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Paramagnetic nuclear magnetic resonance (NMR) methods have emerged as powerful
tools for structure determination of large, sparsely protonated proteins. However traditional
applications face several challenges, including a need for large datasets to offset the
sparsity of restraints, the difficulty in accounting for the conformational heterogeneity of the
spin-label, and noisy experimental data. Here we propose an integrative approach to
structure determination combining sparse paramagnetic NMR with physical modelling to
infer approximate protein structural ensembles. We use calmodulin in complex with the
smooth muscle myosin light chain kinase peptide as a model system. Despite acquiring
data from samples labeled only at the backbone amide positions, we are able to produce
an ensemble with an average RMSD of ∼2.8 Å from a reference X-ray crystal structure. Our
approach requires only backbone chemical shifts and measurements of the paramagnetic
relaxation enhancement and residual dipolar couplings that can be obtained from sparsely
labeled samples.
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INTRODUCTION

Protein nuclear magnetic resonance (NMR) spectroscopy has played an important role in
biomolecular structure determination. To date more than 13,000 NMR structures have been
deposited in the Protein Data Bank [PDB (Berman et al., 2000)], accounting for about 7.5
percent of all available protein structures (PDB Statistics, 2021). The vast majority of the
deposited NMR solution structures are determined for smaller proteins or independently-folded
isolated protein domains (Tugarinov et al., 2004). Without special stable isotopic labelling
techniques, NMR methods struggle with structure determination of proteins larger than
∼25 kDa as the slow molecular tumbling results in rapid relaxation, leading to poor
resolution and spectral quality (Kay, 2016). The most commonly used method to overcome
this challenge is to combine transverse relaxation optimized spectroscopy (TROSY) (Pervushin
et al., 1997) with site-specific protonation in an otherwise perdeuterated background (Tugarinov
et al., 2006), although there are many alternatives, e.g., Tugarinov et al. (2004) and Ruschak and
Kay (2010). While such site-specific isotope labelling can dramatically increase the spectral
quality and interpretability, the overall perdeuteration results in protons being sparsely
distributed within the structure.
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The overwhelming majority of solution NMR structures in the
PDB are based around Nuclear Overhauser Effect Spectroscopy
(NOESY), which provides information about through-space
interactions between protons that can be used to derive
distance restraints for 3D structure determination. For the
homonuclear NOE to be detectable, however, the protons
must be within about 6 Å or closer, which can pose a
substantial challenge for sparsely-labelled samples due to the
lack of proton pairs that are in close proximity within the folded
protein structure (Gardner and Kay, 1998).

This phenomenon is particularly acute for samples that are
labelled with protons only on the exchangeable backbone amide
positions, as the amide protons within an alpha helix are typically
too far away from amide protons in other secondary structure
elements to produce a detectable NOE. Consequently, labelling of
only the amide protons of alpha-helical proteins leads to a
restraint network that is too sparse to calculate a 3D structure.
Other site-specific labelling schemes can supplement amide
labelling, leading to a denser restraint network (Goto and Kay,
2000). Site-specific labelling of the terminal methyl groups of
isoleucine, leucine, and valine (ILV-labeling) is particularly
common (Tugarinov et al., 2006), but several alternatives and
complementary labeling methods exist, e.g., Kainosho and
Güntert (2009), Otten et al. (2010), and Gifford et al. (2011).
While these additional labelling schemes can increase the density
of the restraint network, they often come at the cost of increased
complexity and the need to synthesize or purchase expensive
precursors that are required to generate the isotope-labelled
samples.

Paramagnetic NMR methods have emerged as potentially
viable alternatives, capable of providing valuable information
about electron-nucleus distances up to ∼20–30 Å (Koehler and
Meiler, 2011; Pilla et al., 2017). Paramagnetic relaxation
enhancement (PRE) experiments have been performed with
native metalloproteins and proteins modified with covalent
paramagnetic tags such as nitroxide spin labels and metal
chelates (Bertini et al., 2005; Clore and Iwahara, 2009; Keizers
and Ubbink, 2011). These techniques can be used to extend the
scope of NMR methods to larger, more complex systems by
providing long-range distances when short-range NOEs are
unavailable or limited. Due to the long-range nature of
paramagnetic relaxation enhancement, PRE experiments can
provide valuable distance restraints even in sparsely labelled
perdeuterated protein samples.

The utility of a distance restraint generally depends on two
factors (Sullivan et al., 2003; Sullivan and Kuntz, 2004). First,
restraints with short spatial distances are more valuable than
those with long spatial distances because there are many more
ways for two particles to be far apart than close together. Thus, a
short-distance restraint provides more information than a long
one. Second, this effect is more substantial for restraints involving
residues that are more distant in the sequence. Thus, the most
valuable restraints involve residues distant in sequence but close
together in space. NOESY experiments provide powerful short
spatial distance restraints (<6Å) but can miss many crucial long
sequence distance restraints due to distribution of the isotope
labels. In contrast, PRE experiments will yield more distance

restraints due to the paramagnetic relaxation enhancement
effect’s long-range nature. Many of these restraints will be of
limited utility due to their long spatial distances; however, the
collective effect of all of these long spatial distance restraints with
the remaining short spatial distance (<12 Å) restraints can still be
potent. As an aside, PRE methods have also become a popular
approach to explore lowly populated transient protein states
(Iwahara and Clore, 2006).

Using PRE data for 3D protein structure determination
presents several challenges. First, each experiment only
provides information about the spatial proximity of a given
proton to a single site labelled with a paramagnetic tag.
Adequately determining the 3D structure requires multiple
experiments with different tag locations, increasing both
experimental time and cost. Second, each experiment provides
only a limited amount of information (Battiste andWagner, 2000;
Gottstein et al., 2012). Although a single experiment provides
information about the spatial proximity of each residue to the
paramagnetic tag, much of this information is redundant. For
example, if a residue is close to the tag, then neighbouring
residues in the sequence are also likely to be close.
Furthermore, information that a residue is close to the tag
provides a far more powerful structural constraint than
information that a residue is distant from the tag, but the
latter occurrence is far more frequent. Third, the derived
distances can be imprecise due to intermolecular interactions,
secondary metal-binding sites, and diamagnetic contamination
(Clore and Iwahara, 2009). Fourth, heterogeneity and dynamics
(Clore et al., 1990; Ryabov and Fushman, 2007; Bertini et al.,
2012) can complicate the interpretation of PRE data. Relaxation
can be strongly affected by conformational heterogeneity due to
the inverse sixth power relationship between the PRE and the
electron-nucleus distance; i.e., a minor structural population with
a strong paramagnetic effect can have a significant impact on the
measured data (Clore and Iwahara, 2009). Finally, the effects of
spin diffusion due to dipole-dipole coupling can limit the
accuracy of the measured PRE data (Vlasie et al., 2007; Vlasie
et al., 2008; Bellomo et al., 2021). These challenges have slowed
the widespread adoption of PRE-based methods for structure
determination in favour of traditional NOE-based approaches.

Residual dipolar coupling (RDC) measurements are a
common supplemental data source to PRE and NOE-based
experiments. RDC measurements are carried out on systems
where the protein is weakly aligned relative to the external
magnetic field. Rather than reporting on distances, RDCs
report on the angles between bonded atoms (typically
backbone N-H bond vectors) and the external magnetic field,
which provides valuable orientational information that
complements distance information from PRE or NOE
experiments (Prestegard et al., 2004). RDCs have been used
for structure refinement and as restraints in de novo structure
prediction software (Banci et al., 1998; Raman et al., 2010;
Prestegard et al., 2014). While many protein structures based
on RDC measurements have been reported, molecular modeling
and low temperature annealing procedures are often used to
derive and refine the 3D structures (Chou et al., 2000; Lipsitz and
Tjandra, 2004; Huang and Vogel, 2012). Clearly there is room for
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more unbiased approaches to incorporate such RDC data into
protein structure calculations.

Integrative approaches to structure determination (Ward
et al., 2013) have emerged as practical tools for converting
NMR and other experimental data into useful structural
models. For example, PRE and RDC measurements have been
used to drive molecular docking studies (van Dijk et al., 2005;
Gelis et al., 2007; Gochin et al., 2011), as restraints in molecular
dynamics simulations to generate ensembles of conformers
(Dedmon et al., 2005; Asciutto et al., 2011), or they have been
incorporated into Rosetta scoring functions (Lange et al., 2012;
Kuenze et al., 2019). We recently demonstrated the structure
determination of a small protein using PRE measurements in
solid-state NMR (Perez et al., 2019). However, integrative
methods are not without their own set of challenges. Even the
most sophisticated methods can still struggle as the data becomes
sparse, ambiguous, or unreliable, and considerable method
development is often required to treat a new type of
experimental data in order to correctly account for its
characteristics, e.g., the conformational heterogeneity of spin-
labels in PRE measurements (Iwahara et al., 2004; Anthis et al.,
2011; Andrałojć et al., 2017).

Here, we show that these challenges can be overcome by using
a sophisticated integrative structural biology approach called
Modeling Employing Limited Data (MELD) (MacCallum
et al., 2015). MELD combines experimental data from multiple
sources with physical modelling to overcome the challenges of
sparse, ambiguous, and difficult to interpret experimental data
to infer accurate protein structural ensembles. We combine
PRE and RDC measurements with secondary structure
predictions based on backbone chemical shifts. We use
MELD to infer the structure of Calmodulin in complex with
the 20-residue smooth muscle myosin light chain kinase
peptide (169 residues total). Calmodulin was selected for
this exploratory work as it has an almost completely helical
structure where the absence of inter-helical close contacts
between amide protons makes 3D structure determination
by NOE-based approaches difficult. Calmodulin-peptide
complex have previously been used as models for integrative
approaches using sparse NMR data (Andrałojć et al., 2014;
Carlon et al., 2019). We show that MELD can identify
conformations within 3 Å of a reference X-ray crystal
structure using only sparse paramagnetic NMR restraints
and RDCs from amide protons in combination with
backbone chemical shifts, while successfully addressing
conformational heterogeneity and noise in the NMR data.

EXPERIMENTAL METHODS

Calmodulin–Peptide Complex as a Model
System
In this work, we illustrate our approach for the protein
calmodulin in complex with the smooth muscle Myosin Light
Chain Kinase (smMLCK) peptide. Throughout, we will use a
previously solved crystal structure of this complex [PDB ID: 1cdl
(Meador et al., 1992)] as a reference.

Overview of Labeling Strategy
In previous studies, specific nitroxide spin-labeled target peptides
that bind to calmodulin were used; in this manner it was possible
to map out the orientation of the peptide with respect to the
protein (Zhang et al., 1995; Yuan et al., 2004). In this work, we
collected PRE data for a total of ten spin-labelled protein sites
(Figure 1). Nine of the sites on the protein were chosen to be
solvent-exposed and within secondary structure elements by
manual inspection of predicted secondary structure and
solvent exposure. The remaining site, C149, was a single-
residue extension of the C-terminus. To better simulate the
process for a system without a previously determined
structure, the protein’s known structure was not used in
choosing the spin-labelled sites. Indeed, we learned later that
several of the selected sites provided little useful information
because they are either distant from the rest of the protein or they
provided information that is mostly redundant with that obtained
from other labeling sites.

To simulate the limited availability of isotopically labelled
peptide, either due to cost or difficulty of production, only four of
the ten spin-label data sets (chosen randomly) were collected with
isotopically labelled peptide. The remaining six data sets were
collected without labelled peptide, which results in the peptide
being present but unlabeled and undetectable in the 1H, 15N
HSQC NMR experiments.

Protein Production
The ten single-cysteine point calmodulin (CaM) mutants (S17C,
T34C, N42C, N53C, R86C, T110C, T117C, E127C, Q143C, 149C)
were made by standard site-directed mutagenesis methods for
attachment of the thiol-specific nitroxide spin label (1-oxyl-
2,2,5,5-tetramethyl-δ-3-pyrroline-3-methyl)

FIGURE 1 | We carried out PRE experiments with ten different label
sites. In each experiment, Calmodulin was MTSL-labeled at a different
position. Spin labels were generally located in predicted surface-exposed
sites within secondary structures. Spin labels are shown in green as
virtual sites (see text), and their corresponding cysteine mutation linkage site is
shown in black (PDB 1cdl).
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methanethiosulfonate (MTSL, Toronto Research Chemicals).
Correctness of the mutations was confirmed by DNA
sequencing. Calmodulin contains no Cys residues, so highly
site-specific labeling can be obtained in this manner. MTSL is
a relatively compact, yet highly reactive molecule compared to
other commercially available nitroxide spin-labels that have been
used to modify Cys residues; its shorter more rigid structure
would be an advantage for the PRE studies [for discussion see for
example (Guo et al., 2008; Fawzi et al., 2011)]. 13C and
15N-labeled CaM was expressed in M9 minimal medium with
99.9% 15NH4Cl and 13C6-glucose (0.5 gr/L and 3 gr/L,
respectively; Cambridge Isotopes Laboratories) as isotope
sources. Proteins were expressed and purified as described
previously (Liu and Vogel, 2012; Ishida et al., 2016).

We followed a standard protocol for attaching the nitroxide
spin-label to each single-cysteine CaM mutants with the spin-
labelling reagent MTSL (Battiste and Wagner, 2000). To prepare
the CaM/smMLCK complex sample, a 1.2-fold excess of either
unlabeled or labelled peptide was mixed with each CaM mutant
protein. All preparations were divided into two NMR samples.
One sample was reduced to inactivate the spin-label by adding a
3-fold excess of ascorbic acid.

Peptide Production
A construct with a 6xHis-KSI (D38A) fusion-protein tag was
generated for smMLCK peptide expression in Escherichia coli
(Jaroniec et al., 2005; Ishida and Vogel, 2010). The ketosteroid
isomerase (KSI) coding sequence generates an insoluble protein,
and this directs the protein-peptide fusion directly into inclusion
bodies, where they are protected from proteolytic cleavage
(Hwang et al., 2014). A linkage sequence “GGGGSSDP” with
the Asp-Pro acid cleavage site was designed between the KSI
protein and the sequence of the smMLCK peptide. The entire
6xHis-KSI-GGGGSSDP-smMLCKp gene sequence was inserted
between the NdeI and XhoI sites of the pET15b(+) plasmid
(Novagen), which was subsequently transferred into
BL21(DE3) E. coli cells for protein expression. The cells were
grown in either LB media (for unlabeled peptide) or minimal M9
media (containing 13C6-glucose and

15NH4Cl isotope to produce
isotope-labeled peptide) and they were induced at OD600 � 0.6
with 1 mM IPTG for 4 h at 37°C. A cell lysate was prepared as
previously described. The insoluble fusion protein was separated
after one hour of centrifugation (18,000 rpm) and then
resuspended in 6 M guanidine hydrochloride. Impurities were
removed before the insoluble proteins can be extracted with metal
chelate chromatography on a nickel affinity column. After
extensive dialysis with double distilled H2O, the precipitated
insoluble protein was collected and the Asp-Pro bond was
cleaved in 10% formic acid at 80°C for 90 min (Hwang et al.,
2014). The protein-peptide mixture was flash frozen with liquid
nitrogen and lyophilized. Insoluble proteins and other impurities
were removed after the lyophilized mixture was resuspended in a
20 mM Tris-HCl buffer (pH � 8.0). Finally, the unlabeled and
isotope-labeled smMLCK peptides were purified with reverse-
phase HPLC (COSMOSIL 5C18-AR-300, Nacalai United States).
All purified peptides were lyophilized and stored at −20°C for
further use. The final peptide sequence after cleaving is

PARRKWQKTGHAVRAIGRLSS. The N-terminal proline is
not observable in the NMR experiments and was not included
in modeling with MELD.

Chemical Shift Assignments
All NMR experiments were carried out on a 600 MHz Bruker
AVANCE spectrometer with a field strength of 14.1 T. Backbone
resonance assignments for the protein and the bound peptide
were confirmed with the following 3D experiments: HNCO,
HNCA, HNCOCA, HNCACB, and CBCA(CO)NH, as
described previously (Liu and Vogel, 2012). All data were
processed using NMRPipe (Delaglio et al., 1995) and analyzed
with the program NMRView (Johnson and Blevins, 1994). All
chemical shifts from these experiments were used to obtain
backbone torsion angles from the program TALOS+
(Cornilescu et al., 1998; Shen et al., 2009). Secondary structure
elements as identified through the assigned chemical shifts were
as expected based on the known structure.

Paramagnetic Relaxation Enhancement
Measurements
Two 1H, 15N HSQC spectra were obtained for each spin-label
construct. Each system contained each 15N-labeled protein and
either unlabeled or 15N-labeled peptide, depending on the spin-
label site (S17C, N53C, T127C, and 149C had isotopically labeled
peptide). One HSQCwas collected with active spin-label, whereas
the other HSQC was collected with reduced, inactivated spin-
label. The distances between the spin-label and the affected nuclei
were calculated using the two-time point method (Iwahara et al.,
2007).

Residual Dipolar Coupling Measurements
Finally, to supplement the PRE experiments, we obtained RDC
measurements for the amide groups in the complex with a sample
where both the protein and peptide are isotopically labelled.
Residual dipolar couplings (RDC) were measured for the
CaM/smMLCK complex sample in a partially aligned media,
which contains 2 mM bis-Tris (pH � 7.0), 300 mM KCl and
16 mg/ml Pf1 bacteriophage (Asla Biotech Ltd.). The IPAP-
HSQC experiment was used for the RDC measurements
(Ottiger et al., 1998). In these experiments the effects of
dipole-dipole cross-correlated relaxation can impact the
accuracy of 1JNH splitting measured from the spectra
introducing a small residual bias in the RDCs. While these
systematic errors can be eliminated by using a selectively-
decoupled sequence (Yao et al., 2009), the errors are small
relative to the magnitude of the measured RDCs and are
expected to have a minimal effect on structure determination
(Yao et al., 2009). Our work uses only a single RDC alignment.
Notably, a mutant of Calmodulin is capable of selective binding to
lanthanides, which provides a strategy for the measurement of
multiple RDCs (Bertini et al., 2009). A quantitative assessment of
protein mobility/heterogeneity by RDC would require the use of
multiple alignments (Barbieri et al., 2002; Tolman, 2002;
Bouvignies et al., 2006; Higman et al., 2011; Guerry et al.,
2013; Andrałojć et al., 2015). However, as discussed further
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below, it is not currently possible to conduct such an analysis with
the MELD approach, as MELD compares individual structures,
rather than ensembles of structures, to the experimental data.

COMPUTATIONAL APPROACH

Overview of Modeling Employing Limited
Data Approach
Here, we employ MELD, a physics-based Bayesian approach for
structural determination to infer the ensemble of structures most
consistent with the known physics of protein structure and
experimental data (MacCallum et al., 2015; Perez et al., 2015).
MELD uses a Bayesian framework to combine a physics-based
prior distribution with a data likelihood function to make
statistically consistent inferences about conformations that
explain the experimental data.

MELD uses Bayes’ theorem:

p(x|D)∝ p(x)p(D|x), (1)

where x represents the atomic coordinates and D represents
the data. The physics-based prior, p(x), specifies which
structures are more likely a priori and determines the
distribution of structures in the absence of data. In the
present study the physics-based prior is given by the Amber
ff14SB force field (Maier et al., 2015) with a grid-based torsion
potential (Perez et al., 2015) and the OBC generalized-Born
implicit solvent model (Onufriev et al., 2004). The likelihood
function, p(D|x), captures the compatibility between the data
and some structure x. In MELD, the likelihood function takes
the form of a unique restraint function (MacCallum et al.,
2015), explained in more detail below. The goal of Bayesian
inference is to compute the posterior distribution, p(x|D),
which is the most statistically consistent inference given the
prior, likelihood, and data.

As discussed in the Results section below, the term
ensemble is highly overloaded in structural biology and
care is required in interpretation. MELD belongs to the
class of methods where a single structure, rather than
entire ensemble of structures, is considered in the
likelihood function, such that each member of the
ensemble individually agrees with the experimental data.
Any conformational heterogeneity (e.g., flexible loops) may
represent true intrinsic heterogeneity, but may also simply
reflect a lack of data. As such, MELD produces a form of
uncertainty ensemble in the terminology of Bonomi
et al., 2017.

Overview of Experimental Data
The input to our approach is: 1) the protein sequence, 2)
TALOS+ secondary structure predictions derived from
backbone chemical shifts (Cornilescu et al., 1998; Shen
et al., 2009; MacCallum et al., 2015), 3) distance restraints
derived from PRE measurements, and 4) orientational
restraints derived from RDC measurements. We have

recently demonstrated the success of a similar approach for
PRE measurements in solid-state NMR (Perez et al., 2019).

PRE data is often both noisy and sparse (Kim et al., 2014),
which makes structural inference challenging. Despite collecting
data for ten spin-label positions, we can derive only a few distance
restraints that are short in spatial distance (in this case, we define
short as <12�A) (Figure 2). Of these short spatial distances, only a
small number correspond to residues that are distant in sequence,
which would provide the most information about folding
(Gottstein et al., 2012). Furthermore, as stated previously, to
simulate the limited availability of isotopically labelled peptide,
only four of ten datasets (S17C, N53C, T127C, and 149C) had
labelled peptide, and there are no short distance PREs between
the peptide and the protein. This leaves the peptide’s correct
placement to be dictated by longer, less informative spatial
distance restraints and the physical model, which makes
accurate inference more challenging.

Deriving Distances From Paramagnetic
Relaxation Enhancement Data
Our first step was to develop a consistent method to convert
ensemble-averaged PRE measurements into distance
restraints. PRE data were turned into approximate distances
using the Solomon-Bloembergen equations following the
standard approach (Battiste and Wagner, 2000; Iwahara
et al., 2007).

For nitroxides, Curie-spin relaxation is negligible and the
transverse relaxation enhancement, Γ2, is dominated by direct
dipole-dipole interactions (Clore and Iwahara, 2009). In this case,
Γ2 is related to the distance between the paramagnetic center and
the observed nucleus, r:

Γ2 � K
r6
[4τc + 3τc

1 + ω2
Hτ2c

]
where ωH is the Larmor frequency of the proton, and τc is the
correlation time for the electron-nuclear interaction defined as
τc � (τ−1r + τ−1s )−1 where τr is the rotational correlation time,
and τs is the electron relaxation time. Previous experiments (Lee
et al., 2002) have determined that τc ≈ 9.5 ns for Calmodulin in
complex with smMLCK peptide at 25°C. For nitroxides, the
electron relaxation time is long (Iwahara et al., 2007)
(τs > 10−7s), so the rotational correlation time dominates and
τc ≈ τr ≈ 9.5 ns. K is given by:

K � 1
15

(μ0
4π

)2

c21g
2μ2BS(S + 1)

where µ0 is the permeability of vacuum, γ1 is the nuclear
gyromagnetic ratio, g is the electronic g factor, µB is the Bohr
magneton, and S is the electron spin quantum number. Γ2 can be
estimated using a two-point time measurement (Iwahara et al.,
2007):

Γ2 � R2,para − R2,dia � 1
ΔT ln

Idia(Tb)Ipara(Ta)
Idia(Ta)Ipara(Tb)
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where ΔT is a time delay chosen to minimize the error in Γ2, and
Idia and Ipara are the peak intensities for the diamagnetic and
paramagnetic samples, respectively (Iwahara et al., 2007). In this
work, we use ΔT � 20ms.

Incorporating Paramagnetic Relaxation
Enhancement Information Into Modeling
Employing Limited Data Calculations
The distances derived from PRE data correspond to ensemble
averages with an r−6 weighting, but in MELD (and most other
structure determination software), restraints are applied to single
structures rather than ensembles. To account for conformational
heterogeneity of both the protein and the flexible spin-label, the
PRE-derived distances are turned into flat bottomed harmonic
restraints that allow for a range of distances without penalty. This
approach is a tradeoff that ensures that individual structures are not
erroneously over-restrained but this can allow discrepancies between
themeasured andmodelled ensemble averages. Our aim is to produce
an approximately correct ensemble starting from an extended chain. If
desired, the resulting ensemble can be further refined using a variety of
ensemble approaches (Boomsma et al., 2014; Hummer and Köfinger,
2015; Bonomi et al., 2016; Gaalswyk et al., 2018).

We divided the data into short,medium, and long distances with
corresponding upper and lower bounds (Table 1). Short and long
distances are difficult to quantify with precision because the peak is
either completely broadened for residues close to the spin-label or

barely changes intensity for those that are far away. These distances
are turned into broad restraints that either start from zero or extend
to infinity for short and long, respectively. Medium distances
correspond to peak intensity changes that can be quantified more
precisely and are turned into restraints centered around the
predicted value. All distances include a buffer of ±5 Å of the
measured distance to account for the flexibility of the spin-label
and noise in the experimental data (Perez et al., 2019).

Due to noise in the experimental data, partially overlapping
peaks, and instantaneous fluctuations in both the protein
structure and the position of the spin label, we observed that
restraints are sometimes violated even with a ±5 Å buffer. To
mitigate this issue, we used MELD’s unique ability to require that
only a certain fraction of the restraints must be satisfied by each
structure. We set this active fraction to 0.9. Essentially, as long as 90
percent of the restraints are satisfied, the resulting restraint energy
will be zero. We treat the remaining restraints as being derived from
spurious data, so they are entirely ignored. Every timestep, MELD
decides which restraints are active based on the current structure.
Further details can be found in the SI and inMacCallum et al. (2015).

In our approach, the various hyperparameters (boundaries
between short/medium/long, size of buffer, active fraction) are
fixed. One potential improvement would be to place a hyperprior
on these values and infer them using an extended Bayesian
approach like Inferential Structure Determination (Rieping
et al., 2005). This would allow the data and physical model to
determine the most likely values of these hyperparameters, rather

FIGURE 2 | Summary of short distances from the reference crystal structure and inferred from the PRE data. The protein and peptide backbones are represented in
a half-circle where the colour depends on the secondary structural element (black—helix, dark grey—extended, light grey—loop). The spin-label locations are shown in
blue. A red dot indicates the experiment was performedwith labelled peptide. Short distances [ (I, j) pairs where |i − j|>4 and rCαij < 7.6 Å] derived from the crystal structure
are shown as grey arcs. Short distances (rlabel−NHij <12Å) derived from the PRE data are shown in green. Note that C149 is a single-residue extension of calmodulin,
which is 148 residues long.

TABLE 1 | Distance bounds for calculated PRE distances, r.

PRE distance range (Å) Restraint upper bound (Å) Restraint lower bound (Å)

Short r ≤ 12 17 0.0
Medium 12 < r < 20 r + 5 r − 5
Long r ≥ 20 ∞ 15

Ranges are chosen based on the nature of the PRE and include a +/− 5 Å buffer to account for heterogeneity and flexibility.
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than requiring their specification a priori. As MELD does not
currently support inference of hyperparameters, we chose the
simpler approach of setting a wide buffer and lower active
fraction, which potentially sacrifices a small amount of
information.

The spin-label was modeled using virtual sites (Banci et al.,
1996) following the approach of Islam and Roux (Islam et al.,
2013; Islam and Roux, 2015). These virtual sites represent the
spin-label as a non-interacting dummy particle to simplify the
simulation without losing relevant information for structural
refinement. These simplified dummy nitroxide spin-labels are
parameterized to match the spin-labels’ 3D spatial distribution
and dynamics in all-atom simulations. The virtual sites are non-
interacting, allowing us to account for all ten spin labels in a single
simulation without the risk of interactions between them.

Secondary structure restraints were derived from TALOS+
(Cornilescu et al., 1998; Shen et al., 2009) and used to restraint
MELD simulations as previously described (MacCallum et al.,
2015). Our approach works by first breaking the protein into
overlapping 5-residue fragments. If 4/5 of the residues in the
fragment are predicted to be helical or extended, then the
fragment is restrained using a combination of torsion and
distance restraints (MacCallum et al., 2015). All secondary
structure restraints are then combined into a collection with
an active fraction of 0.95, which allows 5 percent of fragments to
differ from their predicted secondary structure.

Incorporation of Residual Dipolar Coupling
Information Into Modeling Employing
Limited Data
The traditional approach to incorporate RDCs into simulations is
based on solving for the optimal alignment tensor, which requires
solving a system of equations every time step using singular value
decomposition (SVD) or related methods, which can be
computationally intensive (Losonczi et al., 1999). We found this
to be particularly problematic in the GPU-accelerated framework of
MELD, where this traditional approach led to a 300 percent increase
in run time (data not shown), primarily due to the extreme speed of
the rest of the force/energy calculations and the challenge of
efficiently parallelizing SVDs for small systems of equations on a
GPU. To mitigate this issue, we instead followed the approach in
Habeck, Nilges, and Riepling (Habeck et al., 2008), which we
implemented using an OpenMM CustomCentroidBondForce
(Eastman et al., 2017). In our implementation, the alignment
tensor elements are encoded in two non-interacting dummy
particles coupled to the rest of the system through an additional
energy term. This approach has two benefits. First, it is dramatically
faster than the standard approach on GPUs, with negligible cost
compared to the calculation of the non-bonded forces. Second, this
approach accounts for uncertainty and produces a joint distribution
of alignment tensors and structures, providing a Bayesian posterior
estimate of the conformational ensemble that better reflects
uncertainty. A full explanation of our implementation can be
found in the SI. To account for uncertainty in the experimental
data and to avoid erroneously over-restraining individual structures
to the ensemble average data, we use a flat-bottomed restraint where

the energy is zero if the computed RDC is within 1.5 Hz of the
measured value. Another approach that avoids the need to solve for
the alignment tensor is given in Camilloni and Vendruscolo (2015).

RESULTS AND DISCUSSION

Interpretation of Modeling Employing
Limited Data-Computed Ensembles
The term “ensemble” is highly overloaded in structural biology,
with a variety of meanings in different contexts (Bonomi et al.,
2017; Andralojc and Ravera, 2018; Gaalswyk et al., 2018). Care
must be taken to ensure correct interpretation.

MELD samples from a well-defined conformational ensemble
(Gaalswyk et al., 2018), specifically the Bayesian posterior
distribution given by Eq. 1. Interpretation of this ensemble is
straightforward: it is the statistically consistent posterior
distribution inferred from the prior, likelihood, and data. How
should one select or report structures from this ensemble? The
approach we take here is simply to report all structures, as this
fully captures the heterogeneity of the distribution. If there is a
limit to the number of structures reported, one simple, correct
approach is to select a subset of structures at random.
Alternatively, one could cluster the structures and report the
cluster medoids and populations along with some measure of the
variance of structures within the cluster. A variety of approaches
are supported by the PDB-Dev archival system which is being
developed for structural models obtained using integrative
modeling (Vallat et al., 2018). However, we note that since
MELD samples structures with the correct posterior
probabilities, it is incorrect to further select structures based
on other criteria, such as selecting the lowest energy structures.

A second consideration in ensemble interpretation is the
nature of the likelihood function. The experimental
measurements are averages over a thermodynamic ensemble.
The most correct modeling approach is to use a likelihood
function that considers an entire ensemble of models, ensuring
that the predicted average quantities match their corresponding
experimental measurements (Bonomi et al., 2017; Andralojc and
Ravera, 2018; Gaalswyk et al., 2018). This is an ill-defined inverse
problem (Bonomi et al., 2017; Andralojc and Ravera, 2018), so
regularization is required, typically in the form of physical
modelling and entropy maximization (Bonomi et al., 2017;
Andralojc and Ravera, 2018; Gaalswyk et al., 2018). While
conceptually appealing, ensemble likelihood methods are
complex with high computational requirements. Alternatively,
most methods in structural biology, including the MELD
approach described here, use single-structure likelihoods
(Boomsma et al., 2014). These methods are overly restrictive,
as they require eachmember of the ensemble to be consistent with
the data to within some tolerance. In the current approach, we use
relatively wide tolerances, but this still does not guarantee that
that the computed ensemble accurately models the true
distribution.

The primary issue is that for a given set of experimental
measurements, there are many possible ensembles that could
produce it. The ensemble that MELD generates ensures that each
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structure is in reasonable agreement with the data and allows for a
reasonable degree of flexibility. However, the MELD average
might not precisely match the experimental measurement due
to the use of wide tolerances. Furthermore, the true ensemble
could be “broader” than the one generated by MELD—the true
ensemble could have many structures that are individually in
poor agreement with the data, while still having the same
ensemble average, see Figure 1 of Gaalswyk et al. (2018) for a
simple illustration. In the terminology of Bonomi et al. (2017),
MELD produces an uncertainty ensemble, where heterogeneity in
the calculated ensemble could represent true heterogeneity in the
system or could simply reflect a lack of data for some part of the
protein. The single-structure approach is likely reasonable when
the true ensemble has only a modest amount of heterogeneity,
e.g., small fluctuations around an average structure, but could be
expected to break down for highly heterogenous systems, e.g.,
systems containing intrinsically disordered regions.

Although we do not pursue it here, a promising approach
would be to use a method like MELD to compute an initial
approximate ensemble that could then be used as a starting
point for ensemble approaches (Boomsma et al., 2014;
Hummer and Köfinger, 2015; Bonomi et al., 2016; Gaalswyk
et al., 2018).

The Accuracy of Inference Depends on the
Protocol Used
To determine how the experimental data should be
incorporated, we performed several simulations varying in
their set up (Trial1–Trial4). We explored various ways of
combining the restraints into collections (Table 2). In MELD,
at every timestep, the restraints in a collection are sorted by
energy, and the active fraction with the lowest energy are
“active” and contribute their forces and energy to the system,
while the remainder are “inactive” and ignored. The division
of restraints into collections matters because it determines
how MELD decides which restraints are active and which are
ignored. For example, Trial1 combines all of the restraints
into a single collection. In this case with an active fraction of
0.9, MELD can freely ignore any 10 percent of the restraints,
which could be, for example, ignoring one of the ten spin
labels entirely. Trial2 separates the restraints by spin-label
and into short,medium, and long-distance ranges, resulting in
30 collections. Now MELD can only ignore 10 percent from
each spin label/distance combination, while the remaining
90% will be active. Trial3 extends Trial2 by adding the RDC
restraints. Trial1–Trail3 start from an extended
conformation generated by the tleap tool from the
AmberTools suite (Case et al., 2021). Trial4 follows the
same protocol as Trial3 but starts from the reference
crystal structure as a control.

For each trial, we ran a 2.5 µs replica exchange simulation
using 48 replicas. The temperature and the force constant for each
restraint collection varied across replicas (see SI for details). The
last 0.5 µs of the lowest replica was used for analysis.

Using Only Paramagnetic Relaxation
Enhancement-Derived Information Leads to
Modest Structural Quality
We compare the trials using kernel density estimation plots
(KDE; see Supporting Information for details) of the backbone
root mean square deviation (RMSD) to the reference structure
[PDB: 1cdl (Meador et al., 1992)], excluding the flexible tails at
the N and C terminals of the protein which are not present in the
reference (Figure 3).

Trial1 is the most straightforward approach and combines
all of the data into a single collection. Many of the structures
have relatively low RMSD to the reference (<4Å), which is

TABLE 2 | Grouping of restraints for simulations and description of individual trials.

Trial Number of collections Description

Trial 1 1 All PRE restraints in a single collection
Trial 2 3 × 10 � 30 PRE restraints are combined by spin-label position and distance (Short, Medium Long) into 30 collections.
Trial 3 3 × 10 � 30 PRE restraints are combined by spin-label position and distance (short, medium long) into 30 collections.

RDC restraints are included.
Trial 4 3 × 10 � 30 PRE restraints are combined by spin-label position and distance (short, medium long) into 30 collections.

RDC restraints are included.
Simulation starts from native crystal structure.

PRE restraints have a force constant of 250 kJ mol−1 nm−2. RDC restraints have a force constant of 0.5 kJ mol−1 Hz−2.

FIGURE 3 | Increasing complexity of how restraints are incorporated
results in better sampling. Kernel Density Estimate (KDE) plot of backbone
RMSD to the reference structure. The last 0.5 µs were analyzed. Flexible tails
at the N- and C-termini of the protein were excluded.
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promising considering the rather limited experimental data,
but there are also structures with much higher RMSDs of
∼5 Å and ∼7.5 Å RMSD. There are various explanations for
these high RMSD conformations, but perhaps the simplest is
that this way of grouping all restraints into a single collection
allows MELD to ignore short spatial distance restraints that
would otherwise eliminate these conformations. As
previously stated, the utility of a restraint depends on its
spatial distance. Shorter distances provide highly
constraining information. However, this highly
constraining nature means that these restraints are more
difficult to form, leading MELD ignore them in favour of
more easily satisfied restraints.

To test this hypothesis, in Trial2, we further subdivided the
restraints by separating the short, medium, and long restraints
from each dataset into separate collections, resulting in 30 total
collections.

The resulting RMSD distribution is centered at a modest
RMSD of ∼4 Å, which is slightly worse than the mode from
Trial1. However, this method of combining restraints into
collections has wholly eliminated the high RMSD
conformations.

Although the RMSDs obtained are only modest (∼4 Å), these
results were obtained with a very sparse dataset with only one
spin-label per 17 amino acids. This equates to 6.4 total restraints
per residue, and only 0.8 short-distance restraints per residue. For
context, NOE-based structures from fully protonated samples
typically have >15 NOE restraints per residue, all with short
distances.

Based on visual examination, several of our spin-label sites
appear to give restraints that are largely uninformative, either
because they are far from the remainder of the protein (e.g.,
R86C) or because they are mostly redundant with other spin-
label positions (e.g., T110C), see Figures 1, 2. Our results could
be improved with a more judicious choice of the 10 label sites,
but it is unclear how to do this without pre-existing knowledge
of the structure. The results could likely be improved further
by adding additional spin-label sites using the calculated
structural ensemble to optimize probe location, although we
do not pursue this here. Such an iterative strategy could be a
viable approach to improve model accuracy but comes at an
additional experimental cost. More rigid spin-labels (Fawzi
et al., 2011) could also improve results, as MTSL still displays
significant conformational heterogeneity that results in less
precise distance restraints.

Residual Dipolar Couplings Provide
Complementary Information That Improves
Accuracy
Despite collecting data for 10 different spin-label sites, few yielded
informative short spatial distance, high sequence distance
restraints (Figure 2), limiting the models’ achievable accuracy
to relatively modest RMSDs of around 4 Å. Rather than collect
additional PRE data, we instead chose to explore the utility of
combining PRE information with residual dipolar couplings
(RDCs) measured for the amide groups.

Residual dipolar couplings provide information about the
orientation of amide NH bonds complementary to the distance
information from PRE experiments. In Trial3, we combined
PRE information (using the same strategy as Trial2) with RDC
data. The inclusion of RDC data led to a substantial
improvement in the RMSD (Figure 3). The RMSD ranges
from approximately 1.6–4.0 Å with an average RMSD of 2.8 Å,
including both Calmodulin and the smMLCK peptide
(Figure 4). This improvement of RMSD upon inclusion of
RDC data is consistent with previous studies showing that
RDC data provides valuable information on the relative
orientation of the two lobes of calmodulin (Mal et al., 2002;
Gifford et al., 2011).

RDCs provide information about how the amides are oriented,
which, when combined with secondary structure restraints
(derived from the measured backbone chemical shifts) and
distance restraints (derived from PREs), serves to dramatically
limit the possible structures that simultaneously agree with the
experimental data and the physical model.

To assess the potential quality of sidechain packing, we
examined the single best structure obtained during our
simulations, which has an RMSD of 1.6 Å (Supplementary
Figure S1). For this “best” structure, the RMSD for sidechain
heavy atoms is 2.1 Å for all sidechains and 1.4 Å for core
sidechains. This is notable as there are no restraints on the
side chains themselves, only between the spin labels and the
backbone amide protons. This packing phenomenon with MELD
has been noted previously and can be attributed to the accuracy of
the physical model (Perez et al., 2019). However, we note that the

FIGURE 4 | Superposition of a typical model (green) from the Trial3
ensemble with the reference structure (white). Peptide is shown in dark green
and grey respectively. The superposition was over residues 4–146 of
calmodulin plus the peptide. The backbone RMSD of this structure is
2.8 Å, which is near the mean of the ensemble. Structures with RMSDs as low
as 1.6 Å are sampled.
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sidechain and backbone RMSDs are generally correlated, and this
structure has a lower backbone RMSD than average, so the
average side chain RMSDs will be higher than these figures.

Despite Limited Data, the Peptide Is
Routinely Placed Correctly
As noted previously, the experimental data contained no short
distance PREs to the peptide, so placement of the peptide is
dependent on a combination of medium and long restraints with
the physical model. Furthermore, only 4 of 10 experiments
contained labelled peptide, with the peptide undetected in the
remaining experiments. Nevertheless, the combination of
available data and the physical model was still able to
routinely position the peptide correctly (the peptide is
included in the RMSD calculations shown in Figure 3). The
structure of calmodulin depends on the peptide and its binding
(Barbato et al., 1992; Ikura et al., 1992), so correct placement of
the peptide is critical.

The Individual Lobes Are Better Defined
Than the Complex
Calmodulin consists of two lobes connected by a flexible linker
that becomes structured upon peptide binding (Barbato et al.,
1992). Examination of each lobe individually shows that our
modeled ensembles are tightly clustered (Figure 5), indicating
that most of the heterogeneity in our calculated ensemble arises
from the relative motion of the two lobes. If we consider the
RMSD of each lobe to the reference individually, the results are
consistently lower than for the whole protein (Figure 6). The
RMSD of the C-lobe to the reference structure is ∼2.1 Å
(Figure 6B), which is consistent with typical RMSDs for small
globular proteins seen in MD simulations. The results for the
N-lobe are similar. The resulting heterogeneity in the relative
orientation of the two domains should be interpreted with
caution, due to the use of a single-structure likelihood, as
discussed above.

A previous study (Carlon et al., 2019) examining the joint
X-ray/NMR refinement of Calmodulin in complex with the

FIGURE 5 | The domains have tightly clustered ensembles. Superpositions of (A)C-lobe (residues 82–149) and (B)N-lobe (residues 1–76) of Calmodulin for Trial3.
Every 100th frame from the last 0.5 microseconds is shown, coloured from N-terminus (red) to C-terminus (blue).

FIGURE 6 | Simulations from extended and native show similar distributions. We show a comparison of the same protocol started from either an extended chain
(Trial3, blue) or from the reference crystal structure (Trial4, orange). Each panel shows the backbone RMSD compared to the reference crystal structure. We compare:
(A) the full-length protein, as well as the (B) N-, and (C) C-lobes.
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Death-Associated Protein kinase (DAPk) peptide revealed poor
agreement between X-ray andNMR data due to large interprotein
contacts in the crystal that stabilize a conformation that is in poor
agreement with the solution NMR data. The crystal structure of
the full-length DAPk protein in complex with Calmodulin lacks
these contacts and is in much better agreement with the NMR
data. These results highlight the need for caution when
comparing structures determined by X-ray crystallography and
NMR, particularly in cases where flexibility can be expected.

A study of 109 pairs of NMR and crystal structures (Sikic et al.,
2010) showed that typical C⍺ RMSDs range from ∼0.5 to 4 Å with
a mean of ∼2.0 Å when using the DALI (Holm and Sander, 1993)
alignment. The typical variability of models within a given NMR
ensemble was similar (Sikic et al., 2010). Our results for the
individual lobes of calmodulin give similar average RMSDs,
indicating that our approach is producing results comparable
to typical NMR structures using NOEs and fully protonated
samples despite the substantial sparsity in our data. Our
results for the full-length complex produce a slightly higher
average RMSD, which reflects heterogeneity in the exact
relative placement of the two lobes.

To further test our predictions’ quality, we also ran
calculations using the same protocol as Trial3 but starting
from the reference crystal structure rather than from an
extended chain (Figure 6), which sets a bound on the possible
accuracy that could be obtained. The resulting RMSD
distributions are similar to our predictions. This indicates that
given: 1) the available experimental data, 2) potential limitations
of the physical model used, 3) the use of a single-structure rather
than ensemble likelihood, and 4) the challenges of comparing
with a static crystal structure, the results obtained using MELD
are essentially as good as they could be.

Computational Requirements
Each calculation was over 48 replicas for 2.5 µs, which required
approximately 6 days on 48 GTX 1080Ti GPUs. However,
examination of the RMSD over time (Supplementary Figure
S2) shows that the simulations appear to be converged after
∼500 ns. In hindsight, the simulation length could have been
reduced to 1 µs without a loss in quality, which would reduce
simulation time to 2.5 days. While computationally expensive,
our approach is readily feasible with access to advanced research
computing or cloud computing resources.

CONCLUSION

Our approach can generate accurate protein structures starting from
an extended chain using backbone chemical shifts in combination
with PRE and RDC measurements from backbone amide labeled
samples. We demonstrate this on a relatively large, complex system

with only one spin label per 17 residues. This gives an average of 6.4
PRE restraints per residue of which less than 0.8 per residue are
short-distance, compared to the >15 short-distance restraints per
residue that are typical in NOE-based structure determination. Our
approach is able to routinely identify dominant conformations
within 3 Å of the reference crystal structure for calmodulin in
complex with a peptide and correctly places the peptide despite a
lack of information relating the peptide to the protein. These results
approach the quality of gold-standard, fully protonated NMR
structures based on NOEs, but were obtained from a far sparser
dataset usingmethods that aremore applicable to large proteins. The
inclusion of RDCs highlights their value in structure determination
with minimal PRE-derived distance restraints. These results
showcase the importance of spin label location and the effect it
has on the value of the resulting restraints. We show that MELD
can accurately account for challenges related to conformational
heterogeneity and noise and achieve moderate side chain
packing. These results also highlight the capabilities of
integrative approaches when experimental information is
limited.
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