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Prioritizing Research in an Era of

Personalized Medicine: The Potential Value
of Unexplained Heterogeneity

Anna Heath , and Petros Pechlivanoglou

Background. Clinical care is moving from a ‘‘one size fits all’’ approach to a setting in which treatment decisions are
based on individual treatment response, needs, preferences, and risk. Research into personalized treatment strategies
aims to discover currently unknown markers that identify individuals who would benefit from treatments that are
nonoptimal at the population level. Before investing in research to identify these markers, it is important to assess
whether such research has the potential to generate value. Thus, this article aims to develop a framework to prioritize
research into the development of new personalized treatment strategies by creating a set of measures that assess the
value of personalizing care based on a set of unknown patient characteristics. Methods. Generalizing ideas from the
value of heterogeneity framework, we demonstrate 3 measures that assess the value of developing personalized treat-
ment strategies. The first measure identifies the potential value of personalizing medicine within a given disease area.
The next 2 measures highlight specific research priorities and subgroup structures that would lead to improved
patient outcomes from the personalization of treatment decisions. Results. We graphically present the 3 measures to
perform sensitivity analyses around the key drivers of value, in particular, the correlation between the individual
treatment benefits across the available treatment options. We illustrate these 3 measures using a previously published
decision model and discuss how they can direct research in personalized medicine. Conclusion. We discuss 3 measures
that form the basis of a novel framework to prioritize research into novel personalized treatment strategies. Our
novel framework ensures that research targets personalized treatment strategies that have high potential to improve
patient outcomes and health system efficiency.

Highlights

� It is important to undertake research prioritization before conducting any research that aims to discover
novel methods (e.g., biomarkers) for personalizing treatment.

� The value of unexplained heterogeneity can highlight disease areas in which personalizing treatment can be
valuable and determine key priorities within that area.

� These priorities can be determined under assumptions of the magnitude of the individual-level treatment
effect, which we explore in sensitivity analyses.
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Decision modeling in health generally aims to support
population-level decision making by synthesizing the
available evidence to identify the treatment strategy that
offers the maximum benefit at the population level,
among a set of potential options.1 Although these
‘‘population-level’’ decisions are usually based on a small
number of patient-level features (e.g., their diagnosis),
greater clinical and/or economic value could be generated
by personalizing treatment decisions.2–4 This is because
each individual would be offered the treatment that is
expected to maximize the value associated with their
treatment,2 implying that an individual would be switched
from the population-level optimal treatment strategy only
if greater benefit could be derived from an alternative
treatment option. However, to make accurate individual-
level treatment decisions and realize this additional value,
significant investment must be made in research to develop
these novel personalized treatment strategies.

With limited budgets available, it is important to
prioritize the funding of research that has the greatest
potential to efficiently improve health outcomes, thereby
increasing value in the health care system.5 Thus, research
into novel personalized treatment strategies should be
directed toward disease areas in which making treatment
decisions at the individual level has the potential to gener-
ate value. Once a suitable disease area has been identified
(e.g., breast cancer), research can be further prioritized
by focusing on the development of individualized treat-
ment strategies that have the potential to generate sub-
stantial benefit. This article aims to develop 3 measures
that can indicate, alongside subject-specific expertise, key
research priorities that would allow the development of
valuable personalized treatment strategies.

Value-of-information (VoI) methods have long been
suggested as a method for research prioritization,6–11 as
they assess the impact of statistical uncertainty on

decision making and prioritize research that efficiently
reduces this uncertainty.12 VoI methods require decision
models that estimate the population-average benefit of
each potential treatment strategy for a given disease.
Typically, this population-average benefit is defined
using the net monetary or net health benefit function,13

where the net benefit values are calculated conditional
on a set of decision model parameters. Uncertainty in
the net benefit, and in the decision making, is induced by
statistical uncertainty in the model parameters and is
usually estimated by simulation. VoI then determines the
value of collecting additional data to inform these
parameters.10

VoI analyses assume that decision makers are search-
ing for a single optimal treatment strategy to implement
across the whole population of interest, and decision uncer-
tainty arises from imperfect knowledge of model para-
meters.14,15 However, VoI concepts have been extended to
calculate the value of individualizing care by exploiting het-
erogeneity in individual patient response.2,4,16 First, the
expected value of individualized care (EVIC) calculates the
value of personalizing care based on patient preferences.2

To achieve this, patient preferences are valued (e.g., using
quality-of-life [QoL] weights) and assumed to vary across
the population, making the assumption that patients are
homogeneous except for these differences in preference.
EVIC can then be extended and combined with previously
published concepts,4 to define the value of heterogeneity
(VoH) framework. VoH is a unified theory that quantifies
the expected value to be gained from making stratified
treatment decisions based on patient characteristics
and the value of resolving parameter uncertainty within
these subgroups.16

To calculate EVIC and VoH, we must estimate the
net monetary benefit for each treatment option for each
individual to determine the optimal treatment at the indi-
vidual level. Once the individual optimal treatment is
found, the value of personalizing treatment can be com-
puted by comparing to the value of a single treatment for
the population.16 The EVIC calculations assume that
patient preferences for a given health state are unaffected
by treatment and an individual’s net benefit for each
treatment option can be computed using the value they
assign to different health states. VoH calculations assume
that treatment decisions are stratified based on known
patient characteristics (e.g., gender, health status, or
body mass index).16 Individual-level data on treatment
response and baseline characteristics can then be used to
calculate the net benefits for each treatment, conditional
on these known characteristics (e.g., using regression).16

However, research into individualized treatment stra-
tegies is often concerned with identifying new patient
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subgroups that are defined by some, currently unknown,
characteristic (e.g., a novel genetic or biologic marker or
a clinical algorith).17–19 In these instances, the character-
istic that allows for individual treatment decisions is cur-
rently unknown. Thus, the individual net benefit across
each treatment cannot be computed for a given individ-
ual, and the individual-level optimal treatment is
unknown. This means that the current VoH measures
cannot prioritize research studies that aim to identify
these novel markers.

To address this, we generalize the VoH and EVIC
measures to allow for the prioritization of research into
novel personalized medicine strategies. We discuss 3
measures to generalize VoH and include a consideration
of the value of unexplained heterogeneity (i.e., heteroge-
neity in the individual responses that cannot be explained
by currently known characteristics). We demonstrate
these measures using an individual-level decision model
that we have adapted from a previously published
model.10 This article begins by introducing this model
and its key assumptions. We then define each of the 3
measures in turn and discuss how they can help prioritize
research. The first measure determines whether there is
any potential to generate value by personalizing medi-
cine in the disease area under investigation. Following
this, the next 2 measures aim to highlight research areas
where value is likely to be generated through the devel-
opment of specific personalized treatment strategies. We
discuss how these measures should be combined with
subject matter expertise to undertake the research priori-
tization. We conclude with a discussion on the limita-
tions of these proposed measures and suggestions for
potential extensions.

Decision Making with Individual-Level

Decision Models

The research prioritization framework developed in this
article requires estimates of the individual-level net mon-
etary/health benefit, a summary measure of the value of
a treatment, measured in monetary or health units,
respectively.13 We assume that, in a given context, indi-
viduals are choosing between multiple treatment options.
The heterogeneity in the individual-level net monetary or
health benefit under each of the treatment options is
estimated using an individual-level decision model that
combines key outcomes into a single measure of
net monetary or health benefit. Thus, the VoH is based
on a model that incorporates individual-level varia-
tion into the net benefit estimates. We consider that
individual-level variation includes explainable variation,

for example, due to currently unknown (but feasibly col-
lected) biomarkers, and unexplainable first-order uncer-
tainty due to the inherent differences in outcomes. Both
of these sources of variation are distinct from the com-
monly performed probabilistic analysis (PA; sometimes
called probabilistic sensitivity analysis), which explores
the impact of second-order, parametric uncertainty on
decision making.20 Note that PA forms the basis of stan-
dard VoI calculations.

Individualized decision models are generally more
complex than cohort models.21 They often require a
higher number of assumptions/parameters as potential
relationships between individual-level outcomes and
parameters must be considered (e.g., individuals who live
longer may have a lower risk of treatment-related
adverse events). Detailed, accurate data to inform these
individualized models are likely required to ensure the
individual-level net benefit is correctly estimated. These
data can come from a range of sources but will likely
need to be individual patient–level data. In the relatively
rare scenario in which clinical trial data are available to
accurately define the net benefit,22 modeling can be mini-
mized and the net benefit estimated directly from these
data. The proposed methodology can then be applied to
those estimated net benefits.

Individual-Level Decision Models: A Case Study

We developed an individual-level decision model based
on a previously published population-level decision
tree,10 depicted in Figure 1. This model calculates the

Figure 1 The structure of the decision tree model comparing 2
treatment options for a hypothetical disease that causes a

critical event to occur, adapted from Ades et al.10
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individual net monetary benefit for 2 treatment options
for a hypothetical disease. Under no treatment, modeled
individuals are at risk of experiencing a critical event that
results in a constant QoL detriment and yearly cost of
treatment for the remainder of their life. A treatment is
assumed to reduce the risk of this event at the population
level. However, this treatment can cause transient side
effects, resulting in a short-term QoL detriment and a
one-off cost. We assume, as a simplification, that the
model parameters, defined in Table 1, are known with
certainty. Thus, we do not consider second-order uncer-
tainty, and the optimal treatment, at the population
level, is known. If second-order uncertainty is modeled,
it can be averaged out before using these methods.

We specify individual-level distributions to generate
the individual-specific trajectories, based on these
population-level parameters. We model whether an indi-
vidual experiences the critical event using a Bernoulli dis-
tribution, where the probability of experiencing the event
is pc if the individuals receive no treatment and pt if
treated. Similarly, we model whether an individual
experiences side effects using a Bernoulli distribution
with the probability of experiencing side effects equal to
ps. We then model the individual-level costs of treating
the critical event with a mean of Ce and a variance of VCe

using a log-normal distribution with parameters 4.60
and 0.045. Similarly, the cost of treating side effects is
assumed to have mean Cs and variance VCs

and follow a
log-normal distribution with parameters 5.01 and 0.047.
Next, the duration of an individual’s life is modeled as
an exponential distribution with mean L. We simplify
this model by assuming that a patient’s length of life is
independent of whether they experience the critical event
or treatment side effect and that there is no variation in

QoL across individuals. Thus, all healthy individuals
have the same QoL (Qh), and any individuals who expe-
rience the critical event or side effects will experience the
fixed QoL detriments, Qe and Qs, respectively. We also
fix the treatment cost (Ct) and willingness to pay (l)
across all individuals.

Based on these assumptions, we now present the cal-
culation method for the net monetary benefit for individ-
uals with and without treatment. First, we define 3 health
and economic quantities of interest that must be gener-
ated to calculate the individual net benefit, irrespective of
whether we assume the individual receives treatment or
not. We simulate the net monetary benefit for J individu-
als who do not receive treatment and J individuals who
do and define

� Ie ¼ ðI1
e ; I

2
e ; . . . ; I J

e ; I
J + 1
e ; . . . ; I2J

e Þ, a vector of indica-
tors such that I j

e ¼ 0 if individual j does not experi-
ence the critical event and I j

e ¼ 1 if they do.
� l ¼ ðl1; l2; . . . ; lJ ; lJ + 1; . . . ; l2J Þ is a vector represent-

ing the length of life for each individual.
� ce ¼ ðc1

e ; c
2
e ; . . . ; cJ

e ; c
J + 1
e ; . . . ; c2J

e Þ is a vector repre-
senting the annual cost of treating the consequences
of the critical event for each individual; if I j

e ¼ 0, then
c j

e ¼ 0, while if I j
e ¼ 1, then c j

e is simulated from its
log-normal distribution.

We must define 2 additional vectors that capture
treatment-related side effects to simulate the individual-
level net monetary benefit for J individuals who receive
treatment:

� Is ¼ ðI1
s ; I

2
s ; . . . ; IJ

s ; I
J + 1
s ; . . . ; I2J

s Þ is a vector of indi-
cators of whether the individual experiences side

Table 1 Population-level parameter values for our individual-level decision model comparing treatment to no treatment

Parameter Description Value

pc Probability of the critical event without treatment 0.4
pt Probability of the critical event with treatment 0.2
ps Probability of side effects with treatment 0.3
Qh Yearly QoL for healthy individuals 1
Qe Yearly QoL detriment for individuals who experience the critical event 0.5
Qs QoL detriment for individuals who experience side effects 0.1
Ce Average yearly cost of treating the critical event £100
VCe

Variance in the yearly cost of treating the critical event 20
Cs Average cost of treatment the side effects £150
VCs

Variance in the yearly cost of treating the side effects 50
Ct Cost of treatment £75
L Average length of remaining life in the model 3
l The willingness-to-pay for a unit of health 20;000

QoL, quality of life.
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effects; I j
s ¼ 0 if individual k does not experience the

side effect and 1 if they do. Note that if the individ-
ual is assumed to not receive treatment, then I j

s ¼ 0

by assumption.
� cs ¼ ðc1

s ; c
2
s ; . . . ; cJ

s ; c
J + 1
s ; . . . ; c2J

s Þ is a vector repre-
senting the one-off cost of treating side effects for
each individual. Similar to ce, for individual j, c j

s is
simulated from a log-normal distribution unless
I j
s ¼ 0, when c j

s is set to 0.

Based on these simulations, we can compute the
individual-level net monetary benefit for all individuals.
We define the first half of the vectors Ie; l and ce as the
outcomes for individuals who do not receive treatment.
Thus, the individual-level net benefits without treatment
is calculated as, for j ¼ 1; . . . ; J ,

NB
j
1 ¼ lðl j � l jI j

e QeÞ � l jc j
e:

The first half of this equation, that is, terms multiplied
by the willingness to pay (l), calculates the individual
quality-adjusted life-year (QALY) for patient j by sub-
tracting the lifetime QoL detriment due to the critical
event from l j. The second half of the equation calculates
the cost of treating the critical event.

The net monetary benefit for individuals receiving
treatment is then defined, for j ¼ J + 1; . . . ; 2J , as

NB j
2 ¼ lðl j � l jI j

e Qe � I j
s QsÞ � l jc j

e � c j
s � Ct:

This net benefit calculation also includes the treatment-
related side effects that can lead to a QoL detriment and
additional costs. Note that, as the side effects only affect
individuals in the short term, the QoL detriments and
costs are not multiplied by l j, the individual’s length of
life.

Once NB
j
1 and NB

j
2 have been defined and computed,

we can calculate the population average net benefit for
each treatment option. The optimal treatment if a single
strategy was implemented at the population level is the
one with the highest average net benefit.8 In our example,
the mean of NB1 is £4680 and the mean of NB2 is £5160.
Thus, the population-level optimal decision is to treat all
individuals.

Maximum VoH

The VoH and EVIC are defined as the expected opportu-
nity loss, across all individuals, incurred by implementing
a treatment that is optimal on average, rather than imple-
menting the treatment that is optimal for each individual,

separately.16 At the individual level, the opportunity loss
is defined as the difference between the net monetary
benefit of the treatment that is optimal for the individual
and the net monetary benefit the patient would gain if
they were given the treatment that is optimal at the popu-
lation level.16

In the original VoH framework, the individual net
benefit is estimated conditional on a set of observed
characteristics.16 However, when generalizing this defini-
tion to include unexplained heterogeneity, the individual
net benefit is calculated using a model (e.g., our decision
tree). More specifically, the individual-level net benefit
is calculated as a function of several intermediate simu-
lated quantities, that is, ðIe; Is; l; ce; csÞ. We will call
these intermediate quantities individual-level outcomes
and denote them O. Thus, the decision model computes
the individual-level net benefit for each of D treatment
options d ¼ 1; . . . ;D as a function of our individual-
level outcomes; NBdðOÞ. Using this notation, the maxi-
mum VoH (MVoH) as

MVoH ¼ E max
d

NBdðOÞ � NB d� ðOÞf g
� �

;

where d� is the optimal treatment at the population level,
for example, d� ¼ 2. While this formula uses the same
definition as the VoH and EVIC frameworks, we have
renamed it to highlight that the heterogeneity in the net
benefit includes ‘‘unexplained’’ heterogeneity that derives
from the simulated individual-level variation in the out-
comes O, whereas VoH and EVIC are concerned only
with ‘‘explained’’ heterogeneity that arises from known
individual-level preferences or characteristics such as age
and gender.

Table 2 visualizes how to estimate the MVoH, based
on simulated values for the net monetary benefit for our
2 treatment options. First, the optimal treatment at the
population level is found by calculating the average net
benefit for each treatment. An individualized treatment
decision would treat each individual with the treatment
that maximizes their net monetary benefit; for example,
individual 1 would not receive treatment while individ-
ual 3 would be treated. The opportunity loss of the
population-level decision, calculated in column 3, is the
difference between the net monetary benefit of the indivi-
dualized optimal treatment and the net monetary benefit
of the population level optimal treatment. Finally, the
MVoH is estimated as the average opportunity loss
across all individuals.

To compute the MVoH, we must determine the net
benefit of each treatment for a given individual. This rep-
resents what would have happened to a simulated
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individual under the other treatment options, known as
the counterfactual. Espinoza et al. matched patients
based on observable characteristics (e.g., age, sex), ensur-
ing that the counterfactual could be computed from indi-
viduals with the same characteristics but different
treatments.16 However, the outcomes of a decision model
cannot be used to determine the counterfactual based on
unknown characteristics. Thus, we must make an explicit
assumption about the counterfactual. However, as the
magnitude of the opportunity loss is equal to the differ-
ence between the net benefit across the different treat-
ment options, the MVoH changes significantly for
different assumptions about the counterfactual. Thus, we
suggest that these assumptions should be parameterized
and the MVoH calculated across a range of scenarios, as
we discuss below.

Defining the Counterfactual

The counterfactual can be defined by modifying the cor-
relation, denoted r, between the individual net benefits,
across the treatment options. Positive values of r indicate
that some individuals will do well in terms of net mone-
tary benefit, irrespective of treatment option, leading to
small opportunity loss and low MVoH. Conversely, neg-
ative r indicates that individuals would perform well on
one treatment option and poorly on another, leading to
high opportunity loss and MVoH. Thus, each value for r

makes a different assumption about the individual-level
net benefit across the treatment options, resulting in dif-
ferent counterfactual and different estimates for the

MVoH. We will denote the correlation-specific MVoH
as MVoHr.

In practice, MVoHr can be estimated from the simu-
lated values of the individual-level net benefit by reorder-
ing these simulations so they have a given correlation.
Several algorithms are available to reorder simulated val-
ues so the resulting data set has a given correlation struc-
ture.23,24 These are implemented in the R package
SimJoint,25 ensuring that the MVoHr can be estimated
in standard software.

Figure 2 plots the MVoH analysis for our example.
We used J ¼ 1000 simulations for individual-level net
benefits, NB1 and NB2, and computed the MVoH across
a range of different values for the Spearman rank corre-
lation ri. The MVoH varies between £20 to £3,300. As
r decreases, the assumption is that the difference in net
benefit between each treatment option increases. This
implies that the opportunity loss of selecting the nonopti-
mal treatment for an individual increases, leading to a
larger MVoH.

MVoH is interpreted as the upper bound on the value
that could be generated from personalizing treatment
decisions. Thus, if the MVoH is ‘‘high,’’ then there may
be value in developing new personalized medicine strate-
gies. However, the MVoH is calculated conditional on

Table 2 How to Calculate the Value of Heterogeneitya

NB 1 NB 2 Opportunity Loss

Individual 1 886 652 234
Individual 2 3,679 1,298 2,381
Individual 3 473 11,054 0
Individual 4 6,518 -319 6,837
Individual 5 1,121 3,763 0
Individual 6 15,095 4,875 10,220
Individual 7 1,183 2,308 0
Individual 8 6,686 20,706 0
Individual 9 2,059 302 1,757
..
. ..

. ..
. ..

.

Average 4,660 5,167 2,143

aThe individual net monetary benefit for each treatment is tabulated.

The opportunity loss of the population-level decision is the difference

between the net monetary benefit of the individual-level optimal

treatment and the net monetary benefit of the population level

optimal treatment.

Figure 2 The maximum value of heterogeneity plotted against
the correlation between the net benefit across the 2 treatments
for the Ades et al.10 example.
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the correlation between the net benefits r, the true value
of which is unknown, meaning that the ‘‘true’’ MVoH is
not known. Furthermore, the MVoH evaluates that
value that could be obtained by explaining all individual-
level variation, including all first-order uncertainty,
which can never be achieved. Thus, MVoH can be used
only to rule out the possibility of increasing value by
developing a personalized treatment strategy if MVoH is
low for all values of r.

The Value of Perfect Outcome Prediction

If the MVoH analysis indicates that there could be sub-
stantial value in exploiting the unexplained heterogene-
ity, it is important to determine what research would
allow the development of valuable personalized treat-
ment strategies. In our framework, the heterogeneity in
the net benefit comes from the simulated individual-level
outcomes O, which are used to compute the net benefits
NBdðOÞ, d ¼ 1; . . . ;D. In the following section, we gen-
eralize the parameter-specific EVIC2 to develop a mea-
sure to ascertain which of these outcomes should be
predicted to generate value by personalizing treatment.
For example, can value be generated by personalizing
treatments based on who will experience side effects? Or
will personalizing treatment based on knowledge about
who experiences the critical event generate greater value?

This prioritization step assumes that, for a set of out-
comes o � O, the exact value of these outcomes could be
predicted for each individual, that is, we know exactly
which individuals will experience the critical event with
and without treatment. If the exact value of the out-
comes o are known for all individuals, we have perfect
knowledge of o. We can then assess the value of perfect
knowledge of o, through a measure we have called the
value of perfect outcome prediction (VPOP). Note that
outcomes are rarely perfectly predictable, as some first-
order uncertainty will remain; thus, it is not possible to
achieve the VPOP through a realistic personalized treat-
ment strategy. Nevertheless, by calculating the VPOP for
different sets of outcomes, we can prioritize research that
aims to develop a method to predict outcomes with a
high VPOP. Note that the VPOP calculates the value of
learning patient outcome (e.g., whether the individual
experiences an adverse event), whereas the parameter-
specific EVIC is concerned with the value of learning a
model parameter (e.g., a QoL weight).

To define the VPOP for a set of outcomes o, we denote
the remaining outcomes used to compute the individual-
level net benefit O�, that is, O ¼ ðo;O�Þ. If the value of
o is known, then the individual treatment decision will be

made by maximizing the expected net benefit, where
expectation is taken over the remaining heterogeneity
induced by the unknown outcomes O�. We then define
the VPOP for a set of outcomes o as

VPOPro
¼ Eo max

d
EO�jo NBdðO�; oÞ½ � � NBd� ðOÞ
� �

jro

� �
;

ð1Þ

where EO�jo ��½ � is the conditional expectation, implying
that perfect information on o may also inform O if these
outcomes are correlated. Similar to the MVoH, the VPOP
for a set of outcomes o can be computed only if we make
assumptions about the counterfactual so the opportunity
loss can be computed. Thus, the VPOP must be recom-
puted across different assumptions about the correlation
between the expected individual-level net benefit across
the proposed treatment options, denoted ro.

The range of possible values for ro and its definition
will depend on the outcomes included in o. If o influences
the net benefit for only one of the treatment options, for
example, o is whether an individual experienced side
effects (Is), then the VPOP does not need to be calculated
across different values for ro, as the expected individual-
level net benefit for all other treatments, conditional on
o, is a single value. Conversely, if o is a continuous out-
come used to define the net benefit for all treatment
options (e.g., the length of time each individual will live),
then ro will take a wide range of values, similar to the
MVoH analysis.

To compute the VPOP from Eq. 1, we must estimate
the expected individual net monetary benefit conditional
on the values of o—the outcomes we are assuming can
be perfectly predicted. The calculation required to achieve
this varies depending on whether o contains continuous or
only discrete variables. If o includes only discrete variables,
then the expected net monetary benefit is estimated by the
sample mean of the simulated individual-level net monetary
benefit values for all individuals with the same outcome val-
ues. Conversely, if o contains continuous variables, then a
method based on regression, adapted from Strong et al.,26

can be used to estimate the conditional monetary net bene-
fit (cf. the supplementary material).

Directing Research with the VPOP

For our example, Figure 3 displays the VPOP for the 5
clinical and economic individual outcomes; the duration
of an individual’s life (l ), whether they experience the
critical event (Ic), treatment side effects (Is), and the cost
of treating the critical event (cc) or side effects (cs). The
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exact method used to compute the VPOP for each these
outcomes is presented in the supplementary material.

Figure 3 demonstrates that, for most values of rl, sig-
nificant value could be generated from a personalized
treatment strategy if we could predict life expectancy.
The intuition behind this result is that for rl\1, there
are some individuals who would have a longer life on
one treatment than the other. If we were able to perfectly
predict which treatment would allow the individual to
live longer, then this should be the treatment they are
given. However, by definition in this example, the treat-
ment is not life extending, meaning that we do not expect
substantial differences in life expectancy for an individ-
ual based on the treatment to which they are assigned.
Thus, rl’1, and these high values for the VPOP cannot
be realized. This argument indicates how the results from
a VPOP analysis must be combined with subject knowl-
edge to assess 1) if the correlations between the conditional
net benefits are plausible and 2) whether it is practically
and/or ethically possible to predict this outcome.

Figure 3 also indicates that predicting whether an indi-
vidual would experience side effects would not generate
value. This is because the risk reduction for the critical
event is substantial. Thus, even if the individual would
experience side effects, they should still be offered the
treatment (cf. the supplementary material). On the other
hand, it may be possible to generate value from a perso-
nalized treatment strategy, if we knew which individuals
would experience the critical event. In this setting, we
would be able to identify individuals who do not require
treatment (i.e., those who would not experience the criti-
cal event even if they receive treatment), and they can
avoid being exposed to a risk of harmful side effects.

The Value of Subgroups

Following the VPOP analysis, we now assess whether a
test to identify individuals who may experience the criti-
cal event could generate sufficient value to encourage its
development. In this section, we use scenario analyses to
identify what the properties of the test would have to be
to generate value from personalizing treatment decisions.
We assume that this test will imperfectly predict the out-
comes o, that is, it will identify subgroups of individuals
who may benefit from an alternative treatment. Our sce-
narios will consider the value of identifying subgroups
with different properties. The specification of the rele-
vant properties will vary depending on the exact outcome
of interest, the proposed test, and previous information
(e.g., from animal models) that could inform the likely
outcomes in the different subgroups.

To calculate this value, we assume that the test will
identify nS subgroups. We then generalize Espinoza
et al.’s definition of the VoH16 by denoting the expected
net monetary benefit of treatment d for individuals
assigned to subgroup s as NBs

d for s ¼ 1; . . . ; nS and
defining the value of subgroups (VoS) as

VoS ¼
XnS

s

vs max
d

NB s
d � NBd� ; ð2Þ

where vs is the size of subgroup s. Thus, the VoS is a
weighted average of the opportunity loss that would be
accrued by treating all individuals with the same treat-
ment, rather than the subgroup-specific optimal treat-
ment. We now use our case study to explore the specifics
of how the VoS might be calculated in practice.

Value of Subgrouping

We identified from our VPOP analysis that predicting
who would experience the critical event with and without

Figure 3 The value of perfect outcome prediction (VPOP) for
all outcomes in the modified Ades et al.10 example and the
MVoH for comparison (black line). The VPOP for the
duration of an individual’s life (l) is represented by the blue
dashed line. The VPOP for whether an individual experiences
the critical event (Ic) is represented by the green dashed and
dotted line. The VPOP for the cost of treating the critical
event (cc) is represented by the red dotted line. Finally, the
VPOP for whether an individual experiences side effects (Is) is
represented by a purple cross and the VPOP for the cost of
side effects (cs) is represented by a gray dot.
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treatment has the potential to generate value. Thus, we
define the subgroups in our scenario analysis in terms of
the probability of experiencing the critical event. We
assume that a test would identify 2 subgroups (nS ¼ 2)
where the probability of experiencing the critical event is
lower for the individuals in subgroup 1. We also assume
that the risk reduction due to treatment is the same
across the 2 subgroups. As the critical event has a signifi-
cant QALY detriment, individuals in subgroup 2 will
have a lower net monetary benefit with and without
treatment compared with individuals in subgroup 1,
implying a positive correlation between the net benefit
across the 2 treatments. Thus, the higher values indicated
in the VPOP analysis (Figure 3) cannot be achieved with
this subgroup structure, as they require a negative corre-
lation between the net benefits across the 2 treatment
options.

To define the probability of the critical event in sub-
group 1 and subgroup 2 without treatment, p1

c and p2
c ,

respectively, (p1
c\p2

cÞ, we make the assumption

pc ¼ v1p1
c +v2p2

c ;

where v1 ¼ 1� v2. Furthermore, we assume that the
reduced probability if the critical event in subgroup 1,
p1

c , is reduced by a multiplicative factor k from the
population-level probability of a critical event, for exam-
ple, p1

c ¼ kpc. These 2 assumptions imply that
p2

c ¼ 1�kv1

v2
pc. Finally, as the relative risk reduction pro-

vided by treatment is assumed to be the same across the
2 groups, the probability of the critical event with treat-
ment in the 2 subgroups is ps

t ¼
pt

pc
ps

c, s ¼ 1; 2. From
these 3 assumptions, we have entirely defined p1

c ; p
2
c ; p

1
t

and p2
t in terms of the reduction factor k and the size of

subgroup 1, v1.
Thus, our scenario analyses vary the values of k and

v1 and then compute the expected net monetary benefit
within each subgroup for each treatment. From this, we
can use Eq. 2 to compute the VoS. In our example, the
net monetary benefits for individuals in each subgroup
were calculated by generating Ic with updated values of
pc and pt. The average net benefit can then be calculated
from these simulations and used to estimate the expected
net monetary benefit. In complex individual-level deci-
sion models or when a large number of scenarios are con-
sidered, this analysis will become highly computationally
complex.

Figure 4 displays the VoS across different values for
the risk reduction in the reduced-risk subgroup, k, and
the size of subgroup 1, v1, using a heat map. The lighter
the color, the higher the VoS, and the more value that
could be generated if subgroups with the given values of

k and v1 were identified. Darker gray indicates that the
subgroup structure has no value, and black indicates that
the given combination of k and v1 are incompatible with
the population-level value of pc. Identifying 2 subgroups
in which one has a reduced probability of the critical
event will generate value only if more than 40% of the
population is in the ‘‘reduced risk’’ subgroup. Further-
more, identifying these subgroups will be valuable only if
there is substantial risk reduction. The highest VoS is
approximately £100 per individual, achieved if the
reduced risk subgroup contains ; 60% of the population
and have no risk of the critical event.

Discussion

We aimed to develop a method to support research
prioritization in the discovery of new personalized treat-
ment strategies, given the limits on research funding. To
achieve this, we developed 3 measures that generalize
previous work on the VoH16 to settings in which the
source of heterogeneity is unknown. Although research
prioritization can also include other considerations
such as improving equity in research (e.g., focusing on

Figure 4 A heat map displaying the value of subgroups for
different values of the proportion reduction in the probability
of a critical event (k) and the size of the subgroup with the
reduced probability of a critical event (v1). Darker gray
indicates a low value for the subgroups and lighter gray/white
indicates a high value. The black section indicates
combinations of v1 and k that would result in a probability of
the critical event in one of the subgroups that is greater than 1.
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underrepresented genders or races), these methods can
form part of a comprehensive research prioritization
framework in personalized medicine that improves the
value of research.

We begin by developing the MVoH, which explores
whether value could be generated by explaining individual-
level heterogeneity. We then develop the VPOP, which can
be used, alongside clinical expertise, to indicate which
individual-level outcomes, if they could be predicted,
would allow us to personalize treatment and generate
value. This measure can prioritize the development of pre-
diction algorithms for specific outcomes. Finally, we
demonstrate how scenario analyses can be used to explore
the VoS and determine the characteristics that these sub-
groups need to have to generate value from a potential
strategy that offers different treatments to each subgroup.
This measure could direct research, as it highlights the fea-
tures required from a specific test/prediction algorithm to
generate value. However, it is more complex to conceptua-
lize and compute as the subgroup structure must be
designed separately for each model and the individual deci-
sion model must be rerun for each subgroup.

There are several limitations to the currently proposed
measures and their graphical representations that should
be addressed in future work. First, this article calculates
the MVoH and VPOP by varying the correlation between
the net benefit to define the counterfactual and then plot-
ting these values against correlation. In decision models
with more than 2 treatment options, this method could
be extended to estimate the MVoH and VPOP for differ-
ent correlation matrices. However, the graphical repre-
sentation used in this article is possible only when the
correlation is univariate. Thus, future work should
develop alternative graphical presentations for decision
models with more than 2 potential treatment options.

Second, we have developed the MVoH, VPOP, and
VoS measures based on a deterministic decision model
that ignores second-order parametric uncertainty. In gen-
eral, decision models include a PA to assesses the impact
of uncertainty in the model parameters on the decision-
making process.27 Thus, these measures will need to be
extended to incorporate parametric uncertainty alongside
individual-level heterogeneity, similar to Espinoza et al.16

Ideally, these extensions would allow researchers to rank
the relative importance of reducing uncertainty in key
model parameters and developing mechanisms by which
we could personalize care.

Third, the proposed VoS is relatively complex to con-
ceive and may be computationally expensive. The rele-
vant scenario analyses will change across different
decision models, with the conclusions heavily dependant
on the chosen scenarios. There are also challenges

associated with presenting the VoS analysis if more than
2 quantities are used to define the subgroups. Thus,
future research should focus on conceptualizing and pre-
senting the VoS analysis for different outcome types.
Methods will also be required to tackle the computa-
tional challenges of this analysis, potentially adapting
methods that were developed the reduce the computa-
tional cost of VoI analyses,26,28–32 so they can efficiently
compute the net monetary benefit for different subgroup
specifications. The VoS analysis will also be most useful
when informed by clinical expertise about what sub-
groups may be potentially available. This will require sig-
nificant effort to translate clinical expertise into relevant
scenarios. If clinical expertise were available, then a VoS
analysis could focus on assessing whether realizable sub-
group structures could generate value from personalizing
treatment. This may reduce the range of scenarios to be
considered.

In addition to estimating VoS, research prioritiza-
tion requires 2 additional elements. Currently available
evidence (e.g., from biological models) should be used
to consider whether the valuable subgroups are poten-
tially feasible. Second, we should compare the value of
subgroups to all the costs of bringing the test to iden-
tify the reduced risk subgroup into practice. This could
include preclinical and clinical investigation of the test,
purchase of equipment to manufacture and analyze
the test, obtaining market authorization, and the
cost of widespread implementation of the test. These
costs could be estimated from the real-world develop-
ment, validation, and implementation of similar testing
procedures.

Finally, these methods will provide accurate research
prioritization only if the decision model realistically
describes the current observed heterogeneity in the popu-
lation. This is similar to standard VoI methods in which
researchers must accurately capture all second-order
uncertainty in their model to ensure correct research
prioritization.33 However, individual-level models are
complex to develop, and relevant data may be lacking.21

Thus, future research should focus on addressing these
issues and implementing these measures in a realistic
individual-level decision model. However, through the
initial presentation of these measures, we have laid the
foundation of a framework that will allow researchers to
undertake research prioritization for novel personalized
treatment strategies.

Acknowledgments

The authors would like to thank David Glynn for his com-
ments on an earlier draft of this article and 3 anonymous

658 Medical Decision Making 42(5)



reviewers for their insightful comments. Early ideas included in
this article were presented at SMDM2019, Portland, Oregon,
in a presentation titled ‘‘The Maximum Value of Heterogeneity
for Unknown Subgroups.’’

ORCID iD

Anna Heath https://orcid.org/0000-0002-7263-4251

Supplemental Material

Supplementary material for this article is available on the Med-

ical Decision Making website at http://journals.sagepub.com/
home/mdm.

Note
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correlation) provide an alternative relationship between the
MVoH and r but has limited effect on the range of MVoH
values.
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