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Abstract

New antiretroviral drugs that offer large genetic barriers to resistance, such as the recently approved inhibitors of HIV-1
protease, tipranavir and darunavir, present promising weapons to avert the failure of current therapies for HIV infection.
Optimal treatment strategies with the new drugs, however, are yet to be established. A key limitation is the poor
understanding of the process by which HIV surmounts large genetic barriers to resistance. Extant models of HIV dynamics
are predicated on the predominance of deterministic forces underlying the emergence of resistant genomes. In contrast,
stochastic forces may dominate, especially when the genetic barrier is large, and delay the emergence of resistant genomes.
We develop a mathematical model of HIV dynamics under the influence of an antiretroviral drug to predict the waiting time
for the emergence of genomes that carry the requisite mutations to overcome the genetic barrier of the drug. We apply our
model to describe the development of resistance to tipranavir in in vitro serial passage experiments. Model predictions of
the times of emergence of different mutant genomes with increasing resistance to tipranavir are in quantitative agreement
with experiments, indicating that our model captures the dynamics of the development of resistance to antiretroviral drugs
accurately. Further, model predictions provide insights into the influence of underlying evolutionary processes such as
recombination on the development of resistance, and suggest guidelines for drug design: drugs that offer large genetic
barriers to resistance with resistance sites tightly localized on the viral genome and exhibiting positive epistatic interactions
maximally inhibit the emergence of resistant genomes.
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Introduction

Current antiretroviral therapies for HIV infection often fail to

elicit lasting virological responses in patients because of the

emergence of multidrug resistant strains of HIV [1,2]. The

enormous replication rate and the high mutation and recombina-

tion rates of HIV [3–7] propel the acquisition of mutations that

confer upon HIV resistance to administered drugs. The same

mutations are often responsible for resistance to multiple drugs

belonging to a given drug class [1,2]. Consequently, treatment

options for patients who experience failure of therapy are

restricted [8,9]. The newly approved protease inhibitors (PIs),

tipranavir and darunavir, offer large genetic barriers to resistance

[10,11]. The genetic barrier of a drug, n, is the number of

mutations that HIV must accumulate to gain high level resistance

to the drug [12]. When n is small (e.g., n = 1 for 3TC [1]), drug

resistant genomes are likely to exist in patients prior to the onset of

therapy [13]. As n increases, the likelihood of the pre-existence of

resistant genomes decreases considerably [13,14]. Resistant

genomes must then emerge during therapy through mutation

and/or recombination of susceptible genomes. The replication of

susceptible genomes, however, is suppressed during therapy.

Besides, HIV must undergo a large number of replication cycles

to accumulate all the mutations required for resistance to a drug

with large n. Consequently, the development of resistance to a

drug with large n may be significantly delayed. Indeed, up to

9 months were required for HIV to develop resistance to

tipranavir in in vitro serial passage experiments [10].

Current treatment guidelines for HIV infection recommend a

combination of 3, but at least 2, active drugs, (i.e., drugs for which

resistance has not developed) in order partly to increase the overall

genetic barrier of therapy [9]. For treatment naı̈ve patients, a

combination of 2 nucleoside/nucleotide reverse transcriptase

inhibitors (NRTIs) is typically employed in combination with

either a non-nucleoside reverse transcriptase inhibitor (NNRTI),

usually efavirenz, or a ritonavir-boosted PI, usually lopinavir [9].

With ritonavir-boosted lopinavir monotherapy, fewer patients

achieved plasma HIV RNA levels below detection and more

patients witnessed emergence of PI resistance mutations than in

patients receiving ritonavir-boosted lopinavir in combination with

2 NRTIs [15]. Similarly, despite comparable times to virological

failure, patients receiving a 2 drug combination of efavirenz and

lopinavir experienced more frequent emergence of resistance than

patients receiving a 3 drug combination of efavirenz or lopinavir

and 2 NRTIs [16]. Therapy with 4 NRTIs had a similar response

to therapy with efavirenz and 2 NRTIs [17]. Consequently, a 3

drug combination is the current standard of care for treatment

naı̈ve patients. When failure did occur with a 3 drug combination,

it was typically associated with NNRTI resistance in patients

receiving efavirenz but not with PI resistance in patients receiving

lopinavir [16], in accordance with the larger genetic barriers

offered by PIs than by NNRTIs [18]. The large genetic barrier in
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conjunction with a superior pharmacokinetic profile may also

underlie the high rates of viral suppression despite sub-optimal

adherence in patients receiving ritonavir-boosted lopinavir-based

therapy [19].

For second-line therapy, which follows the failure of the initial

regimen, a drug from a new drug class is recommended in order to

minimize the risk of cross-resistance [9]. Thus, among several

newly available agents [20], the fusion inhibitor enfuvirtide and

the recently approved integrase inhibitor raltegravir present potent

options. Both enfuvirtide and raltegravir, however, offer small

genetic barriers and are therefore recommended for use in

conjunction with a supporting drug such as darunavir [9].

Remarkably, the new PIs, tipranavir and darunavir, elicit

responses against viral strains resistant to other PIs [11,21],

increasing options for second-line therapy. The new PIs thus

present promising weapons to avert the failure of antiretroviral

therapy. Indeed, significant efforts are ongoing to identify

treatment protocols that maximize the impact of the new PIs

[8,22]. Identification of improved protocols hinges on our

understanding of HIV dynamics under the influence of drugs

that offer large genetic barriers to resistance and of the process by

which HIV surmounts these large genetic barriers.

Description of the development of resistance to a drug with a

large n is complicated for several reasons. First, resistance to such a

drug typically develops gradually, increasing progressively with the

number of mutations accumulated [10,23]. As a result, the

emergence and the competitive dynamics of a large number of

distinct viral genomes carrying different combinations of resistance

mutations and possessing various intermediate levels of resistance

must be described. For instance, the accumulation of mutations at 6

loci confers high level resistance to tipranavir [10]. Consequently,

depending on whether each resistance locus carries a mutation or

not, 26, or 64, distinct strains (see below) may emerge in the course

of infection. Because HIV is diploid, the 64 strains yield 64

homozygous and 2016 different kinds of heterozygous virions,

whose evolutionary dynamics must be followed to describe how the

genetic barrier of tipranavir is overcome. Second, the population

size of HIV in vivo may be small, especially under the influence of

therapy, which implies that the emergence of resistant genomes is

likely to be governed by stochastic rather than deterministic effects

[24]. Third, in addition to mutation, recombination can play a

significant role in the formation of drug resistant strains that carry

multiple mutations [25,26]. The influence of recombination, which

is yet to be fully understood, depends on several factors, viz., the

frequency of multiple infections of cells, the effective population size

of HIV in vivo, and the nature of fitness interactions between

resistance mutations, characterized by epistasis [27–33]. No models

exist that describe HIV dynamics under the simultaneous influence

of mutation, multiple infections of cells, recombination, epistatic

interactions between multiple resistance mutations, and stochastic

effects of finite population sizes. Consequently, timing the failure of

antiretroviral drugs with large genetic barriers is currently not

possible. Rational identification of improved treatment protocols is

therefore precluded.

Here, we develop a model of HIV dynamics that quantitatively

predicts the expected waiting time for the emergence of genomes

that carry the requisite mutations for resistance to a drug with any

given genetic barrier. Extant models of HIV dynamics assume that

deterministic forces are predominant in the emergence of drug

resistance [34–36]. Consequently, extant models predict that drug

resistant genomes emerge immediately upon the initiation of

therapy, albeit in small numbers. In contrast, especially when the

genetic barrier is large, stochastic forces are expected to dictate the

emergence of resistant genomes. A key consequence of the

predominance of stochastic forces is a delay in the emergence of

resistant genomes following the initiation of therapy. Our model

accounts for this delay in a deterministic manner by predicting the

expected waiting time for the emergence of resistant genomes.

Model predictions capture the development of resistance to

tipranavir in vitro quantitatively, indicating that our model captures

the underlying dynamics of the development of resistance to

antiretroviral drugs. Further, model predictions provide insights

into the impact of underlying evolutionary forces on the develop-

ment of drug resistance and suggest guidelines for drug design.

Results

Model Formulation
We consider uninfected cells, T, exposed in the presence of a PI

with a genetic barrier n to a viral population, V, containing genomes

highly susceptible to the PI. The highly susceptible, or wild-type,

genomes are assumed to contain no resistance mutations. As

infection proceeds, error-prone replication gives rise to mutant

genomes. S~2n{1 distinct mutant genomes can arise, each with at

least one resistance mutation (Figure 1). Our aim is to determine the

waiting time for the first formation of the genome that carries all the

n resistance mutations and is therefore highly resistant to the drug.

We number the different viral genomes 0, 1, 2, 3…S, where genome

0 represents the wild-type (Figure 1). We let Vjh denote the

population of virions containing genomes j and h, where j, h M {0, 1,

2…S}. Because virions V10, for instance, are indistinguishable from

virions V01, we impose the constraint j#h [37]. Following the

infection of a cell by a virion Vjh, mutation and recombination give

rise to a proviral genome i M {0, 1, 2…S} with probability Qi(jh). We

distinguish infected cells by the proviral genomes they contain: Cells

Ti are infected by a single provirus i and cells Tij by proviruses i and

j, where i#j and i, j M {0, 1, 2…S}. Infected cells produce progeny

virions. Drug action causes some of the progeny virions to be non-

infectious [3,34,35]; we denote the noninfectious virion population

by VNjh. Cells Ti and Tii infected by a single kind of provirus

produce homozygous virions Vii and VNii. Cells Tij infected with

distinct proviruses (i?j) yield homozygous virions Vii, VNii, Vjj and

Author Summary

The ability of HIV to rapidly acquire mutations responsible
for resistance to administered drugs underlies the failure of
current antiretroviral therapies for HIV infection. The recent
advent of drugs that offer large genetic barriers to
resistance, e.g., tipranavir and darunavir, presents a new
opportunity to devise therapies that remain efficacious
over extended durations. The large number of mutations
that HIV must accumulate for resistance to drugs with
large genetic barriers impedes the failure of therapy.
Further, these drugs appear to exhibit activity against viral
strains resistant to other drugs in the same drug class,
thereby significantly improving options for therapy.
Rational identification of treatment protocols that maxi-
mize the impact of these new drugs requires a quantitative
understanding of the process whereby HIV overcomes
large genetic barriers to resistance. We develop a model
that describes HIV dynamics under the influence of a drug
that offers a large genetic barrier to resistance and predict
the time of emergence of viral strains that overcome the
large barrier. Model predictions provide insights into the
roles of various evolutionary forces underlying the
development of resistance, quantitatively describe the
development of resistance to tipranavir in vitro, and
suggest guidelines for drug design.

Timing the Emergence of HIV Drug Resistance
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VNjj and heterozygous virions Vij and VNij . The resulting infection

network is shown in part in Figure 2.

We construct dynamical equations to predict the time-evolution

of various cell and viral populations and estimate the average

waiting times for the first production of each of the S mutant

proviral genomes (Methods). We denote by W the waiting time for

the emergence of the provirus that contains all the n resistance

mutations and hence overcomes the genetic barrier of the drug.

Model Predictions
We solve model equations to describe the development of

resistance in in vitro serial passage experiments (e.g., [10]). Here, T0

uninfected cells are exposed to viruses in the presence of a known

concentration of the PI. Infection is allowed to progress until time

tp (,3.5 days), the duration of a passage. The resulting viral

population is employed to initiate infection of a fresh set of T0

uninfected cells in the next passage. At the start of the first passage,

the viral population is assumed to consist of V00 wild type viruses,

highly susceptible to the drug. Gradually, genomes with increasing

levels of drug resistance emerge.

Cell and virus dynamics. We perform calculations for a

genetic barrier n = 5, representative of ritonavir-boosted PIs [38].

We let the separation between successive resistance mutations,

l = 100 nucleotides, and choose the efficacy profile shown in

Figure 3 with epistasis E = 0 (also see Methods). Here, the efficacy

against the wild type, e0, and against the strain with n mutations,

en, correspond to 400 nM of tipranavir [10]. We assume that the

efficacy against intermediate mutants, em, depends on the number

of mutations, m (0#m#n), the genomes contain. In Figure 4A, we

present the evolution of populations of uninfected cells, T, infected

cells, T�~
PS
i~0

Tiz
PS
i~0

PS
j~i

Tij , and infectious virions,

V~
PS
i~0

PS
j~i

Vij , with time following the onset of the experiment.

In the first passage, T rises due to the proliferation of uninfected

cells (Figure 4A, inset). At the same time, T* rises due to the

infection of T, and V rises sharply due to viral production from T*.

In the second passage, the higher V enhances the infection of T.

Here, the loss of T due to infection dominates cell proliferation

and T declines. Consequently, following an initial rise of T* due to

infection of T, target cell limitation lowers the formation of new

infected cells and causes T* to decline. The resulting lower viral

production causes V to decline as well. This two phase behavior

within a passage–an initial rise and the subsequent fall of T*–is

observed in experiments [7] and is explained by models [37,39].

The same two phase behavior repeats in ensuing passages and an

oscillatory pseudo steady state is attained. Gradually, V rises

marking the emergence of drug resistant genomes.

Emergence of resistant genomes. In Figure 4B, we present

the time-evolution of populations of infectious homozygous virions

containing genomes with different numbers of resistance mutations.

Initially, the viral population contains the wild type genomes alone.

Following the onset of infection, as V rises, the rate of formation of

single mutants increases. Single mutants emerge here in the first

passage. Because drug efficacy is lower against single mutants than

against wild type genomes (e1,e0; Figure 3), single mutants begin to

grow at the expense of the wild type. (We note that unlike the

scenario in vivo, passage experiments are designed to allow the

growth of even wild-type genomes in the initial passages.) As

infections by single mutants become significant, the rate of

formation of double mutants rises. Double mutants emerge in

,40 days. With n = 5,
5

2

� �
~10 different double mutants are

possible. They emerge at slightly different times because of the

differential influence of recombination: A double mutant that

contains the two mutations on adjacent resistance loci is less likely to

be formed by recombination than a double mutant with mutations

on well separated loci; the number of crossovers increases with the

separation [40]. Again, because e2,e1,e0 (Figure 3), double

mutants begin to outgrow single mutants and the wild type. This

process continues with the sequential emergence of higher mutants

until by W,100 days quintuple mutants emerge, which possess

high level resistance to the drug. W,100 days is thus the waiting

time for the emergence of the genome that overcomes the genetic

barrier of the drug. From this point on, quintuple mutants dominate

the viral population.

Several characteristics of drugs, viz., the genetic barrier, n,

epistasis, E, and the separation between adjacent resistance loci, l,

influence W, which we examine next.

Effect of the genetic barrier. To examine the influence of

the genetic barrier, we vary n for fixed values of e0, en, and E, and

predict W. We find that W increases dramatically with n. For

instance, W increases from ,12 days when n = 2 to ,100 days

when n = 5 (Figure 5A), underscoring the advantage of a drug with

a large n. As n increases, the number of mutations necessary for

resistance increases. The number of replication cycles required to

accumulate the necessary mutations increases correspondingly and

Figure 1. Schematic representation of the S viral genomes
carrying different combinations of resistance mutations (stars)
that emerge during the development of resistance to a drug
with a genetic barrier n.
doi:10.1371/journal.pcbi.1000305.g001

Timing the Emergence of HIV Drug Resistance
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delays the emergence of resistant genomes. The development of

resistance is inhibited further by the delayed emergence of

intermediate mutants. For the same e0 and en, the incremental

fitness advantage with each mutation decreases as n increases. The

smaller this advantage, the longer it takes for the resolution of the

competition between different mutants. Thus, following their

emergence, double mutants take longer to outgrow single mutants

when n = 4 than when n = 3. When the influence of recombination

is weak, triple mutants emerge predominantly by mutation of

double mutants. Consequently, the waiting time for the emergence

of triple mutants is larger when n = 4 than when n = 3. Indeed,

triple mutants emerge in ,40 days when n = 3 and ,55 days

when n = 4 (Figure 5A). Thus, the increasing number of replication

cycles required and the slower emergence of intermediate mutants

together result in the dramatic increase of W with n.

Effect of epistasis. The increase of W with n is amplified

when E.0. Whereas W increases from ,12 to ,100 days when

E = 0, W increases from ,12 to ,205 days when E = 0.005 as n

increases from 2 to 5 (Figure 5B). As E increases, the fitness of

intermediate mutants decreases (Figure 3). Consequently,

intermediate mutants emerge slower, increasing W (Figures S1

and 5B). In contrast, the fitness of intermediate mutants is higher

(Figure 3) and hence the increase of W with n is suppressed when

E,0 (Figures S1 and 5B).

Effect of recombination. Interestingly, recombination

decreases W regardless of E (Figure 5C). Recombination

accelerates the accumulation of mutations and expedites the

emergence of resistant strains. Thus, upon increasing the

recombination rate, which we accomplish by increasing l, the

separation between resistance loci, W drops by ,50% when

E = 0.005 and by ,80% when E = 20.005 for n = 5 from that in

the absence of recombination (Figure 5C, inset). The greater drop in

W when E,0 is because of the increased fitness (Figure 3) and hence

greater prevalence of intermediate mutants, which in turn enhances

the likelihood of the formation of heterozygous virions and facilitates

the accumulation of mutations by recombination. This influence of

recombination on W is robust to changes in n (Figure S2).

That recombination invariably lowers W is intriguing given that

several studies argue that recombination may inhibit the fixation of

resistance when E.0 (e.g., see [27,33]). We therefore compute the

fixation time, F, defined as the time when 90% of the genomes in the

viral population are nth mutants. We find interestingly that

recombination increases F when E.0, consistent with current

expectations (Figure 5D) [27,33]. When n = 2, W marks the time

when the first double mutant emerges in the viral population. For

times smaller than W, the wild-type and the single mutants alone exist

in the viral population. Recombination then brings the mutations on

the two single mutants together and accelerates the emergence of the

double mutant regardless of E. After the double mutant emerges,

recombination influences the competitive dynamics of the different

Figure 3. Efficacy, em, of a genome carrying m (0#m#n)
resistance mutations, when the genetic barrier n = 5, e0 = 0.85,
en = 0.25, and the epistasis, E = 0.005 (green), 0 (red), and
20.005 (blue). The inset shows the corresponding fitness ( = 12em)
profiles.
doi:10.1371/journal.pcbi.1000305.g003

Figure 2. Schematic representation of the infection network indicating the various singly and doubly infected cells, Ti and Tij, and
homozygous and heterozygous virions, Vii and Vij, respectively, that emerge during the development of drug resistance. Non-
infectious virions are crossed.
doi:10.1371/journal.pcbi.1000305.g002

Timing the Emergence of HIV Drug Resistance
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viral strains and alters F. In particular, not only do single mutants

recombine to yield the double mutant, but the double mutant could

also be lost by recombination with the wild type. When E.0,

recombination tends to lower the prevalence of the double mutant

[27], resulting in the observed increase in F. Thus, recombination

may lower W and yet increase F. We note that the distinction

between emergence and fixation has been recognized earlier [41].

When E,0, recombination enhances the prevalence of the double

mutant and decreases F. We recognize here that the influence of

recombination on F is determined not only by E but also by n, e0, en,

and the population size of HIV and its variation, examining all of

which is beyond the scope of the present study. Our aim here is to

predict W, which marks the emergence of drug resistant genomes.

Comparison with Experiments
We apply our model to describe the development of resistance

to tipranavir in in vitro serial passage experiments [10]. We let n = 6

because a genome with 6 resistance mutations exhibited .10 fold

resistance to tipranavir in these experiments. We choose IC50

values for different intermediate mutants from the ranges

determined experimentally (Table S1). Further, we employ actual

distances between resistance sites to calculate the recombination

probabilities and also assign fitness advantages to genomes

containing specific combinations of mutations (Table S1). (In

contrast, in our calculations above, the number of mutations and

not their specific combinations was assumed to determine the

fitness advantage.) We also vary the concentration of tipranavir as

in the experiments (Table S2). Further, following the experimental

protocol, we employ 90% of the viral population at the end of any

passage to initiate infection in the succeeding passage when the

drug concentration is maintained constant across the passages and

50% of the viral population when the drug concentration is

increased in the succeeding passage. Genomes carrying 2, 3, 5 and

6 resistance mutations were first observed in the experiment in

passages 16, 33, 39 and 49, respectively [10]. In close agreement,

our model predicts the emergence of these genomes in passages

14, 29, 44 and 49, respectively (Figure 6). (Ignoring the concept of

the waiting time, i.e., letting wi = 0 in our model, severely

underpredicts the times of emergence of drug resistant genomes

(Figure 6). The agreement between model predictions and

experiments indicates that our model captures the underlying

dynamics of the development of resistance to antiretroviral drugs

accurately.

Discussion

Current models of HIV dynamics successfully predict short-

term changes in the plasma viral load in patients undergoing

therapy but fail to provide a quantitative description of the

emergence of drug resistance [34–36]. A key limitation of current

models is the underlying assumption that the emergence of

resistant genomes is governed by deterministic effects. Determin-

istic effects predominate when the population of cells in an infected

individual is large. In a finite cell population, because the

probability of the formation of a resistant genome with many

mutations can be small, resistant genomes emerge stochastically.

The waiting time for the emergence of resistant genomes can

therefore be substantial. In contrast, by assuming that determin-

istic effects predominate, current models predict that resistant

genomes emerge, albeit in very small numbers, immediately upon

the onset of therapy. Once resistant genomes emerge, their

numbers grow due to viral production from the cells they infect

leading to the rapid fixation of resistance. Current models thus

underestimate the time for the development of drug resistance

(Figure 6).

Simulations of viral evolution, based on models of population

genetics, consider finite populations and present descriptions of the

stochastic emergence of drug resistant genomes [28,29,32].

Importantly, the simulations also enable incorporation of recom-

bination and fitness interactions between multiple loci, which are

central to the development of drug resistance but are not easily

incorporated in models of HIV dynamics. The simulations,

however, make several simplifying assumptions, such as fixed

population sizes and discrete generations, which approximate the

dynamics of the development of drug resistance and introduce

uncertainties in the influence of underlying processes, such as

recombination [30,33]. Besides, simulations are difficult to

incorporate in mathematical formalisms for therapy optimization.

Figure 4. Model predictions of cell and viral dynamics. The time
evolution of (A) the number of uninfected cells (red), infected cells
(blue), and infectious virions (green) and (B) homozygous virions
carrying wild-type genomes (pink) and single (blue), double (green),
triple (orange), quadruple (red), and quintuple (black) mutants,
obtained by solving Eqs. (1)–(9) with the parameters T0 = 106 cells,
V00 = 56105 virions, n = 5, l = 100 nucleotides, and em from Figure 3 with
E = 0. The remaining parameters are listed in Methods. The inset in (A)
shows the evolution for the first two passages.
doi:10.1371/journal.pcbi.1000305.g004

Timing the Emergence of HIV Drug Resistance
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Here, we develop a model that employs the deterministic

framework of models of HIV dynamics and at the same time

captures the influence of stochastic effects associated with the

emergence of drug resistant genomes. To accomplish this, we

invoke the concept of the expected waiting time. We develop a

detailed description of mutation and recombination between

multiple loci, which enables calculation of the probability of the

formation of resistant genomes in one replication event. Given the

viral and cell populations and the efficacy of the drug, the

frequency of replication events and hence the rate of formation of

resistant genomes is determined. From the rate of formation, we

estimate the expected waiting time for the first resistant genome to

emerge. Different mutant genomes are assumed to appear first in

the viral population at their respective expected waiting times. The

limitation of current models of HIV dynamics, which predict the

emergence of resistant genomes immediately upon the start of

therapy, is thus overcome. Yet, by calculating the ‘‘expected’’

waiting time, our model captures the influence of stochastic effects

associated with the emergence of resistant genomes in an averaged

sense and retains the dynamical framework of current models. The

limitations of population genetics based simulations are also thus

overcome.

The waiting time for the emergence of a genome carrying a

certain number of mutations depends on the times of emergence

and the growth of subpopulations of genomes with fewer

mutations. Our model assumes that the latter genomes emerge

at their expected waiting times. Consequently, the variation in the

waiting times for the emergence of higher mutants due to the

variation in the times of emergence of lower mutants is suppressed

in our model. Further, following emergence, particularly when the

population size is small, the chance that stochastic forces cause the

extinction of genomes may be significant. We assume, however,

that following emergence, the growth of genomes is deterministic.

The extent of the uncertainties introduced in our model

predictions by these simplifying assumptions remains to be

estimated. Semi-stochastic simulations, where the times of

emergence of mutant genomes alone are determined stochastical-

ly, and fully stochastic simulations (see, e.g., [42]) of the emergence

Figure 5. Model predictions of emergence and fixation times. The expected waiting time for the emergence of (A) genomes with different
numbers of resistance mutations for different n when E = 0, (B) the corresponding nth mutants as a function of E, (C) quintuple mutants when n = 5 as
a function of the crossover frequency (rl), for E = 0.005 (green), 0 (red), 20.005 (blue). The inset in (C) shows the corresponding reduction in the time
of emergence, 12W(rl)/W(rl = 0). (D) Model predictions of emergence (filled symbols) and fixation (open symbols) times of double mutants when
n = 2 and E = 0.05 (green), 0 (red), 20.05 (blue). In (A) to (C), we let e0 = 0.85 and en = 0.25, whereas in (D) e0 = 0.1 and en = 0. All the other parameters
are identical to those in Figure 4.
doi:10.1371/journal.pcbi.1000305.g005

Timing the Emergence of HIV Drug Resistance
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of mutant genomes would serve as tests of our model. Performing

the simulations, however, is beyond the scope of the present study.

Here, we compare model predictions with experiments and find

that our predictions are in close agreement with experimental

observations [10] of the times of emergence of various genomes

possessing different degrees of resistance to tipranavir, suggesting

that our model captures the underlying dynamics of the

development of drug resistance by HIV.

Model predictions indicate that the waiting time, W, for the

emergence of the strain that overcomes the genetic barrier of a

drug depends on several factors that may be tuned during drug

design. A large genetic barrier significantly enhances W. This

enhancement of W with the genetic barrier is amplified when

fitness interactions between resistance loci exhibit positive epistasis.

Recombination, in contrast, lowers W regardless of epistasis or the

genetic barrier. If the separation between resistance loci is small,

however, the role of recombination is suppressed. Thus, for

delaying the emergence of resistant genomes, drugs that offer large

genetic barriers with resistance sites localized tightly on the viral

genome and exhibiting positive epistatic interactions are desirable.

These observations may serve as guidelines for structure-based

drug design [43]. The fixation of resistant genomes following their

emergence may depend differently on drug characteristics and

remains to be fully elucidated.

When distinctions between different viral genomes are ignored,

the expected waiting time vanishes and our model reduces to the

basic model of HIV dynamics, which successfully captures viral

load changes in patients undergoing therapy [3,34]. Our model

may thus be applied to predict drug failure in vivo. Several

advances of our model are essential, however, to describe the in

vivo scenario accurately. First, the higher frequency of multiple

infections [44], possible cell-cell transmission of infection [45,46],

and the existence of resistance mutations prior to the onset of

therapy [1] in vivo must be incorporated into our model. Second,

during potent drug therapy, viral replication may be suppressed

significantly, resulting in a small effective population size of HIV.

The variation of the waiting time about the mean may then

become large. Consequently, the assumption that mutant genomes

emerge at their expected waiting times becomes less accurate. Our

model must therefore be advanced to account for the variation of

the emergence times of genomes in vivo. Third, our model must be

extended to drugs from other drug classes to mimic current

combination therapies. With these advances, our model would

enable timing the emergence of resistance to drugs in vivo and

facilitate the identification of treatment protocols that maximally

impede the failure of current therapies.

Methods

Dynamical Equations
We present equations below that describe the in vitro dynamics

of various cell and viral populations.

Uninfected cells.

dT

dt
~ l{dTð ÞT{k0T

XS

i~0

H wið Þ
XS

j~0

XS

h~j

Qi jhð ÞVjh ð1Þ

Uninfected cells, T, proliferate at rate l and die at rate dT. The

rate of formation of infected cells Ti containing genome i is

k0TH wið Þ
PS
j~0

PS
h~j

Qi jhð ÞVjh (see below). Summation over i from 0

to S = 2n21 yields the total rate of loss of T due to infection by free

virions. At the beginning of each passage, T is set to T0 = 106.

Singly infected cells.

dTi

dt
~H wið Þk0T

XS

j~0

XS

h~j

Qi jhð ÞVjh

{k1Ti

Pi{1

k~0

H wkið Þ
PS
j~0

PS
h~j

Qk jhð ÞVjh

z
PS
k~i

H wikð Þ
PS
j~0

PS
h~j

Qk jhð ÞVjh

2
66664

3
77775

{dTi

ð2Þ

where i M {0, 1, 2…S}. Here, k0TVjh is the rate at which virions Vjh

infect T. Following infection, the genomes j and h undergo reverse

transcription to produce provirus i with the probability Qi(jh) (see

below). Thus, k0TQi(jh)Vjh is the rate at which uninfected cells

acquire genome i following infection by Vjh. Summation over j and

h yields the total rate, rTi
~k0T

PS
j~0

PS
h~j

Qi jhð ÞVjh, of the

production of cells Ti.

The rate rTi
can be small, especially if genome i contains many

mutations. Consequently, when the cell population is finite, the

formation of the first cell Ti is stochastic. We define ti as the

waiting time for the formation of the first cell Ti. ti may assume any

value between 0 and ‘ with a probability density dependent on

rTi
tð Þ (see below). Here, we assume as a simplification that the first

cell Ti emerges at the expected waiting time wi~StiT. In addition,

we assume that following emergence, the growth of Ti is

deterministic. We therefore multiply the rate rTi
in Eq. (2) with

the Heaviside function,

Figure 6. Comparison of model predictions (red) and the
experimentally observed [10] (blue) times of emergence of
different mutants resistant to tipranavir. The different mutants
and the corresponding IC50 values are listed in Table S1. Also shown are
the times when the numbers of the different mutant proviruses first
reach 1 (green) predicted by our model when, following current models
[34,35], we assume that the waiting times wi = 0.
doi:10.1371/journal.pcbi.1000305.g006
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H wið Þ~
0 tvwi

1 t§wi

�
ð3Þ

so that Ti = 0 when t,wi, and cells Ti are produced at the rate rTi

when t$wi. By allowing Ti to grow at the rate rTi
from time t = 0,

extant models of HIV dynamics underestimate the time of

emergence of drug resistant genomes. We derive estimates of wi

below. We solve Eq. (2) with the initial condition, Ti(wi) = 1, and

reset Ti to zero at the start of every passage. The other two terms

in Eq. (2) represent the loss of cells Ti due to death at rate d and

due to further infections, which convert Ti to doubly infected cells.

Doubly infected cells.

dTii

dt
~H wiið Þk1Ti

XS

j~0

XS

h~j

Qi jhð ÞVjh{dTii ð4aÞ

Here k1Ti

PS
j~0

PS
h~j

Qi jhð ÞVjh is the rate at which cells Ti acquire a

second provirus i. wii is the expected waiting time for the

emergence of the first cell Tii. After the first infection of a cell,

down-modulation of cell surface CD4 receptors reduces the

susceptibility of the cell to new infections [47,48]. Here, we let

k1(,k0) be the mean rate constant for the infection of singly

infected cells [37].

For cells infected with two different kinds of proviruses, we write

dTij

dt
~H wij

� �
k1

Ti

PS
k~0

PS
h~k

Qj khð ÞVkh

zTj

PS
k~0

PS
h~k

Qi khð ÞVkh

2
6664

3
7775{dTij ð4bÞ

where i,j and i, j M {0, 1, 2…S}. Here, the two terms in the

brackets correspond to the two ways of forming a doubly infected

cell Tij: a cell Ti can be infected by provirus j or a cell Tj by

provirus i. Following earlier studies, we ignore more than two

infections of cells [37]. We solve the above equations with the

initial conditions Tii(wii) = 1 and Tij(wij) = 1, respectively, and reset

Tii and Tij to zero at the start of every passage.

Waiting time: At any time t, the rate of formation of cells Ti,

rTi
tð Þ~k0T tð Þ

XS

j~0

XS

h~j

Qi jhð ÞVjh tð Þ: ð5Þ

Because individual infection events occur independently, the

formation of Ti may be described as a Poisson process with the

instantaneous rate rTi
tð Þ. The probability that the waiting time, ti,

for the first formation of a cell Ti is smaller than s is then

P tiƒsð Þ~1{exp {
Ðs
0

rTi
tð Þdt

 !
, 0#s,‘ [49]. It follows that

the expected waiting time, wi~StiT~
Ð?
0

s LP
Ls

, or

wi~{

ð?
0

s
L
Ls

exp {

ðs
0

rTi
tð Þdt

0
@

1
A

0
@

1
Ads: ð6Þ

Similarly,

wij~{

ð?
0

s
L
Ls

exp {

ðs
0

rTij
tð Þdt

0
@

1
A

0
@

1
Ads, ð7Þ

where rTii
tð Þ~k1Ti tð Þ

PS
j~0

PS
h~j

Qi jhð ÞVjh tð Þ and when i,j,

rTij
tð Þ~k1 Ti tð Þ

PS
k~0

PS
h~k

Qj khð ÞVkh tð ÞzTj tð Þ
PS

k~0

PS
h~k

Qi khð ÞVkh

�
tð Þ�.

We recognize that the evaluation of the waiting times requires

knowledge of the rates, e.g., rTi
tð Þ, at all times t. We therefore

devise a numerical approximation to estimate wi based on the

values of rTi
tð Þ until a given time t, which allows explicit

integration of the dynamical equations (Text S1).

Reverse transcription. To evaluate the probability Qi(jh), we

decouple mutation and recombination [29,32,50]. We let genomes

j and h recombine to produce genome k with probability Rk(jh) and

let genome k mutate to genome i with probability Pik [50]. The

number of different recombinants k that can be produced is 2d,

where d#n is the number of sites at which j and h differ. Summing

over all the recombinants k gives the total probability of producing

genome i by reverse transcription of genomes j and h,

Qi jhð Þ~
X2d {1

k~0

PikRk jhð Þ: ð8Þ

Recombination. To determine Rk(jh), we compare genomes j

and h at each of the n drug resistance sites and identify the

distances l1, l2, etc., between the d successive sites at which the

genomes differ (Figure S3). We then compare genome k with the

genomes j and h to determine on which genome, j or h, the enzyme

reverse transcriptase (RT) must be at each of the d distinguishing

sites in order to yield the genome k. Figure S3 illustrates the

desired path of RT for given j, h, and k. If Pdes(m) is the probability

that RT is on the desired genome at the mth distinctive site, then

Rk jhð Þ~ P
d

m~1
Pdes mð Þ, which is readily evaluated based on the

probabilities that RT undergoes odd and even crossovers in any

length l (Figure S3).

Mutation. To calculate the probability of mutation, Pik, we

compare the two genomes i and k at the n drug resistance sites and

identify the u sites where the two genomes differ. The probability

that genome k mutates at these u sites alone is Pik~mu 1{mð Þn{u
,

where 0#u#n and m is the mutation rate.

Virions.

dVij

dt
~

1

2
1{eij

� �
NdTij{cVij ð9aÞ

dVii

dt
~Nd

1{eiið Þ TizTiið Þ

z 1
4

Pi{1

h~0

1{ehið ÞThi

z
PS

j~iz1

1{eij

� �
Tij

0
BBB@

1
CCCA

2
6666664

3
7777775
{cVii ð9bÞ

dVNij

dt
~

1

2
eijNdTij{cVNij ð9cÞ
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dVNii

dt
~Nd eii TizTiið Þz 1

4

Pi{1

h~0

ehiThi

z
PS

j~iz1

eijTij

0
BBB@

1
CCCA

2
6664

3
7775{cVNii ð9dÞ

Here Vii and Vij denote infectious and VNii and VNij non-infectious

virions. In the absence of the drug, cells Ti and Tii produce

homozygous virions Vii and cells Tij produce both homozygous

virions Vii and Vjj and heterozygous virions Vij in the proportion

J, J, and K, respectively [37]. All infected cells with at least one

provirus of type i thus contribute to the production of Vii. N is the

viral burst size, d is the death rate of infected cells and c is the

clearance rate of free virions. The above equations are solved with

the initial condition that the wild type virions V00 alone exist at the

start of the first passage. For every subsequent passage, the free

virions at the end of the previous passage are employed to initiate

infection.
Drug efficacy. The efficacy of a PI is the fraction of progeny

virions that it renders non-infectious. We assume that the drug

efficacy eii against the protease produced by genome i depends on

the number of resistance mutations, m(i), the genome contains, i.e.,

eii = em [23]. We fix the efficacy against the wild type, e0, and that

against the strain with n mutations, en, and determine the efficacies

against intermediate strains from the epistasis, E, which is assumed

constant for every pair of loci differing by two resistance mutations

[27]. If E = 0, then the mutations do not interact with each other

and each additional mutation increases the log fitness, which we

define as log(12em), by the same amount (Figure 3). When E,0

(.0), the mutations interact antagonistically (synergistically) in

increasing log fitness. For cells Ti and Tii, the fraction of progeny

virions rendered noninfectious is eii. For cells Tij containing distinct

proviruses, phenotypic mixing [27] implies that proteases i and j

are equally likely to be included in a budding virion so that, on

average, the fraction of virions rendered noninfectious is

eij = (eii+ejj)/2.

When the efficacy is determined as a function of the drug

concentration, C, as in our calculations in Figure 6, we write

eii = C/(IC50(i)+C), where IC50(i) is the value of C at which eii is 50%

[51].

Equations (1) to (9) represent a model of HIV dynamics that

describes the development of resistance to a PI with a genetic

barrier n. We solve the equations using a computer program

written in C.

Model Parameters
We employ the following parameter values based on earlier

studies [4,37,39,52]: the birth and death rate of uninfected T cells,

l = 0.624 day21 and dT = 0.018 day21; the death rate of infected

cells, d = 1.44 day21; the viral burst size, N = 103; the viral

clearance rate, c = 0.35 day21; the second order rate constants of

the infection of uninfected and singly infected cells,

k0 = 1028 day21 and k1 = 0.7k0; the mutation and recombination

rates, m = 361025 per site per replication, and r = 8.361024

crossovers per site per replication.

Supporting Information

Figure S1 Model predictions of the times of emergence of

various mutants as the genetic barrier varies from n = 2 to 4 and

the epistasis E = 20.01 (A) and 0.01 (B). All the other parameters

are identical to those in Figure 4.

Found at: doi:10.1371/journal.pcbi.1000305.s001 (0.06 MB

DOC)

Figure S2 Model predictions of the time of emergence of nth

mutants for different epistatic interactions, E, and genetic barriers

n = 3 (A) and n = 4 (B). All the other parameters are identical to

those in Figure 4.

Found at: doi:10.1371/journal.pcbi.1000305.s002 (0.06 MB

DOC)

Figure S3 Schematic representation of the production of

genome k by recombination of genomes j and h. Stars indicate

mutations. The arrow marks the desired path of the enzyme

reverse transcriptase (RT) and allows determination of the

probability, Rk(jh), that genome k is formed. At the first site where

j and h differ, the probability that RT is on the desired genome,

Pdes(1), is 1/2, because reverse transcription can commence on

either of the two genomes with equal likelihood. At the second site,

if the desired genome is the same as that of the first site, then RT

will be on the desired genome if it undergoes an even number of

crossovers in the intervening distance l1, the probability of which

we write as Pdes(2) = Peven(l1). If the desired genome is different from

that at the first site, then the probability that RT will be on the

desired genome is Pdes(2) = Podd(l1). It follows that Rk(jh) =PPdes(m),

where m ranges from 1 to d and the probabilities that even and odd

crossovers occur in length l are [37] Peven(l) = exp(2rl)cosh(rl) and

Podd(l) = exp(2rl)sinh(rl), respectively, with r the per site recombi-

nation rate of HIV.

Found at: doi:10.1371/journal.pcbi.1000305.s003 (0.03 MB

DOC)

Table S1 Sequences resistant to tipranavir and their IC50 values.

Sequences with different combinations of resistance mutations

observed experimentally, corresponding binary sequences illus-

trating the specific locations of mutations, marked as 1, when

n = 6, and the respective IC50 values employed in our model are

listed. The experimental IC50 values [10] are in brackets. In our

simulations (Figure 6), we assign IC50 values to genomes as follows.

To each genome i, we assign an IC50 value equal to the IC50 of the

genome below that has the maximum number of mutations in

common with the genome i but has no mutations in addition to

those contained in i. For instance, the genome 101001 is assigned

an IC50 of 101 nM, whereas the genome 000110 is assigned an

IC50 of 60 nM, equal to the wild-type.

Found at: doi:10.1371/journal.pcbi.1000305.s004 (0.04 MB

DOC)

Table S2 Drug concentrations employed in the experiments

[10] and in our calculations of Figure 6.

Found at: doi:10.1371/journal.pcbi.1000305.s005 (0.03 MB

DOC)

Text S1 Estimates of waiting times

Found at: doi:10.1371/journal.pcbi.1000305.s006 (0.06 MB

DOC)
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