is evoked and the next spontaneous
tate is pushed forward in time. The increment in the number of spikes is
learly larger under stimulation during the down than during the up states.
ome experimental observations in rats seem to indicate that the spik-

ng response is higher in absolute terms as well (Petersen et al., 2003),
lthough in cats the opposite result is obtained (Haider et al., 2007). We
tudied this issue in our model by plotting the number of spikes produced
y individual neurons under the conditions used in Figure 11 (right col-
mn) against the number of spikes produced under stimulation in one of
wo down states. The result of this test is shown in Figure 12D. While
he stimulation during the first down state (Figure 12, left column) agrees
ith the experimental observation in (Petersen et al., 2003), exhibiting a
uch larger response for stimulation in the down state, stimulation during

he second down state (Figure 12, right column) reveals a more balanced
ituation. The explanation for this difference is again the different state of

he network at these two points. At t = 4 seconds, the average potential
s almost at its lowest point in the second down state (Figure 11, left
olumn) and the network is almost as hyperpolarized as it ever is dur-
ng spontaneous behavior. In contrast, at t = 2.8 seconds the network is
lready naturally evolving toward the next spontaneous up state, a fact
hat is clearly seen in the average potential although it is less evident in the
opulation activity (see Figure 11, left column). At this point the network

s ready to fire, but it is not yet doing so and, as a result, the arrival of the
timulus has a strong impact. This is also why the peak of the average
otential is reached sooner in this case.

In contrast with the case of evoked up states, the network with spon-
aneous fluctuations has an excitable phase, located at the beginning of
he up state. When the response to stimulation in this region (e.g., at
= 3.2 seconds in Figure 11) is compared with the response to stimu-
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could also have a suppressive role because it acts during the up state (a
model of the up-down dynamics based on synaptic short-term depression
Figure 12. Dependence of the spiking responses on network state. This is
the same network as in Figure 11, but now the stimulus is applied during the
first down state at t = 2.8 seconds (left) and during the second down state at
t = 4 s (right). (A) Population rates. (B) Rastergrams. (C) Average membrane
potentials. (D) These graphs compare the number of spikes produced by
individual neurons when the network was stimulated during the down states
(as in the upper panels) compared to those produced by stimulating during the
up state (as in Figure 11, right). Spikes are counted within a time window of
200 ms following the application of the stimulus.

lation in a down state (e.g., at t = 4 seconds) one finds that, in absolute
terms, the response in the up state is higher than that in the down state.

We now ask which response is stronger when the stimulation time
is chosen randomly. Because both the up and the down states have an
excitable phase and a less excitable phase, the answer to this issue
depends on their relative durations. Given the variability observed in the
time course of the average membrane potential (present even in our
regular network), a careful analysis is required. We have run repeated
simulations of the regular network, stimulating at different times. The
stimulation period was 50 ms and the longest simulation had a duration of
25 seconds. After this, a set of neurons (either the whole network, those
receiving the stimulus directly or a set of randomly chosen neurons) was

selected, and for each neuron a stimulation time in an up state and another
in a down state was chosen, also at random. For the regular network, the
response to stimulation in the up state was larger. For example, when
the test described here was done over the whole network, the spiking
response (total number of spikes) during the up states was about 1.55
times larger than during the down states.

This result is in agreement with experimental observations in the cat
(Haider et al., 2007). It holds regardless of the degree of localization of the
stimulus. However, because a change in the values of the conductances
and other model parameters can change the regularity of the transitions
and the relative size of the excitable phases of the up and down states,
this model could, in principle, exhibit regimes where the response to
stimulation in the down state is the stronger.
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ISCUSSION
e have presented a simple model that is able to reproduce some of the
ost important properties of the up–down dynamics observed in cortical

etworks. The model has two main features: the interaction between a
onlinear intrinsic property of the neurons with the synaptic activity and
he heterogeneity in the neuron parameters. The first provides two sta-
le states and fluctuations that facilitate the transitions between them,
hereas the second generates a subpopulation of neurons that sponta-
eously reactivates the network after it returns to a down state. Along with
regime exhibiting spontaneous synchronous transitions between up and
own states, the model has irregular, active, and inactive states, and the
etwork can transit between them under the control of some of the model
arameters. The response of the network to a stimulus depends on the
tate at the moment of the stimulation, with a higher response occurring
hen the network is in the down state.

he up–down dynamics
n our model, the transition from the down to the up network states occurs
ecause of the activity of neurons that remain in their up state most of the
ime. A similar phenomenon occurs in more detailed biophysical models
Compte et al., 2003; Hill and Tononi, 2005; Kang et al., 2004). In (Kang
t al., 2004), the activity of a subpopulation of pacemaker neurons is
ased on the Ih current in combination with a low threshold Ca2+ current.

n (Hill and Tononi, 2005) an Ih current is used in combination with a
ersistent sodium current, which activates some neurons and leads the
hole network into the active state. Other modeling studies proposed a
echanism based on the presence of spike-independent minis during the

nactivated network state that can add up to produce a transition from the
own to the up state (Bazhenov et al., 2002; Timofeev et al., 2000).

The mechanism for the termination of the up state in our model is
ifferent from those proposed in other modeling studies. In our model,
he up state is terminated by a network oscillatory mechanism in which
he inhibition following excitation destabilized the up state causing the
etwork to return to a down state. The time scale of this process, which
etermines the average duration of the up states, depends on the synaptic
ime constants and can be controlled by the type of synaptic receptors
sed in the model. For example, the frequency of the slow oscillation in
he regular regime increases to about 4 Hz, namely in the delta range, if
nly fast excitation and inhibition (AMPA and GABAA) are included (data
ot shown).

esponse to sensory stimulation
arge fluctuations of the membrane potential can affect the response to
ensory stimulation. In rat barrel cortex, if the stimulus occurs while the
otential is in an up state both subthreshold and spiking responses are
uppressed relative to the response to a stimulus arriving during a down
tate. Possible sources of this phenomenon include network and neuronal
actors. The strong network activity during the up state increases the
onductance leading to shunting of the EPSPs. Short-term depression
as proposed in (Holcman and Tsodyks, 2006). In addition, differences in
he strength of the driving forces between the two states and in the value
f the threshold for action potentials could also contribute to the different
esponses (Sachdev et al., 2004).

In cats, the response in the up state is the strongest (Haider et al.,
007). The model reproduces this phenomenon. In the model, the bias in
he strength of the response towards either the down or the up state is
ue to a difference in the relative sizes of the excitable phases of those
tates. In turn, this difference depends on the strength of the synaptic
onductances. We have studied this issue only in our regular network,
inding that, in this regard, it predicts a response similar to the findings in
ats. It is an open question whether the model with different parameter
alues can also explain the findings in rat barrel cortex or if it is necessary to
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include effects such as short-term depression, which was not considered
in the model.

CONCLUSIONS
In summary, a network model built from IF neurons augmented with a
nonlinear membrane current and connected sparsely through slow and
fast excitatory and inhibitory synaptic conductances can capture much of
the phenomenology of down and up states in cortical slices and in vivo
recordings. The model suggests that an examination for bistable properties
that arise when network effects interact with intrinsic conductances would
be an interesting way to explore experimentally what appears to be an
important element of up–down state transitions.
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