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Abstract 

Background: An outbreak of aseptic meningitis occurred from June to August 2016, in Inner Mongolia Autonomous 
Region, China.

Methods: To determine its epidemiological characteristics, etiologic agent, and possible origin, specimens were col-
lected for virus isolation and identification, followed by molecular epidemiological analysis.

Results: A total of 363 patients were clinically diagnosed from June 1st to August 31st 2016, and most cases (63.1%, 
n = 229) were identified between June 22nd and July 17th, with children aged 6 to 12 years constituting the highest 
percentage (68.9%, n = 250). All viral isolates from this study belonged to genotype C of echovirus 30 (E30), which 
dominated transmission in China. To date, two E30 transmission lineages have been identified in China, of which 
Lineage 2 was predominant. We observed fluctuant progress of E30 genetic diversity, with Lineage 2 contributing to 
increased genetic diversity after 2002, whereas Lineage 1 was significant for the genetic diversity of E30 before 2002.

Conclusions: We identified the epidemiological and etiological causes of an aseptic meningitis outbreak in Inner 
Mongolia in 2016, and found that Lineage 2 played an important role in recent outbreaks. Moreover, we found that 
Gansu province could play an important role in E30 spread and might be a possible origin site. Furthermore, Fujian, 
Shandong, Taiwan, and Zhejiang provinces also demonstrated significant involvement in E30 evolution and persis-
tence over time in China.
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Background
Aseptic meningitis (AM) is a clinical entity with inflam-
mation of the brain parenchyma, it is an acute disease 
with many infectious and non-infectious causes, among 

which viral infection is the most common. A variety of 
viruses, such as Enteroviruses, mumps virus, adenovirus, 
and herpes simplex virus, can cause AM. Among these 
viruses, enteroviruses have become among the most 
common pathogens of viral meningitis in China [1]. The 
clinical manifestations of AM are mainly symptoms of 
meningeal inflammation, including fever, headache, and 
vomiting, as well as possible severe coma or convulsions. 
In some cases, enteroviruses cause large outbreaks with 
many severe and fatal cases [2, 3].

Echovirus 30 (E30) is a member of genus Enterovirus, 
family Picornaviridae, and belongs to human enterovirus 
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species B (EV-B) together with 62 other serotypes [4]. 
Globally, E30 is among the most frequently identified 
enteroviruses and a major cause of aseptic meningitis 
(AM) [5–9]. In China, E30 outbreaks have been reported 
in many provinces, including Zhejiang, Jiangsu, Shan-
dong, Henan, Fujian, and Guangdong [7, 9–13]. Further, 
E30 has a high isolation rate from patients with acute 
flaccid paralysis (AFP) and those with hand, foot, and 
mouth disease (HFMD), which is a new emerging con-
cern that should promote extensive study on the inherent 
mechanisms involved [5–7, 12–14]. The AFP symptoms 
in immunosuppressed transplant recipients and out-
breaks of acute myalgia and rhabdomyolysis in Brazil 
revealed severe non-neuropathic findings, expanding the 
variety of clinical symptoms caused by E30, which should 
be noticed more [15, 16].

In this study, we reported an AM outbreak caused by 
E30 in Tongliao City, Inner Mongolia, China, in 2016 
and evaluated the epidemiological characteristics. We 
explored the genetic diversity and molecular charac-
teristics of the isolates by sequence analysis of the VP1 
coding region and the full-length genome. Additionally, 
we investigated the phylodynamic diffusion patterns 
and recombination events of E30, which revealed the 
evolutionary features of E30 in China. This study offers 
insight into the outbreak characteristics and evolutionary 
dynamics of E30 in China.

Methods
Investigation of aseptic meningitis outbreaks and sample 
collection
Based on the HFMD pathogen-surveillance system of the 
Inner Mongolia Provincial Center for Disease Control 
and Prevention, an epidemic of AM in Tongliao city from 
June to August 2016 was recorded, and representative 
samples were collected for pathogen detection. The local 
Center for Disease Control and Prevention (CDC) staff 
collected the clinical samples from several local hospitals 
having patients with viral meningitis. Use of their clini-
cal samples was explained to the guardians of children, 
and written consent was provided by guardians of chil-
dren to permit analysis of their clinical samples. Patients 
were classified as having a viral meningitis if they pre-
sented meningeal inflammation, such as fever, headache, 
and vomiting. In total, 363 cases were identified during 
this stage. Overall, 25 stool and cerebrospinal fluid (CSF) 
specimens were collected from children (age ≤ 15 years) 
at the peak and the end of the outbreak, which cov-
ered three counties of Inner Mongolia (Fig.  1a). The 
laboratory-confirmed evidence of AM comprised infec-
tion with EV-A71, CVA16, or other enteroviruses. Real-
time reverse transcription polymerase chain reaction 

(RT-PCR) was the diagnostic method used for enterovi-
rus detection, as described previously [17, 18].

Virus isolation and molecular typing
For further etiological study, virus isolation from posi-
tive samples was performed in human rhabdomyosar-
coma (RD) cells and human epithelium larynx (HEp-2) 
cells. Infected cell cultures were harvested after complete 
EV-like cytopathic effect (CPE) was observed. All experi-
mental protocols were performed in accordance with the 
guidelines approved by the World Health Organization, 
as reported previously [19–21]. We ultimately obtained 
12 isolates with complete EV-like CPE. Molecular typ-
ing of enterovirus isolates was performed by one-step 
RT-PCR amplification of the VP1 region using E30-spe-
cific primers described previously [13]. Unfortunately, 
we only harvested seven full-length VP1-coding-region 
sequences of E30 due to RT-PCR failure. The primers 
used for full-length genome sequencing of one E30 iso-
late were designed using a primer walking strategy.

Bioinformatics analysis
Seven genomic sequences sampled from different 
patients, including two full-length genomes, were incor-
porated into the molecular epidemiological analysis. 
A phylogenetic tree for E30 genotyping was computed 
using the neighbor-joining method with 1000 bootstrap 
replicates in MEGA 7.0 software (https:// www. megas 
oftwa re. net/), which implemented the same genotyping 
criteria described previously [9]. Genomic dataset mining 
for E30 was performed and included genomic sequences 
from GenBank and this study. To better represent E30 
genetic diversity, we removed redundant E30 sequences, 
resulting in 354 E30 genomic sequences derived from 
various locations worldwide. Genome sequences were 
aligned using the MUSCLE method implemented in 
MEGA 7.0 software [22]. We constructed a maximum-
likelihood phylogenetic tree using IQ-TREE software 
(http:// www. iqtree. org/) with 1000 bootstrap replicates, 
and nucleotide acid-substitution models were inferred 
using ModelFinder with Bayesian information criteria 
[23, 24].

We implemented the Bayesian inference method in 
BEAST software (v.1.10.4) to investigate the phylody-
namics of the genomes [25]. The maximum clade credi-
bility (MCC) tree and coalescent-based Gaussian Markov 
random field (GMRF) skyride plots were explored using 
the SYM + G4 nucleotide-substitution model. We used 
the sampling times of genomic sequences to calibrate 
the molecular clock during each run. The time signals 
of datasets were assessed by the Bayesian evaluation 
of temporal signal (BETS) method and the root-to-tip 
method implemented in TempEst (v.1.5.3) [26, 27]. The 

https://www.megasoftware.net/
https://www.megasoftware.net/
http://www.iqtree.org/


Page 3 of 12Tian et al. Virol J          (2021) 18:118  

results supported the sufficient temporal signals of the 
datasets in this study (See Additional file 1: Fig. S1). We 
implemented 15 dataset runs combined with one genome 
substitution model, three different clock models, and five 
different coalescent tree priors. All genome sequences for 
Bayesian inference and acquired from different provinces 

of China were coded as discrete states. The asymmetric 
substitution model was used to infer the asymmetrical 
transmission rates between any pairwise region state, 
including the Bayesian stochastic search variable selec-
tion option [28, 29]. Path sampling and stepping stone 
sampling analyses in BEAST were used to choose the 
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Fig. 1 Epidemiology information of an outbreak of aseptic meningitis in Tongliao City, Inner Mongolia, China. a Cases of aseptic meningitis in 
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best parameters of Bayesian phylogenetic models [30]. 
We checked the convergence and effective sample size 
(> 200) of the parameters using Tracer software (v.1.7) 
[31]. We summarized the MCC tree using TreeAnnota-
tor software (v.1.10.4), with a burn-in of the first 10% of 
the sampled trees. The demographic dynamics of E30 
in mainland of China were assessed using the GMRF 
method with a time-aware smoothing parameter [32]. 
The GMRF skyride plots were summarized and visual-
ized using Tracer software (v.1.7.1), and ggtree (v.1.16.3) 
was used to manipulate the phylogenetic tree for the best 
performance [33, 34].

Investigation of recombination signals
The Recombinant Detection Program (v.4.46; RDP4) was 
used to screen recombination signals in our entire set of 
genomic sequences using seven methods (RDP4, GENE-
CONV, MaxChi, Bootscan, Chimaera, SiScan, and 3Seq) 
[35]. Briefly, the P2 and P3 coding-region sequences of 
the four strains were analyzed using the BLAST server 
(https:// blast. ncbi. nlm. nih. gov/ Blast. cgi) to compare 
their identity with sequences from GenBank. Accord-
ing to sequence similarities > 85%, these sequences were 
considered potential parents of the four strains and 
downloaded from GenBank. Phylogenetic incongruence 
between different regions with a p < 0.05 was considered 
strong evidence for recombination. We only considered 
recombination events that were identified by at least 
three methods. To confirm these putative recombination 
events, we utilized a smaller dataset that included the 
recombinant and parental strains for multiple screenings. 
The SimPlot program (v.3.5.1) was used for similarity 
plots and bootscanning analysis, with a 200-nucleotide 
window moving in 20-nucleotide steps [36].

Results
Profile of the AM outbreak in inner Mongolia, China
From June to August 2016, hospitalization for AM 
increased markedly at Tongliao People’s Hospital in Inner 
Mongolia, China, which attracted the attention of the 
local CDC staff. An epidemiological curve of AM based 
on surveillance data from this time period in Tongliao 
city, Inner Mongolia, was thus generated (Fig. 1a). A total 
of 363 patients were clinically diagnosed from June 1st 
to August 31st 2016 and the epidemic spread over three 
townships of Tongliao city (Kailu, Naimanqi, and Kequ). 
Of the total number of cases, 63.1% (n = 229) were iden-
tified between June 22nd and July 17th, after which the 
cases gradually decreased, with certain turnovers dur-
ing this progression. According to geographical distri-
bution, Kailu and Naimanqi townships accounted for 
58.4% (n = 212) and 32.8% (n = 119) of all cases, respec-
tively, with children aged 0 to 5 years and 6 to 12 years 

constituting 15.7% (n = 57) and 68.9% (n = 250) of the 
cases, respectively (Fig.  1b). Children aged > 12  years 
accounted for only 4.1% (n = 15) of cases.

Pathogen and genotype identification
Twenty-five stool and CSF samples were inoculated into 
RD and HEp-2 cell lines for virus isolation, with com-
plete EV-like CPE observed in 12 samples (48%). The full-
length VP1 coding region of seven isolates was obtained 
and revealed ~ 98% nucleotide identity with E30 genomes 
from GenBank (accession no. KP985773). To confirm 
the serotype of the isolates, we constructed a neighbor-
joining phylogenetic tree based on the EV-B prototypes 
(See Additional file  1: Fig. S1). The results showed that 
all isolates in this study clustered with the E30 prototype, 
confirming the BLAST results. The VP1 coding region 
of isolates in this study shared 99% nucleotide similar-
ity between themselves, revealing a single origin of the 
collective outbreak. All identified enterovirus isolates 
met the strain-identification criteria with the homolo-
gous serotypes, including at least 75% nucleotide or 85% 
amino acid homology between the enterovirus isolates 
and the prototype enterovirus strain [37]. The genotype 
of the isolates in this study was investigated based on the 
genotyping criteria for E30 and previous reports [9, 38], 
with the results revealing that all isolates belonged to 
genotype C of E30 (Fig. 2). Moreover, genotype C showed 
21.2% and 16.5% genetic divergence from genotypes A 
and B, respectively, with the mean genomic distance 
within genotypes B and C at 10.1% and 6.2%, respectively.

Phylodynamics of E30 in China
Two transmission lineages of E30 had been previ-
ously identified in China according to a non-redundant 
genome dataset from China (See Additional file  2: Fig. 
S2). The maximum-likelihood tree based on this dataset 
showed that Lineage 1 circulated from 1988 to 2010 in 
China and tended to have recently disappeared. Strains of 
Lineage 2 were detected from 2003 to the present time 
and dominated the spread and occurrence of the collec-
tive outbreaks. The AM outbreak in this study was caused 
by Lineage 2 of E30, which showed a close phylogenetic 
relationship with the available strains isolated from Zhe-
jiang, Jiangsu, Shandong, Sichuan, and Yunnan provinces 
of China (See Additional file 2: Fig. S2a).

We implemented the Bayesian method to infer the 
phylogenetic relationships and transmission tenden-
cies of E30 in China, and the time signals of several 
datasets were checked using root-to-tip regression and 
BETS (See Additional file  3: Fig. S3). All results sup-
ported the existence of time signals in the datasets, 
with R2 values of 0.86 and high Bayes factors (BFs). The 
MCC tree showed the turnovers of E30 diffusion in 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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China, revealing phylogenetic associations among dif-
ferent strains (Fig. 3). Consistent with the results of the 
maximum-likelihood tree, we observed two distant line-
ages in the MCC tree, which comprised a large number 
of genomes from outbreaks and surveillance reports [6, 
11–13, 39]. The results showed that the branches of E30 
isolated from different provinces aggregated together, 
and that E30 spread simultaneously in several provinces 

(Fig.  3b). For example, strains from Fujian province, 
China, were located in different clusters of Lineage 2, 
revealing the existence of multiple E30 variants in that 
outbreak. Moreover, we observed the evolution of E30 
along a date clue, where strains from several provinces 
intersected, indicating the complicated diffusion dynamic 
of E30. Several AM-related outbreaks caused by E30 were 
recorded and annotated in the MCC tree, indicating that 
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E30 frequently induced AM outbreaks in China following 
its evolution and transmission and revealing the active 
status of E30 in China.

We observed that outward migration from Sichuan 
and Gansu provinces was dominant, whereas inward 
migration was dominant in Fujian, Henan, Guangxi, 
and Inner Mongolia (Fig.  3a). The outward-migration 
events of Sichuan and Gansu were observed through 
high BF and posterior probability (PP) values (PP = 0.5 
and BF > 3) (See Additional file 7: Table S1). Further, the 
state counts were similar according to the outward and 
inward migrations in Shandong and Zhejiang, respec-
tively. Other provinces of China showed more or less 
equal numbers of inward and outward migrations among 
different provinces. The Markov rewards values of Fujian, 
Shandong, Taiwan, and Zhejiang provinces were sig-
nificantly higher than those of other provinces, indicat-
ing that these four provinces played a significant role in 
the evolution and persistence of E30 over time in China 
(Fig.  4b). Notably, Guangdong, Yunnan, Inner Mongo-
lia, and Henan showed relatively higher Markov rewards 

values compared with those of Gansu, Guangxi, Jiangsu, 
and Sichuan provinces.

The genetic diversity of E30 showed a fluctuant progres-
sion during evolution following the date clue (Fig.  4a). 
We identified two top values of E30 genetic diversity dur-
ing transmission when all genomes were used (Fig.  4a, 
red line). The genetic diversity peaked in 2001 and 2008, 
whereas it showed dynamic fluctuation between 2010 
and 2014, and weaker genetic diversity was observed in 
the most recent outbreaks. Comparison of genetic diver-
sity between the two lineages and all genomes indicated 
that the relative genetic diversity of Lineage 1 peaked 
near 2001 and dramatically reduced after 2002. The vari-
able tendency of Lineage 2 showed similar characteris-
tics relative that of all of the genomes (Fig. 4a, blue line). 
Lineage 2 contributed to the enhanced genetic diversity 
of E30 after 2002, whereas Lineage 1 played a significant 
role in the genetic diversity of E30 before 2002. The cor-
responding increased tendency between the two lineages 
and all genomes reflected the fluctuant switches of E30 
genetic diversity.
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Investigation of recombination
To estimate the full-length genomic characteristics of 
E30, we obtained two full-length genomes. Similarity 
plots and bootscanning analyses revealed recombination 
events between the Inner Mongolia E30 isolate and the 
EV-B prototype at the 2A–2B junction region, implying 
the existence of potential recombination (See Additional 
file  4: Fig. S4). However, to locate the exact recombina-
tion activities between the two strains and the circulat-
ing enteroviruses, we scanned public databases to search 
for the recombination donor. Recombination analysis 
revealed overt evidence of inter-serotype recombination, 
as the recombination patterns of the two E30 strains in 
this study were similar. For the strain TL12C-NM-CHN-
2016-E30 genome, breakpoint positions were identified 
at 3126–6627, 4066–4725, 4728–4920, and 4810–6621 
(Table  1). Several EV-B strains, such as E-18, CV-B4, 
E-1, and CV-A9, were identified as minor putative par-
ents using the RDP4 package. For the strain TL7C-NM-
CHN-2016-E30 genome, we observed similar minor 
putative parents and breakpoint positions. We then con-
structed maximum-likelihood phylogenetic trees of the 
strains in this study based on the P1, P2, and P3 coding 
region along with the potential recombination donors, 
which confirmed the recombination events between the 
strains of this study and the E-18 strain LJ/0601/2019 
(MN337405.1) (See Additional file  5: Fig. S5). Strain 
LJ/0601/2019 was isolated from the CSF of an adult with 
severe meningitis in 2019 in China. These results sug-
gested that the role of recombination events in the evolu-
tionary process of E30 needs to be assessed further.

Discussion
Echoviruses are currently associated with a variety of 
human diseases, including asymptomatic infections, 
febrile illness, AM, and severe diseases in newborns. 
E30 is one of the main pathogens that cause AM, and 
acute myocarditis and exhibits strong infectivity [12, 38, 
40]. E30 has shown wide circulation, including to the 
United States, Canada, France, Italy, Germany, England, 
Japan, South Korea, India, and China, and has demon-
strated a highly epidemic trend in the previous 10 years 
[12, 40–44]. Therefore, understanding its pathogenesis 
and molecular epidemiology has important public health 
implications. During the period from June to August 
2016, the number of hospitalized patients with AM 
increased sharply at Tongliao People’s Hospital, thereby 
surpassing the baseline of previous cases with AM in 
Tongliao city, Inner Mongolia.

We identified 363 patients during this time period in 
Tongliao city, Inner Mongolia, belonging to three town-
ships that were affected by this outbreak, with Kailu 
and Naimanqi townships accounting for the greatest 

proportion of cases (n = 331, 91.2%). Compared with the 
homochromous numbers of AM cases in 2015, the num-
ber of AM patients increased significantly from June to 
August 2016 accompanied by a higher morbidity relative 
to other months. Children aged 6 to 12 years constituted 
the greatest proportion of all cases, consistent with previ-
ous reports [9, 39]. According to previous studies, viral 
meningitis outbreaks caused by E30 usually occurred 
from June to August in local regions and at the peak of 
the local enterovirus infection [6, 11, 13, 39, 44]. The epi-
demic then spread to other villages and towns, resulting 
in an outbreak within a short time period [6, 9, 13, 39, 
45].

Outbreaks of aseptic meningitis caused by E30 occur 
mostly in densely populated eastern coastal areas, such 
as Jiangsu, Zhejiang, Shandong, Fujian, and Guang-
dong [6, 7, 9, 10, 12, 13, 39]. The outbreak in the pre-
sent study was caused by Lineage 2, which showed a 
close phylogenetic relationship with the strains isolated 
from Zhejiang, Jiangsu, Shandong, Sichuan, and Yun-
nan provinces of China. Using the Bayesian method, 
we observed the turnover of E30 diffusion in China, 
implying its complex diffusion dynamic. The branches 
of E30 isolated from the different provinces aggre-
gated together, and E30 spread simultaneously in sev-
eral provinces simultaneously. E30 is widespread in 
China and has caused a large number of AM outbreaks. 
Moreover, we observed the evolution of E30 along the 
date clue, indicating gradual break outs in different 
provinces. The active activity status of E30 in China 
promoted its evolution and transmission, and the accu-
mulation of genomic variants might play a significant 
role in local outbreaks of AM.

Mapping of transmission links through Bayesian infer-
ence showed that Sichuan and Gansu provided more 
outward migrations, whereas Fujian, Henan, Guangxi, 
and Inner Mongolia had more inward migrations. Addi-
tionally, more emigration events were found in Gansu, 
Sichuan, Guangxi, and Yunnan provinces, with high PP 
and BF support (See Additional file  7: Table  S1). The 
outbreak in the present study possibly originated from 
these E30-migration events; however, we were unable 
to directly locate the accurate source of E30 due to low 
PP and BF support for Inner Mongolia (data not shown). 
However, the strains isolated from Sichuan province 
shared the closest phylogenetic relationships with those 
from Inner Mongolia (this study). Further, the high PP 
and BF support verified the transmission events from 
Gansu to Sichuan provinces, suggesting that the two out-
breaks (Sichuan and Inner Mongolia) possibly possessed 
the same origin (See Additional file 6: Fig. S6, Additional 
file  7). Moreover, Gansu province could play an impor-
tant role in E30 outbreaks and spread in Sichuan and 
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Inner Mongolia based on the highest PP and BF support 
(See Additional file  7: Table  S1). Furthermore, Gansu, 
Sichuan, and Inner Mongolia are neighbors in terms of 
their geographic distribution in China, suggesting local 
outbreaks and spread events among different provinces 
of China. We also observed that Fujian, Shandong, Tai-
wan, and Zhejiang provinces showed higher Markov 
rewards values as compared with other provinces, indi-
cating that they played significant roles in E30 evolution 
and circulation over time in China. The eastern provinces 
of China were primary regions experiencing E30 infec-
tion and played an important role for further nationwide 
diffusion.

We then assessed the relative genetic diversity follow-
ing the date clue, which showed fluctuant progression. 
Thus, the genetic diversity peaked ~ 2001 and ~ 2008, 
and different lineages showed polymorphic character-
istics. The relative genetic diversity of Lineage 1 showed 
a similar fluctuant progression with that of all genomes 
before 2002, whereas that of Lineage 2 showed a similar 
fluctuant progression with that of all genomes after 2002. 
Therefore, Lineage 2 contributed to the enhanced genetic 
diversity of E30 after 2002, whereas Lineage 1 was impor-
tant for the genetic diversity of E30 before 2002. This 
explains the contribution of fluctuant genetic diversity 
through the switch between different lineages.

The nucleotide and amino acid sequences in the P2 
and P3 regions are highly conserved within an entero-
virus species, and the P2 and P3 sequences do not 
correlate with EV serotypes due to frequent recombi-
nation; however, these sequences clearly distinguish 
different EV species [46]. In the present study, we iden-
tified overt evidence of inter-serotype recombination 
events. After screening several recombination signals, 
strain MN337405.1_Echovirus_E18_LJ/0601/2019 was 
detected as the putative recombination donor. This 
strain provided the raw recombination materials in the 
P2 and P3 coding regions for other recombinants. Fre-
quent recombination and mutations in enteroviruses 
are recognized as the main mechanisms associated 
with their evolution, enabling their rapid response and 
adaption to new environments [46]. Accumulation of 
inter-species and intra-species recombination events 
is regarded as a strong driver for emergence and disap-
pearance of certain enterovirus serotypes. Some studies 
have confirmed the ease of intra-species recombination 
events, and that EV-B is more susceptible to recombi-
nation [47–49]. The recombination events identified 
in the present study (i.e., the recombination donor was 
isolated from the CSF of an adult with severe menin-
gitis in 2019 in China) verifies this. The recombination 
signals imply a vital role for E30 evolution and might be 
related to E30 pathogenicity and transmission.

Conclusion
In this study, clinical specimens were collected from 
patients with AM, and the pathogens causing viral men-
ingitis were screened. This process and subsequent 
investigation of the phylodynamic characteristics of the 
pathogens enhanced our understanding of the etiology of 
this outbreak of meningitis syndromes in Inner Mongo-
lia. Investigation of the epidemiological and genetic char-
acteristics of the E30 strains in Inner Mongolia provided 
a solid foundation for future detailed molecular epide-
miological studies in China. Due to the recent increases 
in viral meningitis outbreaks in China, it is necessary to 
establish a pathogen-surveillance system in China that 
targets enterovirus-related syndromes in order to control 
enterovirus transmission and outbreaks [50, 51].
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