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Abstract: In this paper, density functional theory (DFT) was used to study the possibility of low-
dimensional (2D, 1D, 0D) boron nitride nanomaterials to catalyze acetylene acetate reaction, and
further explore the possible source of this catalytic activity. It is found that the catalytic activity of
boron nitride nanomaterials for acetylene acetate reaction will change with the change of the geometric
structure (dimension) and reaction site of the catalyst. From the geometric structure, the reaction
components and the zero-dimensional BN catalyst can form chemical bonds and form complexes,
while only physical adsorption occurs on the surface of the one-dimensional and two-dimensional
BN catalysts. From the reaction site, the properties of different C sites on the B12N12NC-C2H2

complexes are different. Namely, a C atom connected with a B atom is more likely to have an
electrophilic reaction with H+, and a C atom connected with an N atom is more likely to have a
nucleophilic reaction with CH3COO−. Through the study of three kinds of BN nanomaterials with
low dimensions, we found that the zero-dimensional B12N12 nanocage broke the inherent reaction
inertia of BN materials and showed good catalytic activity in an acetylene acetate reaction, which is
very likely to be a non-metallic catalyst for the acetylene gas-phase preparation of vinyl acetate.

Keywords: acetylene; acetic acid; vinyl acetate; BN nanomaterial; dimension

1. Introduction

As one of the most-used industrial organic raw materials in the world, vinyl acetate
(VAc) can produce derivatives such as polyvinyl acetate resin (PVAc), polyvinyl alcohol
(PVA), and polyacrylonitrile (PAN) through self-polymerization or copolymerization with
other monomers. These derivatives are widely used in construction, textile, machinery,
medicine, and soil amendment [1–3]. Due to the rapid development of the terminal industry,
the demand for vinyl acetate is increasing year by year [4]. The research and development
of new catalysts will become one of the key factors to improve the production capacity
and yield of vinyl acetate. At present, due to the influence of raw materials and processes,
the production of vinyl acetate is mainly based on the ethylene gas phase method and
acetylene gas phase method. Compared with the acetylene method, the ethylene gas phase
method has more advanced technology and higher production efficiency. However, in
China, India, and other countries with rich coal resources and scarce oil resources, the
acetylene process is more competitive than the ethylene process in the raw material side [5].
Although the production capacity of the vinyl acetate industry has been greatly increased
in recent years, the technology used in the acetylene process in industry is still relatively
basic. In addition, the traditional zinc acetate catalyst used in the acetylene method also
has some disadvantages, such as rapid decline in activity, more by-products, easy carbon
deposition in the reaction process, and easy sintering of active components [6–8]. Therefore,
the research and development of new catalysts is conducive to improving the current
situation of the acetylene process, and has important practical significance for the healthy
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development of the vinyl acetate industry and the improvement of production capacity in
areas rich in coal resources.

In light of today’s increasingly serious environmental problems, developing efficient,
cheap, and environmentally friendly green catalysts is an effective means to achieve the
goal of “carbon neutrality” and sustainable development strategy. Because the properties
of the elements close to each other in the periodic table are similar, it inspires us to look
for new substances to replace the traditional zinc-based catalysts in a certain area of the
periodic table. The outer electron arrangement of the Zn element in zinc-based catalysts
is 3d104s2. Because the 10-electron structure of the 3d orbital of Zn is very stable, it is
very difficult to lose the electrons in the 3d orbital in chemical reactions [9]. This shows
that Zn-based catalysts rely on 4s orbitals in the process of catalytic acetylation, while the
“d-band theory” [10] based on transition metals is not applicable to Zn-based catalysts.
Therefore, we speculate that the boron group (IIIA group), which is adjacent to the zinc
group (IIB group) elements, may be the best substitute for zinc-based catalysts. Among the
boron group (IIIA group) elements, boron, as the only non-metallic material, has attracted
the extensive attention of researchers because of its low cost and environmental friendliness.
Boron is electron deficient and can carry empty orbitals and occupy orbitals. At the same
time, similar to transition metal elements, boron has the ability to attract electrons (pull)
and give electrons (push) at the same time, so it shows unique activity in many catalytic
reactions [11]. As an important compound form of boron, boron nitride exists in a variety
of structures, such as three-dimensional cubic and hexagonal phase bulk boron nitride [12],
two-dimensional h-BN nanosheets [13,14], one-dimensional BN nanotubes [14], and zero-
dimensional BN nanocages [15]. Boron nitride compounds usually have good stability of
oxidation resistance, heat resistance, and corrosion resistance, and have great advantages
in industrial applications. In particular, BN nanomaterials have shown broad application
prospects in energy storage, catalysis, molecular sensing, tribology, heat transport, and drug
transport [16–20]. Therefore, BN nanomaterials are very desirable for catalytic reactions.
These excellent properties also make it possible to prepare catalysts with strong toxicity
resistance, good thermal stability, and long service life. Because B and N atoms in BN
compounds usually form sp2 or sp3 hybridization, the p orbital of the B atom is completely
filled, which is usually considered to be chemically inert. In addition to introducing
defects [21] and edges [22], heteroatom doping [23], and chemical functionalization [24,25]
to activate BN nanostructures, studies have shown that reducing the dimension of materials
can produce strange electronic structures, and can obtain a larger surface area and higher
atom utilization efficiency [11], which may be one of the potential ways for inert BN
materials to obtain catalytic properties.

In order to explore whether the catalytic activity of boron nitride nanomaterials for
acetylene acetate reaction will change with the geometric structure and dimension of
the catalyst, we used density functional theory (DFT) to study the possibility of low-
dimensional BN nanomaterials (BN nanosheet (2D), boron nanotube (1D), and boron
nanocage (0D)) for acetylene acetate reaction, and further discussed the differences of the
three catalysts and the source of their activity. Figure 1 briefly describes the change of
energy of acetylene acetylation catalyzed by three BN catalysts. The results show that
under the reaction conditions of 1 atm and 493.15 K, the adsorption of acetylene and acetic
acid molecules on BN nanosheets and BN nanotubes is thermodynamically unfavorable.
However, with the decrease of the dimension of BN nanomaterials, the adsorption capacity
of the 0D B12N12 nanocage for acetylene and acetic acid was significantly enhanced, and
it showed good catalytic activity in the reaction of acetylene and acetic acid. This shows
that the electronic properties of the surface of BN nanomaterials can be effectively adjusted
and controlled by reducing the dimension of BN nanomaterials, so that inert materials can
produce catalytic activity. The research of this paper shows that the 0D B12N12 nanocage
is likely to be a potential non-metallic catalyst for the preparation of vinyl acetate by the
acetylene gas phase method. We hope this work can provide theoretical support for the
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research and development of non-metallic catalysts for acetylene acetate reaction, and
provide theoretical help for the research of new low-dimensional nano catalysts.
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Figure 1. Energy change of acetylene acetic acid reaction catalyzed by BN catalysts with different
geometric structures at 1 atm and 493.15 K.

2. Results and Discussion
2.1. Analysis of Structure and Properties of Catalysts

The molecular geometric structures of BN nanosheets, BN nanotubes, B12N12 nanocages,
acetylene, and acetic acid after optimization are shown in Figure 2. Hexagonal boron nitride
nanosheets (BNNS) have the same hexagonal structure as graphene. Due to their similar crystal
structure, single-layer BN nanosheets have many properties similar to graphene, but are white
in color, so they are sometimes called white graphene [16]. In particular, the hexagonal boron
nitride monolayer, in which boron and nitrogen atoms alternate in a honeycomb vortex, consists
of two-dimensional (2D) layers bound by sp2 bonds [26]. In each layer of the hexagonal boron
nitride, boron and nitrogen atoms are held together by strong covalent bonds, and the layers
are held together by weak van der Waals forces, just as in graphite [25]. We constructed and
optimized the single-layer nanosheet structure of BNNS through theoretical simulation, where
each alternate B-N bond length is 1.45 Å and each Angle ∠B-N-B or ∠N-B-N is 120◦. The
Mulliken charges of the B atom and N atom are 0.482(B1), −0.477(N1), 0.334(B2), −0.521(N2),
0.349(B3), −0.536(N3), 0.478(B4), −0.431(N4), 0.478(B5), and −0.432(N5), respectively. The
corresponding atomic serial numbers are shown in Figure 2.

Boron nitride nanotubes (BNNT) are a seamless cylindrical hexagonal BN bond grid
composed of alternate boron and nitrogen atoms. Although BNNTs and carbon nanotubes
(CNT) have similar structures, BNNTs also exhibit a series of physical and chemical proper-
ties that are different from those of CNT, mainly due to the partial ionic bond properties
between the B and N atoms [27]. In addition, the boron–nitrogen bonds of BNNT have cer-
tain polar characteristics, depending on the curvature of the nanotubes. With the increase
of tube curvature, the sp2 hybridization of the B atom and N atom in the large-diameter
BNNS changes to the sp3 hybridization in the small-diameter BNNT. This has important im-
plications for the nature of interactions between functional molecules and BNNT walls [28].
We constructed and optimized the monolayer structure of the BN nanotube by theoretical
simulation. The model consists of 40 N atoms, 40 B atoms, and 20 H atoms. The length
and diameter of the nanotube are 10.64 Å and 7.14 Å. Each of the alternate B-N bonds is
1.45 Å long, and each of the ∠B-N-B or ∠N-B-N is 120◦. The Mulliken charges of the B atom
and N atom are 0.465(B1), −0.465(N1), 0.332(B2), −0.525(N2), 0.493(B3), and −0.44(N3),
respectively (the corresponding atomic serial numbers are shown in Figure 1). The Mul-
liken charges of the B atom and N atom are 0.465(B1), −0.465(N1), 0.332(B2), −0.525(N2),
0.493(B3), and −0.44(N3), respectively.
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Oku et al. [29–31] have successfully synthesized a series of cage-like BN nanoclusters
of different sizes and shown that of these clusters, fullerene-like B12N12 cages are the
most energy-stable BN nanoclusters. Since then, the geometry and energy of the B12N12
nanocages have been extensively studied. For B12N12 nanocages (B12N12NC), the ground
state geometry represents a hollow cage with six quadrilateral and eight hexagons, arranged
in tetrahedron (Th symmetry) [32]. It consists of 36 covalent bonds between B and N atoms
formed by sp2 hybridization. The distance between the two quadrilaterals in BN nanocages
is 4.24 Å, and there are two different B-N bonds in B12N12NC. The length of the B1-N1 bond
is 1.44 Å, and that of the B2-N1 bond is 1.48 Å. In the hexagonal BN ring, ∠B1 with atom B
as its vertex is 110.03◦, and in the quadrilateral ring with atom B2 as its vertex, ∠B2 is 80.54◦.
These bond lengths and bond angles are very consistent with previous studies [33,34]. The
Mulliken charges of the B atom and N atom in the catalyst were 0.440(B) and −0.440(N),
respectively. The Mulliken charges of the B atom and N atom in the catalyst were 0.440(B)
and −0.440(N), respectively.

Without considering the atoms at the boundary, we can find that the Mulliken charges
of the B and N atoms on the three BN nanomaterials are similar. However, according to
the molecular surface electrostatic potential shown in Figure 3 (the high electron density is
close to the red region and the low electron density is close to the blue region), it can be
seen that the electrostatic potential on the molecular surface of different BN nanomaterials
is obviously different, and the difference of electron cloud density on the surface of B12N12
nanocages is the most obvious. This shows that the change of the BN nanomaterial structure
will affect the electron cloud density on the molecular surface. The good charge transfer
on the surface of B12N12 nanocages also enables us to see the potential of breaking the
chemical inertia on the surface of the BN material, providing the possibility of developing
highly active BN catalysts.
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2.2. Adsorption of C2H2 and CH3COOH on BN Nanomaterials with Different Structures

First, we analyzed the adsorption of CH3COOH and C2H2 on BNNS. The most
stable single adsorption and co-adsorption configurations are shown in Figure 4a–c,
respectively. Under the reaction conditions of 493.15 K and 1 atm, the adsorption
energy of C2H2 on BNNS is 2.68 kcal/mol. The adsorption energy of CH3COOH is
4.57 kcal/mol, and the co-adsorption energy of CH3COOH and C2H2 molecules on
BNNS is 8.05 kcal/mol. Figure 4d–f show the single adsorption and co-adsorption
structures of C2H2 and CH3COOH on BNNT, respectively. Under the reaction conditions
of 493.15 K and 1 atm, the adsorption energy of C2H2 on BNNT is 4.39 kcal/mol, the
adsorption energy of CH3COOH on BNNT is 7.65 kcal/mol, and the co-adsorption
energy of CH3COOH and C2H2 molecules on BNNT is 12.87 kcal/mol. In addition, we
also studied the adsorption performance of the reaction components at the boundary
of the hydrogen atom-enclosed BNNS and BNNT. The specific adsorption energy and
the optimized adsorption configuration are shown in Table S1 and Figure S1 in the
Supporting Information. Since the boundary position has little influence on the adsorp-
tion energy of the reaction components, the subsequent research is carried out on the
catalyst surface. During the adsorption process on the catalyst surface, the structure of
reactant molecules adsorbed on BNNS and BNNT has almost no obvious change, which
indicates that the influence of the catalyst on reactants may be relatively weak. As shown
in Figure 4, we conducted corresponding interaction region indicator (IRI) analysis [35]
on the adsorption structure. If the IRI isosurface is green, it indicates that this is the
van der Waals action region; if the color of the isosurface is red, it indicates that there
is a certain steric effect here; if the isosurface color is blue, it indicates that there is a
significant attraction. It can be seen from Figure 4 that the interaction force between the
reactant and catalyst is mainly van der Waals force, which indicates that the adsorption
of acetylene and acetic acid molecules on BNNS or BNNT is essentially physical adsorp-
tion. As physical adsorption depends on temperature, taking the simplest Langmuir
adsorption model as an example, the adsorption amount of physical adsorption will
decrease significantly with the increase of temperature. When the reaction conditions are
493.15 K, 1 atm, the adsorption energy of reactants on BNNS and BNNT is positive, which
also shows that the adsorption of reactants by BNNS and BNNT is thermodynamically
unfavorable under industrial reaction conditions.
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adsorption and co-adsorption structures of C2H2 and CH3COOH molecules on BNNT, respectively).

With the change of structure, the adsorption mode of the B12N12 nanocages on
reactants also changed significantly. Under the reaction conditions of 493.15 K and
1 atm, different adsorption configurations and IRI analysis between reactants and ad-
sorption structures are shown in Figure 5. In Figure 5a, the adsorption energy of C2H2
on B12N12NC is 5.32 kcal/mol, but in Figure 5b, the adsorption energy of C2H2 on
B12N12NC is −26.33 kcal/mol. According to IRI analysis, the interaction between acety-
lene and B12N12NC in Figure 5a depends on the van der Waals force, which is a typical
physical adsorption; the chemical bond between acetylene and B12N12NC in Figure 5b
belongs to chemical adsorption. By comparing the adsorption energy and bonding
mode, it can be concluded that the most favorable adsorption mode of acetylene on
B12N12NC is the structure in Figure 5b. Compared with the physical adsorption on
BNNS and BNNT, the B-N bond at the adsorption site breaks during the chemical ad-
sorption of acetylene molecules on B12N12NC, and a B12N12NC-C2H2 complex is formed
between acetylene and B12N12NC. In this process, the C≡C triple bond (sp hybrid) of
acetylene is transformed into a C=C double bond (sp2 hybrid), which makes acetylene
molecules activated and polarized, thus improving the reaction activity with acetic
acid molecules. In Figure 5c, the adsorption energy of CH3COOH on B12N12NC is
−19.43 kcal/mol, and in Figure 5d, the adsorption energy of CH3COOH on B12N12NC is
6.27 kcal/mol. IRI analysis showed that the difference of two adsorption structures of
acetic acid on B12N12NC was due to the interaction between two different types of O on
carboxyl group and B on catalyst. In Figure 5c, acetic acid is dissociated and adsorbed
during the adsorption process. The O1 atom on the carboxyl group forms a B-O bond
with the B atom, and the H atom on the carboxyl group forms an N-H bond with the
N atom. In Figure 5d, the acetic acid is not dissociated during the adsorption process,
but the O2 atom on the carboxyl group interacts with the B atom on the catalyst. It
can be seen from IRI analysis that chemical bonds have also been formed between O2

and B at this time, but compared with the adsorption energy of acetic acid dissociation
adsorption in Figure 5c, the adsorption in Figure 5d is thermodynamically unfavorable.
Since the adsorption energy of acetylene is lower than that of acetic acid, acetylene will
be preferentially adsorbed on the catalyst. The co-adsorption energy of acetylene and
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acetic acid obtained on this basis is shown in Figure 5e,f. The co-adsorption energy of
the two structures is −24.28 kcal/mol and −17.10 kcal/mol, respectively. The difference
in adsorption energy is mainly related to the interaction between different O atoms and
B atoms in CH3COOH. By comparing the adsorption energy of the two structures, it
can be found that the adsorption energy of the structure (e) in Figure 5 is lower and
more stable.
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Figure 5. Optimized adsorption structures of C2H2 and CH3COOH molecules on B12N12 nanocages and
the corresponding interaction region indicator (IRI) analysis ((a,b) are the single adsorption structures
of C2H2 on BNNC, respectively; (c,d) are the single adsorption structures of CH3COOH on BNNC,
respectively; (e,f) are the co-adsorption structures of C2H2 and CH3COOH on BNNC, respectively).

2.3. Reaction Mechanism of Acetylene Acetotization Catalyzed by BN Nanomaterials with
Different Structures
2.3.1. Reaction Process of Acetylene Acetylation on BN Nanosheets

The reaction path and specific energy change process of acetylene and acetic acid
molecules on boron nitride nanosheets (BNNS) are shown in Figure 6. Since the adsorption
energy of acetylene and acetic acid on BNNS is positive, in order to ensure the occurrence
of the reaction, the reactants must be stably fixed on the catalyst surface. Based on the
co-adsorption structure, we obtained the transition state (Ts1) structure through transition
state search to further generate a more stable configuration (Im1). In the transition structure
(Ts1), acetylene molecule changes into vinyl cation, C1-C2 bond length changes from
1.206 Å to 1.255 Å, C1-H1 bond length extends from 1.066 Å to 1.076 Å, and C2-H2 bond
length extends from 1.066 Å to 1.070 Å. Through vibrational analysis, it is found that Ts1
has a unique virtual frequency (−616.90 cm−1), and the vibration direction of the virtual
frequency is the relative motion between C atoms on vinyl and B and N atoms on catalyst.
The specific vibration direction is shown in Ts1 in Figure 6. Subsequently, the B1-N1 bond
on the catalyst is broken (the bond length is lengthened from 1.445 Å to 1.710 Å), the C
atom on the vinyl cation is bonded with the unsaturated B1 atom and N1 atom, respectively
(C1-B1 bond length is 1.636 Å, C2-N1 bond length is 1.519 Å), and finally, the intermediate
(Im1) structure is formed. During the process from Co-ads to Ts1, the system needs to
absorb 56.69 kcal/mol of energy, and then the system releases 13.76 kcal/mol of energy
from Ts1 to Im1. However, there is a high reaction energy barrier of 56.69 kcal/mol just at
the step of forming Im1, which is very difficult to exceed, and it also makes it difficult for
subsequent reactions to occur.
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and 493.15 K (Re stands for reactant, * stands for catalyst, Co-ads stands for co-adsorption structure,
Ts stands for transition state, Im stands for intermediate state, Fs stands for final state structure, VAc
stands for vinyl acetate).

In order to explore the complete reaction process, we further searched for the second
transition state (Ts2) based on the intermediate (Im1). The O-H bond in CH3COOH in Ts2
was broken (from 0.977 Å to 1.217 Å) to form H+ and CH3COO−, and the C2-N1 bond in
BNNS-C2H2 complexes was weakened (from 1.519 Å to 1.569 Å) to form BNNS-C2H2

+

complexes. In the process of forming vinyl acetate, H+ dissociated from acetic acid attacks
C2 atom attached to BNNS-C2H2

+ to form BNNS-C2H3
+ complexes, and the O1 atom on

CH3COO− attacks the C1 atom of BNNS-C2H3
+ complexes to form the final state (Fs)

structure. During the process from Im1 to Ts2, the system needs to absorb 32.08 kcal/mol
of energy, and then the system releases 38.75 kcal/mol of energy from Ts2 to Fs. Similarly,
vibrational analysis shows that Ts2 has only one virtual frequency (−1496.39 cm−1), which
is related to the stretching vibration of acetic acid-dissociated H+ between the C1 and O2

atoms. Finally, the product (VAc) is desorbed from BNNS, and the desorption energy is
−62.74 kcal/mol. After VAc desorption, the structure of the BNNS recovered and con-
tinued to catalyze a new round of reactions. By comparing the reaction path and energy
change in Figure 6, we can find that although the acetylene acetate reaction is exothermic
in terms of total energy, the system needs to absorb 83.06 kcal/mol of energy in the process
from the initial structure (Re+*) to the highest energy point (Ts2). Such a huge energy is
difficult to meet under the reaction condition of 493.15 K, which further breaks the possi-
bility of reaction. Based on the method of determining the rate-control step proposed by
Murdoch et al. [36], the process from the initial structure (Re+*) to Ts2 is the decisive step
of the acetylene acetate reaction catalyzed by BNNT, and the free-energy barrier of the
rate-control step is 83.06 kcal/mol.
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2.3.2. Reaction Process of Acetylene Acetylation on BN Nanotubes

The reaction path and specific energy change process of acetylene and acetic acid
molecules on boron nitride nanotubes (BNNT) are shown in Figure 7. Since the adsorption
energy of acetylene and acetic acid on BNNT is similar to that on BNNS, it is also necessary
to stabilize the reactants on the catalyst surface in order to ensure the reaction. Firstly, the
transition state (Ts1) structure was found based on the co-adsorption structure to further
generate a more stable intermediate (Im1) configuration. In the transition structure (Ts1),
acetylene molecule changes into vinyl cation, the C1-C2 bond length changes from 1.206 Å
to 1.259 Å, the C1-H1 bond length extends from 1.066 Å to 1.077 Å, and the C2-H2 bond
length changes from 1.066 Å to 1.073 Å. Through vibrational analysis, it is found that
Ts1 has a unique virtual frequency (−549.86 cm−1). The vibration direction of the virtual
frequency is the relative motion between the C atoms on vinyl and the B and N atoms on
BNNT. The specific vibration direction is shown in Ts1 in Figure 6. During the process
from Ts1 to the intermediate (Im1) structure, the B1-N1 bond on the catalyst is broken (the
bond length is lengthened from 1.442 Å to 2.566 Å), and the C atom on the vinyl cation
forms chemical bonds with unsaturated B1 and N1 atoms, respectively (the C1-B1 bond
length is 1.574 Å and the C2-N1 bond length is 1.437 Å). During the process from Co-ads
to Ts1, the system needs to absorb 42.25 kcal/mol of energy, and then the system releases
38.65 kcal/mol of energy from Ts1 to Im1. In the same reaction process, the reaction energy
barrier of the first step on BNNT is 14.44 kcal/mol lower than that of the first step on BNNS,
which further indicates that the change of geometric structure can change the catalytic
activity of BN nanomaterials.
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Figure 7. Reaction process and energy change of C2H2 and CH3COOH on BN nanotubes at 1 atm
and 493.15 K (Re stands for reactant, * stands for catalyst, Co-ads stands for co-adsorption structure,
Ts stands for transition state, Im stands for intermediate state, Fs stands for final state structure, VAc
stands for vinyl acetate).

In order to explore the complete reaction process, we further searched for the second
transition state (Ts2) based on the intermediate (Im1). In Ts2, the O-H bond in CH3COOH
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was broken (from 0.977 Å to 1.305 Å) to form H+ and CH3COO−, and the C2-N1 bond in
BNNT-C2H2 complexes was slightly prolonged (from 1.437 Å to 1.466 Å). In the process of
forming vinyl acetate, H+ dissociated from acetic acid attacks C2 atom attached to BNNT-
C2H2 to form BNNT-C2H3

+ complexes, and the O1 atom on CH3COO− attacks the C1

atom of BNNT-C2H3
+ complexes to form the final state (Fs) structure. During the process

from Im1 to Ts2, the system needs to absorb 32.52 kcal/mol of energy, and then the system
releases 4.68 kcal/mol of energy from Ts2 to Fs. Similarly, vibrational analysis shows that
Ts2 has only one virtual frequency (−1379.74 cm−1), which is related to the stretching
vibration of acetic acid-dissociated H+ between the C1 and O2 atoms. Finally, the product
(VAc) was desorbed from BNNT, and the desorption energy was −62.74 kcal/mol. By
comparing the reaction path and energy changes in Figure 6, it is found that the system
needs to absorb 55.12 kcal/mol of energy from the outside to make the reaction take place in
the process of acetylene acetate acidification from the initial structure (Re+*) to the highest
energy point (Ts1). Based on the method of determining the rate-control step proposed
by Murdoch et al., the process from the initial structure (Re+*) to Ts1 is the decisive step
of the acetylene acetate reaction catalyzed by BNNT, and the free-energy barrier of the
rate-control step is 55.12 kcal/mol.

2.3.3. Reaction Process of Acetylene Acetylation on B12N12 Nanocages

The reaction path and specific energy change process of acetylene and acetic acid
molecules on B12N12NC are shown in Figure 8. Since the adsorption of acetylene on
B12N12NC is a spontaneous chemical adsorption, it makes the reaction process of acetylene
acetate acidification on B12N12NC simpler and easier to occur. Since there are two co-
adsorption structures on B12N12NC, we studied the specific reaction paths of the two
structures, respectively. In path 1, we found the transition state (Ts1) structure connecting
Co-ads1 and Fs1 through transition state search. During the formation of Ts1 from Co-
ads1, the C1-C2 bond length of C2H2 changes from 1.350 Å to 1.429 Å, the O-H bond
on the carboxyl group of acetic acid lengthens (from 1.002 Å to 1.254 Å) to form free H+

between O2 and C1, and the B2-O1 bond between acetic acid and catalyst breaks to form
free CH3COO−. The H+ dissociated from acetic acid attacks the C1 atom on BNNT-C2H2
to form BNNT-C2H3

+ complexes, and the O1 atom on CH3COO− attacks the C2 atom on
BNNT-C2H3

+ to form the final state (Fs) structure. During the process from Co-ads1 to
Ts1, the system needs to absorb 34.44 kcal/mol of energy, and then the system releases
44.49 kcal/mol of energy during the process from Ts1 to Fs1. Vibrational analysis shows
that Ts1 has only one virtual frequency (−1481.11 cm−1), which is related to the stretching
vibration of acetic acid-dissociated H+ between the C1 and O2 atoms. Finally, the product
(VAc) was desorbed from B12N12NC, and the desorption energy was 15.9 kcal/mol. By
comparing the reaction paths and energy changes in Figure 8, it is found that the system only
needs to absorb 10.16 kcal/mol of energy from the outside to jump over the reaction energy
barrier during the process of acetylene acetate reaction from the initial structure (Re+*) to
the highest energy point (Ts1). Based on the method of determining the rate-control step
proposed by Murdoch et al., the process from Co-ads1 to Ts1 is the rate-dependent step of
acetylene acetate reaction catalyzed by B12N12NC in path 1, and the energy barrier of the
rate-control step is 34.44 kcal/mol.

In path 2, we found the transition state (Ts2) structure connecting Co-ads2 and Fs2
through a transition state search. During the formation of Ts2 from Co-ads2, the C1-C2

bond length of C2H2 changed from 1.340 Å to 1.417 Å, and the O-H bond on the carboxyl
group of acetic acid broke (from 0.975 Å to 1.278 Å) to form free H+ between O2 and C2. The
H+ dissociated from acetic acid attacks the C2 atom on B12N12NC-C2H2 to form B12N12NC-
C2H3

+ complexes, and the O1 atom on CH3COO− attacks the C1 atom on B12N12NC-C2H3
+

to form the final state (Fs) structure. Due to the difference of the C atoms attacked by H+,
the product structure and reaction energy barrier formed by path 1 and path 2 are also
different. The process system from Co-ads2 to Ts2 needs to absorb 37.48 kcal/mol of energy,
and then the system releases 44.22 kcal/mol of energy from Ts2 to Fs2. The system needs
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to absorb 37.48 kcal/mol of energy in the process from Co-ads2 to Ts2, and then the system
releases 44.22 kcal/mol of energy in the process from Ts2 to Fs2. Vibrational analysis shows
that Ts1 has only one virtual frequency (−1472.17 cm−1), which is related to the stretching
vibration of acetic acid-dissociated H+ between the C2 and O2 atoms. Finally, the product
(VAc) was desorbed from B12N12NC, and the desorption energy was 5.41 kcal/mol. By
comparing the reaction paths and energy changes in Figure 8, it is found that the system
needs to absorb 20.38 kcal/mol of energy from the outside during the process of acetylene
acetate acidification from the initial structure (Re+*) to the highest energy point (Ts2). Based
on the method of determining the rate-control step proposed by Murdoch et al., the process
from Co-ads2 to Ts2 is the rate-control step of the acetylene acetate reaction catalyzed by
B12N12NC in path 2, and the energy barrier of the rate-control step is 37.48 kcal/mol.
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Figure 8. Reaction process and energy change of C2H2 and CH3COOH on BN nanotubes at 1 atm and
493.15 K (the black line is path 1 and the red line is path 2; Re stands for reactant, * stands for catalyst,
Co-ads stands for co-adsorption structure, Ts stands for transition state, Im stands for intermediate
state, Fs stands for final state structure, VAc stands for vinyl acetate).

From the adsorption energy of reactants, the adsorption energy of Co-ads1 is
7.18 kcal/mol lower than that of Co-ads2; from the total energy of the reaction process, the
energy required for path 1 is 10.22 kcal/mol lower than that for path 2; from the single
energy barrier of the speed control step, the energy barrier of path 1 is 3.04 kcal/mol
lower than that of path 2. These data show that the structure in path 1 is more stable in
thermodynamics under the reaction condition of 493.15 K, and the reaction path in path 1
is easier to proceed.

2.4. Source Analysis of Catalytic Activity Differences of Different Boron Nitride Nanomaterials
2.4.1. Effects of Different Geometric Structures (Dimension) on Catalytic Properties of
BN Nanomaterials

Firstly, we explored the reason why B12N12NC could form complexes with acetylene
molecules, but BNNS and BNNT could not form complexes. As shown in (a–c) of Figure 9,
we analyzed the density of states (DOS) of three optimized BN nanomaterials using the
Multiwfn software package [37] and discussed the contribution of s and p orbitals of the B
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and N atoms in BN nanomaterials to the TDOS curve. The analysis shows that the highest
occupied molecular orbital (HOMO) on the three BN nanomaterials is mainly contributed
by the p orbital of N atoms, the lowest unoccupied molecular orbital (LUMO) is mainly
contributed by the p orbital of B atoms. According to Koopmans’ theorem [38], the negative
value of the HOMO energy level represents the first ionization energy of the substance.
The lower the ionization energy is, the easier it is for the substance to lose electrons. The
LUMO energy level is numerically equivalent to the electron affinity of the molecule. The
lower the LUMO energy level, the easier it is to obtain electrons. Figure 9d shows the
HOMO and LUMO values of BN nanomaterials with different structures. Among the three
BN nanostructures, B12N12NC has the lowest HOMO energy level (the highest ionization
energy) and the lowest LUMO energy level, which also indicates that B12N12NC is easier to
obtain electrons. On the contrary, when acetylene molecules are adsorbed on the surface of
B12N12NC, the easier it is for the C atom on acetylene to give electrons to form vinyl and
further form stable complexes with B12N12NC.
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By studying the density functional theory of BN nanomaterials with acetylene acetate
reaction (dimension), we found that the key to acetylene acetate reaction catalyzed by
BN nanomaterials is the formation of complexes between acetylene molecules and BN
nanomaterials. As shown in (a) left, (b) left, and (c) left in Figure 10, orbital hybridization
did not occur between the C atom on acetylene and the B, N atoms at adsorption sites in
BNNS and BNNT. However, the p orbitals of the C atoms on B12N12NC overlap with those
of the B and N atoms near the Fermi level, which indicates that C atoms form obvious
orbital hybridization with B and N atoms, respectively, acetylene molecules change from
the original C≡C bond to C=C bond, and the hybrid orbitals change from sp hybridization
to sp2 hybridization. Because an sp2 hybrid has more hybrid orbitals, the overall energy of
the outer electrons of the atom is lower at the same energy level, which makes the structure
of B12N12NC-C2H2 complexes more stable in thermodynamics. From (a) right, (b) right,
and (c) right in Figure 10, the p orbitals of C in sp hybrid acetylene are mainly contributed
by two almost completely overlapping p orbitals near the Fermi level, while the p orbitals of
C in sp2 hybrid B12N12BNs-C2H2 complexes are almost entirely contributed by pz orbitals
near the Fermi level, and the other two orbitals contribute very little to the p orbitals of the
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C atom. Since the two p orbitals of the π bond formed by acetylene overlap more than the p
orbitals of the C atom in the B12N12NC-C2H2 complexes, the π bond formed is more stable,
and the sp hybrid carbon atom in the acetylene molecule is closely combined with the outer
valence electron (π electron), making it difficult to give electrons, thus making it difficult
for the electrophilic attack of H+ dissociated by acetic acid. On the contrary, when acetylene
molecules form complexes with BN nanomaterials, the hybridization mode of the C atoms
on acetylene changes, the binding strength of C atoms to the outer valence electrons is
weakened, and the electrophilic attack of acetic acid-dissociated H+ on the C atoms is easier.
This process also shows that the activation process of the acetylene molecule is the key
factor to improve the reaction between acetic acid molecules and acetylene in the process
of acetylene acetate reaction, and changing the geometric structure of BN nanomaterials
may be an effective way to improve the activation of acetylene.
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2.4.2. Effects of Different Reaction Sites on Catalytic Properties of BN Nanomaterials

When acetylene forms complexes with BN nanomaterials, C atoms will bond with
B and N atoms, respectively, which also leads to the difference between the two C atoms.
Based on the reaction sites, we found that the reaction activities of acetic acid molecules
attacking different C sites on B12N12NC-C2H2 complexes were also different. By comparing
the two reaction paths on BNNCs, it can be seen that that H+ dissociated from acetic
acid attacks C1 atom bonded with B atom, and O1 atom of carboxyl acetate attacks C2

atom bonded with N atom to produce vinyl acetate. In order to reveal the source of this
difference, the adsorption structures of acetylene on three BN nanomaterials were analyzed
using electron density difference (EDD). As shown in Figure 11, the yellow part is electron
accumulation, and the blue part is electron depletion. It can be seen from the Figure 11
that the electron density transfer on B12N12NC is significantly greater than that on BNNS
and BNNT, and the isosurface level of EDD on B12N12NC is ten times that on BNNS and
BNNT. Therefore, we only conduct a detailed analysis based on the electron transfer on
B12N12NC. The electron density transfer of the C atom on C2H2 is different from that of B
and N atoms. The EDD diagram shows that electron depletion occurs near the C-N bond
and electron aggregation occurs near the C-B bond. Therefore, the negatively charged O1

atom on CH3COO− is more likely to attack the C2 atom on the C-N bond, and the positively
charged H+ dissociated by acetic acid is more likely to attack the C1 atom on the C-B bond.
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Figure 11. Electron density difference of BN nanomaterials with different geometric structures, where
the yellow part is electron accumulation, and the blue part is electron depletion((a) the electron density of
BN nanosheet (isosurface level: 0.001 e/Å3), (b) the electron density of BN nanotubes (isosurface level:
0.001 e/Å3), (c) the electron density of B12N12 nanocages (isosurface level: 0.01 e/Å3).

In addition, we further determined that the reaction mode in path 1 is more favorable
by the electron localization function (ELF) [39]. Figure 12a shows the global ELF diagram
of the acetylene adsorption structure on B12N12NC, and Figure 12b shows the local ELF
isosurface of acetylene adsorption sites. ELF can be considered as the position of spon-
taneous condensation of valence electrons due to the formation of lone pair electrons or
covalent bonds. The smaller the ELF, the weaker the localization of electrons in this region.
Comparing the ELF around two C atoms on acetylene in Figure 12, it can be seen that the
valence electrons in the region around the C atom connected with N atom are relatively
divergent. Since the carbon nucleus in this region is the least shielded by valence electrons,
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it is easier to be attacked by nucleophiles. This explains why there are differences in reaction
energy barriers when acetic acid molecules attack different C sites.
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Figure 12. Electron localization function (ELF) of acetylene adsorbed on B12N12 nanocages ((a) is the
global ELF diagram of acetylene adsorption structure on B12N12NC, (b) is the local ELF isosurface
diagram of acetylene adsorption site).

3. Materials and Methods

All of the studies in this paper were conducted using the Becke, 3-parameter, Lee–Yang–
Parr (B3LYP) functional of density functional theory (DFT) [40,41], and calculations were
performed using the Gaussian 09 [42] software package. The B3LYP nonlocal correlation
functional with the 6-31G(d,p) [43] basis set was applied to B, C, N, O, and H atoms. The
DFT-D3 method [44] was used to calculate the density functional dispersion correction, and
no symmetry constraints were assumed in the geometrical optimization. Considering the
influence of reaction temperature and base group superposition error, the relative energy
of all optimized configurations along the reaction path is the sum of electronic and thermal
free energies (G) at the same optimization level. In addition, in order to be closer to the
real reaction conditions, we used Shermo code [45] to calculate the Gibbs free energy (G) of
each structure at 493.15 K. Gibbs free energy can be calculated as in Equation (1), where
G is the Gibbs free energy of the system, E(elec) is the total electronic energy of the system,
and ZPE is the zero-point energy of the system. E(vib), E(rol), and E(transl) are the vibrational
energy, rotational energy, and translational energy of the system, respectively, and S is the
entropy of the system. The calculation formulas of entropy (s) and zero-point energy (ZPE)
are shown in Equations (2) and (3).

G = E(elec) + ZPE + E(vib) + E(rol) + E(trans) + RT − TS (1)

S = NkB + NkB ln
(

q(V, T)
N

)
+ NkBT

(
∂ ln q

∂T

)
V

(2)

ZPE =
∑ hv

2
(3)

In this work, all structural (reactant, product, intermediate, or transition state structure
in the reaction process) calculations are carried out at the same calculation level. Through
the harmonic vibration frequency, we verify that the optimized geometry has no frequency,
and all eigenvalues of its force constant matrix are positive, so as to ensure that the structure
is the minimum stable point on the energy plane. Similarly, by calculating the vibration
frequency of the transition state structure, it is found that there is a unique virtual frequency
and the eigenvalue of the force constant matrix is only negative. However, the correct
transition state (Ts) does not only have a virtual frequency, and the vibration direction
of this virtual frequency is related to the desired reactants and products. Therefore, we
calculate the intrinsic reaction coordinates (IRC) [46,47] of the transition state structure,
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and verify the reactants and products connected at both ends of Ts, so as to determine the
correct transition state structure. During this study, the method of calculating adsorption
energy and co-adsorption energy is shown in Equations (4) and (5), where Gads-state and
Gco-ads-state represent the total Gibbs free energy of the adsorbed substance and catalyst,
and GCatalyst, GC2 H2 , and GCH3 COOH are the Gibbs free energy of a single catalyst and a
single reactant, respectively. The process of calculating the energy barrier of the reaction
rate-control step on each reaction path adopts the method of finding the rate-control step
proposed by Murdoch et al. [35].

∆Gads = Gads−state −
(

GC2 H2/CH3COOH + GCatalyst

)
(4)

∆GCo−ads = GCo−ads−state −
(

GC2 H2 + GCH3COOH + GCatalyst

)
(5)

4. Conclusions

In this work, we studied the catalytic reaction of acetylene and acetic acid with
boron nitride nanomaterials with an acetylene acetate reaction. The energy barriers of
the rate-control steps of the acetylene acetate reaction catalyzed by BN nanomaterials are
arranged from small to large as follows: BNNC < BNNT < BNNS. Based on the geometric
configuration (dimension), we found that the catalytic performance of the cage structure is
significantly better than that of the tubular and sheet structure in BN materials. The source
of its special activity was the chemisorption of acetylene by B12N12 nanocages. Compared
with the physical adsorption of BNNT and BNNS on the reactants, the B12N12NC-C2H2
complexes are formed between acetylene molecules and the B12N12NC-like catalyst through
chemical adsorption. In the process of the acetylene forming complexes, the C≡C bond
(sp hybrid) is transformed into a C=C bond (sp2 hybrid), which activates and polarizes
the acetylene molecule, thus improving the reaction activity with the acetic acid molecule.
Based on the reaction sites, we found that the reaction activities of acetic acid molecules
attacking different C sites on the B12N12NC-C2H2 complexes were also different. Through
the analysis of EDD and ELF, it was proved that the C atom connected with B was more
likely to have an electrophilic reaction with H+, and the C atom connected with N was
more likely to have a nucleophilic reaction with CH3COO−, which further determined
the more favorable attack mode of acetic acid molecules. Compared with 2D BNNS and
1D BNNT, 0D B12N12NC breaks the inherent reaction inertia of BN materials and shows
excellent catalytic activity for the acetylene acetate reaction. It is very likely to be a potential
non-metallic catalyst for the acetylene gas-phase preparation of vinyl acetate.
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