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A global association 
between Covid‑19 cases 
and airborne particulate matter 
at regional level
Angelo Solimini  1*, F. Filipponi  2, D. Alunni Fegatelli1, B. Caputo1, C. M. De Marco1, 
A. Spagnoli1 & A. R. Vestri1 

Evidences of an association between air pollution and Covid-19 infections are mixed and inconclusive. 
We conducted an ecological analysis at regional scale of long-term exposure to air-borne particle 
matter and spread of Covid-19 cases during the first wave of epidemics. Global air pollution and 
climate data were calculated from satellite earth observation data assimilated into numerical models 
at 10 km resolution. Main outcome was defined as the cumulative number of cases of Covid-19 in the 
14 days following the date when > 10 cumulative cases were reported. Negative binomial mixed effect 
models were applied to estimate the associations between the outcome and long-term exposure to 
air pollution at the regional level (PM10, PM2.5), after adjusting for relevant regional and country level 
covariates and spatial correlation. In total we collected 237,749 Covid-19 cases from 730 regions, 63 
countries and 5 continents at May 30, 2020. A 10 μg/m3 increase of pollution level was associated 
with 8.1% (95% CI 5.4%, 10.5%) and 11.5% (95% CI 7.8%, 14.9%) increases in the number of cases in 
a 14 days window, for PM2.5 and PM10 respectively. We found an association between Covid-19 cases 
and air pollution suggestive of a possible causal link among particulate matter levels and incidence of 
COVID-19.

It is well known that exposure outdoor air pollution—and in particular to particulate matter PM (PM10, PM2.5), 
to nitrogen oxides (NO and NO2), as well as to ozone (O3)—can have a variety of adverse health effects that 
include, but are not limited to, cardiovascular diseases1,2, asthma3,4, chronic obstructive pulmonary disease 
(COPD)5,6, liver diseases7, diabetes8 and cancer9. Recently, particular attention was devoted to potential effects 
of fine particulate matter (PM) on the initial spread of the epidemic and the prognosis of the disease in Covid-
19 patients. The underlying hypothesis is that higher concentration of PM makes (a) easier to the virus entering 
in the respiratory system, and its long-term exposure makes (b) the organism more susceptible to the infection 
and its complications, once infected.

In exposed individuals, airborne particles may directly increase the vulnerability to Covid-19 by serving as 
carrier of viral RNA10 and indirectly by increasing the effects of the virus on the lungs11. Air pollutants might 
therefore be a sort of “co-factors” of indirect systemic effects causing pro-inflammation and oxidation mecha-
nisms in the lungs (and extrapulmonary organs) and alteration of the immune system. The possible interaction 
between pollution levels and Covid-19 is also suggested by the fact that exposure to air pollution increases 
the risk of influenza like illness, respiratory diseases and acute lower respiratory tract infections in vulnerable 
individuals12,13. Therefore, it may be possible that the higher and prolonged over time is the exposure to PM (as 
for the elderly), the higher is the probability that the respiratory system is vulnerable to more serious conse-
quences of the infection.

To date most analysis published so far examined the number of Covid-19 cases or deaths and long term 
exposure of air pollution within the same country11,14–16. Those studies were therefore limited by the air pollution 
range exhibited by the administrative units within a given country restricting the external validity of the results. 
Additionally, most early analyses were not adjusted by non-pharmaceutical interventions, that varied widely 
between countries in both timing and severity or were not comparable in terms of other covariates used to adjust 
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the statistical models. Taken together, available evidences from published studies are mixed and critically different 
in terms of statistical models, covariate adjustment, outcome and exposure definitions and geographical units.

We conducted a worldwide ecological analysis to evaluate the hypothetical association between reported 
Covid-19 cases in early phase of epidemics and long-term exposure to particulate matter air pollution at the 
subnational (i.e. regional) level. Within each region, pollution levels were computed in the most populated area at 
the unprecedented 10 km resolution and several relevant covariates were included at regional and country levels.

Methods
This analysis is based on a large global dataset built by collecting information from various freely available 
sources up to May 30, 2020. The geographic dataset for region-equivalent areas at full global extent was populated 
with demographic, climatic, air quality data and Covid-19 time series of cases. Additionally, we added several 
country level covariates including cumulative number of tests, Government Response Stringency Index17, preva-
lence of diabetes and gross domestic product as detailed below.

Administrative units and spatial variables.  Region-equivalent administrative units were collected 
from GADM version 3.6 (https://​gadm.​org), mapping spatial polygons of administrative areas for all countries 
of the World, at all levels of available sub-division. NUTS spatial polygons at level 2, corresponding to the region 
spatial polygons of the European countries, were downloaded from Eurostat (https://​ec.​europa.​eu/​euros​tat/​web/​
nuts/​nuts-​maps). Each administrative unit was uniquely identified by a code and for each polygon the latitude 
and longitude coordinates of the polygon centroid were calculated. In order to take into account the spatial auto-
correlation within models, avoiding the use of latitude information that is likely correlated to climate covariates 
(i.e. temperature), distance (d) and bearing (b) from the origin (Longitude = 0°, Latitude = 0°) have been com-
puted from each region centroid coordinates as follows:

where atan2 is a four-quadrant inverse tangent requiring two input values (Longitude and Latitude).

Demographic variables.  Each administrative unit was linked to information about population counts, 
population density, sex and age structure. Population counts and densities were derived from the Gridded Popu-
lation of the World (version 4.11, distributed by Socioeconomic Data and Applications Center), which provides 
spatially disaggregated population datasets18 for year 2020. Population counts are defined at a horizontal grid 
spacing of 30 arc seconds (approximately 1 km × 1 km at the equator) and were used to compute spatial statis-
tics for each administrative unit. Population sex and age structure were calculated from the basic demographic 
dataset, which is available for year 2010. Finally, a 10 × 10 km spatial kernel was used to identify geographic 
coordinates of the location with the higher population size within each administrative unit.

Climate data.  Climate datasets have been collected from the Copernicus Climate Change Service (C3S) 
(https://​clima​te.​coper​nicus.​eu). We downloaded “2-m temperature” and “2-m dewpoint temperature” variables 
from ERA5 single levels reanalysis dataset19 for the period November 2019–May 2020. ERA-5 reanalysis cli-
mate data are provided at hourly time step, on a spatial grid with 0.25° horizontal resolution (approximately 
30 km × 30 km at the equator), covering the entire Earth. For each grid cell we calculated daily mean, maximum, 
minimum for the variables 2-m air temperature, relative humidity and absolute humidity. The 2-m temperature 
is the temperature at the height of 2 m above Earth’s surface. Relative humidity is the percentage of the maximum 
amount of water vapor that the atmosphere can hold at a given temperature (saturation). Relative humidity 
has been calculated from 2-m temperature and 2-m dewpoint temperature, according to the formula in20. We 
extracted daily statistics on temperature and relative humidity from the cell spatially closest to the geographic 
coordinates of the location with higher population size within each administrative unit.

Air quality.  Air quality datasets were collected from the Copernicus Atmosphere Monitoring Service 
(CAMS) (https://​ads.​atmos​phere.​coper​nicus.​eu). The ECMWF Atmospheric Composition Reanalysis 4 (EAC4) 
global reanalysis product21 are provided at three hourly time step, on a spatial grid with 0.75° horizontal resolu-
tion (approximately 90 km × 90 km at the equator), covering the entire Earth. Selected variables are the con-
centration (μg/m3) of PM2.5 and PM10 at the Earth surface. For each grid cell we calculated daily mean, maxi-
mum, minimum and percentiles statistics for the period 2014–2018 and daily statistics of PM2.5 and PM10 were 
extracted from the cell spatially closest to the geographic coordinates of the location with higher population size 
within each administrative unit. CAMS ensemble estimates may have a bias (quantified as temporal root mean 
square error) around 3.0 μg/m3 for PM2.5 and around 4.3 μg/m3 for PM10.

Covid‑19 cases.  The Covid-19 dataset was built by integrating several repositories on Github, that collected 
regional daily cases by country up to May 30, 2020. Most of the sources were official reporting bodies, such as the 
EC- Joint research Centre for European countries (https://​github.​com/​ec-​jrc/​COVID-​19). The sources of data 
for other world regions are listed in supplementary Table S1 and at this link (https://​tinyu​rl.​com/​yxmh6​blb). The 
sum of reported cases by country was almost identical to WHO official country level data (see supplementary 
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figure S1). Daily cases at regional level were then linked to GADM administrative areas codes (https://​gadm.​
org/) and NUTS_2 administrative areas codes (for European countries, https://​ec.​europa.​eu/​euros​tat/​web/​regio​
ns-​and-​cities/​overv​iew).

Covariates at country level.  Information on the Covid-19 cumulative tests performed at the date of out-
come were extracted from our world data (https://​ourwo​rldin​data.​org/) or from official ministry websites. For 
Andorra, Bosnia-Herzegovina, Belarus, China, Algeria, Makedonia and Montenegro, we conservatively imputed 
the total number of tests to be equal to the country level cumulative number of cases. As indicator of country 
response to the Covid-19 crisis we used the Government Response Stringency Index17 that is a composite meas-
ure based on nine response indicators including school and workplace closures and travel bans, rescaled to a 
value from 0 to 100 (100 = stricter response). We extracted country level pro-capita gross domestic product (in 
current US$), that is a proxy of health-related infrastructures and more (life expectancy, infant mortality, etc.), 
and prevalence of diabetes from world bank database (https://​data.​world​bank.​org/​indic​ator).

Outcome definition and statistical analysis.  From each Covid-19 case time series, we derived an indi-
cator of initial outbreak spread in each administrative unit that could be used as outcome in the statistical 
analysis. The main outcome was defined as the cumulative number of cases in the 14 days following the date 
when > 10 cumulative cases were reported. We also calculated a more conservative outcome that were defined 
as the cumulative number of cases in the 14 days following the date when > 50 cumulative cases were reported.

We used negative binomial mixed models to estimate the association between the outcome and long-term 
exposure to air pollution. The primary analysis was performed considering the main outcome defined above as 
the dependent variable and PM10 or PM2.5 as fixed effects. For each region, summary statistics of daily tempera-
ture and RH were computed as mean over the 30 days before each outcome date while chronic exposure to PM2.5 
and PM10 as averages of mean daily levels over 2015–2018.

The analysis was adjusted by several covariates at administrative unit level (total population, proportion of 
total population aged 65 or up, sex, temperature, relative humidity) and at country level (diabetes prevalence, 
gross domestic product per individual, cumulative number of tests at outcome date, Government Response 
Stringency Index at outcome date). This final set of covariates was selected after the usual preliminary inspec-
tion of correlation structure and fit of each variable in turn in the model. A random intercept by country was 
included to account for potential correlation in regions within the same state, due to similar sociocultural, 
behavioral, and healthcare system features and similar Covid-19 response and testing policies. To control for 
the spatial structure of data we included in the model natural cubic splines of distance and bearing as computed 
above (see “Administrative units and spatial variables”). The analysis was repeated also adjusting for country as 
fixed effect, to capture eventual remaining differences in the number of cases between countries not explained 
by fitted exposure and covariates.

Sensitivity analyses were applied to assess the robustness of results to confounders by fitting the full models 
without a single covariate in turn and comparing model goodness of fit by the Akaike information criterion 
(AIC). All of the statistical analyses were performed using R version 4.0.2.

Results
In total, we collected 237,749 Covid-19 cases from 730 regions from 63 countries and 5 continents at May 30, 
2020 (Fig. 1, Table 1). The date of the main outcome (cumulative number of cases in the 14 days following the 
date when > 10 cumulative cases were reported) varied between February 10 (China) and May 25 (Bolivia) and 
the number of daily cases in the 14 days window varied between 0.78 and 2116 (Fig. 1). Considering all regions, 

Figure 1.   Airborne fine particulate matter average levels (μg/m3) population densities and Covid-19 daily cases 
in the 14 days after outcome date (date when cumulative number of cases = 10; up to May 30, 2020). PM levels 
refer to mean daily concentrations over 2015–2018.

https://gadm.org/
https://gadm.org/
https://ec.europa.eu/eurostat/web/regions-and-cities/overview
https://ec.europa.eu/eurostat/web/regions-and-cities/overview
https://ourworldindata.org/
https://data.worldbank.org/indicator
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in the 30 days before the outcome date the average temperature ranged between min = 3.6 °C and max = 30.7 °C 
(median = 13.3 °C), relative humidity between 51.3 and 84% (median = 70.2%). Average airborne fine particulate 
matter (PM2.5) ranged between 3.3 and 263.5 μg/m3 (median = 13.1 μg/m3), while PM10 ranged between 3.5 and 
372.0 μg/m3 (median = 33.3 μg/m3). At time of outcome most of the countries had government containment 
measures (ie. Government Response Stringency Index) in place (mean SI = 76.7) and reported a cumulative 
total of 242,910,857 Covid-19 tests.

Regional mean number of Covid-19 cases were positively associated with air pollution levels (Table 2) in 
fully adjusted models. A 10 μg/m3 increase of PM10 was associated with 8.1% (95% CI 5.4%, 10.5%) increase in 
the number of and 10 μg/m3 increase of PM2.5 was associated with a 11.5% (95% CI 7.8%, 14.9%) increase in 
the number of Covid-19 cases in the 14 days following the date when > 10 cumulative cases were reported (i.e. 
Outcome_10, in Table 2). Estimates of this model were robust to different definition of the outcome or when we 
entered the country as fixed effect in the model (Table 2). In sensitivity analysis, pollutant estimates remained 
similar when we removed a single covariate in turn (Table 3).

Discussion
We compiled a global database of Covid-19 cases referred to the first wave of the pandemics up to May 30, 
2020 and studied the association with climate and pollution statistics referred to the most populated areas 
within each region, regional demography and other covariates at country levels for 730 regions belonging to 63 
countries and 5 continents. We found an increase between 8.1 and 11.5% in the number of Covid-19 cases for 
a 10 μg/m3 increase of PM10 and PM2.5, respectively, after controlling for important spatial area level covariates. 
Significantly positive associations of air pollutants with Covid-19 confirmed cases or deaths were already reported 
for China22, Italy23, Canada24, USA25, Japan26, Netherlands27, UK14 and regions across Italy, France, Germany, and 
Spain15. However, to our knowledge this is the first paper examining the association between Covid-19 spread 
and pollution worldwide, controlling for a wide range of regional and country potential confounding effects. 
The compelling evidence of a statistically significant positive relationship between air pollution and Covid-19 
cases was robust to changes of predictors included in the model. Still, not including in the statistical model total 

Table 1.   Environmental, socio-demographic and Covid-19 median and interquartile range. Cumulative 
number of Covid-19 tests, Government Response Stringency Index at outcome date; temperature and relative 
humidity in the 30 days before the outcome date. PM levels refer to mean daily levels recorded over 2015–2018.

Variable Median (IQR)

Covid-19 daily cases in the 14 days after outcome date 9.07 (4.43; 23.71)

Outcome date (cumulative number of cases = 10) 03-04-2020 (26-03-2020; 15-04-2020)

Total population in the most populated area of the region 1,648,510 (935,028; 3,826,890)

Proportion of population 65 +  0.11 (0.06; 0.14)

Proportion of male population 0.49 (0.48; 0.50)

Diabetes prevalence (%) 6.6 (6.1; 9.3)

Cumulative number of tests 64,387 (34,938; 208,887)

Stringency index 76.85 (72.69; 85.19)

Per capita annual GDP ($) 12,238 (8,717; 40,493)

PM10 (μg/m3) 33.29 (14.18; 25.77)

PM2.5 (μg/m3) 13.07 (9.2; 18.28)

Temperature (°C) 13.31 (9.93; 22.22)

Relative humidity (%) 70.23 (62.19; 77.67)

Table 2.   Association between long term exposure to particulate matter and Covid-19 cases at regional level 
estimated with negative binomial regression models with country entered as random (mixed effect model) or 
fixed (fixed effect model). Models adjusted for total population, proportion of population aged 65 or up, sex, 
temperature, relative humidity, diabetes prevalence, gross domestic product per individual, cumulative number 
of tests at outcome date, Government Response Stringency Index at outcome date and spatial components 
entered as cubic splines. Outcomes are the cumulative number of cases in the 14 days following the day when 
the 10th (Outcome_10) or 50th (Outcome_50) case were reported in each region. Reported values are the 
exponentiated betas and 95% confidence interval.

Model Pollutant Outcome_10 AIC Outcome_50 AIC

Mixed effect
PM10 1.008(1.005, 1.011) 7949.7 1.007(1.005, 1.009) 7470.2

PM2.5 1.012(1.008, 1.015) 7949.2 1.010(1.007, 1.013) 7469.2

Fixed effect
PM10 1.008(1.005, 1.011) 7909.8 1.007(1.005, 1.010) 7412.8

PM2.5 1.012(1.007, 1.016) 7909 1.010(1.007, 1.014) 7411.7
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population residing in the area increased the PM10 effect to 11% and PM2.5 to 16%, pointing to a not surprising 
covariation of pollution levels and size of resident population. Therefore, most populated and polluted (i.e. urban) 
areas worldwide are possibly places where most sustained virus transmission takes place and where quickly 
increasing hospitalizations are expected.

The association between air pollution and Covid-19 spread was reported in analyses conducted in several 
countries. Studies published so far were manly cross-sectional by design (e.g. conducted at aggregate level) 
and varied in terms of geographical unit examined (from regions to provinces to states), time span of exposure 
assessment (short term or long term), metric of air pollution and in the number of covariates used in adjusting 
the statistical models.

A cross-sectional analysis was conducted in 120 cities (4 municipalities and 116 prefecture-level cities over 
a period between final Jan-2020 to final Feb-2020) of China22. The authors found an increase of 2.24% (95% CI 
1.02–3.46) and 1.76% (95% CI 0.89–2.63) in the daily counts of Covid-19 confirmed cases for an increase of 
10-μg/m3 (at cumulative lag of 0 -14 days) in PM2.5 and PM10, respectively22. Similar results were found at the 
Province level in Italy by several authors23,28,29. In contrast, in 28 geographical areas of Japan26, the epidemic 
growth (as cumulative count of confirmed cases over a period March—6 April 2020) was not found statistically 
associated with PM2.5 (and other pollutants), after adjusting for demographic variables.

Long term exposure effect of particulate matter was also studied in several countries. A study in Canada24 
examined 111 health regions up to May 13, 2020 using long term exposure to air pollution. Data were analyzed 
using multivariate regression in which the incidence of Covid-19 cases was modelled as function of long-term 
exposure of PM2.5, and other fixed effects such as provinces and other ecological/social parameters (such as 
temperature, demographic and health characteristics), added as controlling factors. The incidence rate was not 
statistically significant in the main analysis (incidence rate = 1.07, 95% CI 0.97, 1.18 per a unit increase of pollut-
ant). However, a positive and statistically significant association was found when restricting the analysis to the 
most Covid-19 affected provinces (Quebec and Ontario). Similar results were found when regressing air pollu-
tion of 55 Italian cities (measured with days exceeding the limits set for PM10 over 2018 year) and number of 
Covid-19 cases (up to 7th April 2020)30. Moreover, a national-wide cross-sectional study was conducted in USA25, 
using more than 3000 county up to 22 April 2020, fitting a negative binomial regression model. They found an 
8% increase in the Covid-19 mortality rate (95% CI 2%, 15%) per unit increase of PM2.5. Remarkably, the model 
was adjusted for wide range of potential confounders (i.e. socioeconomic, demographic, weather, behavioral, 
epidemic stage, and healthcare-related) and was robust to sensitivity analysis. A similar study was conducted in 
355 relatively small Dutch municipalities27 using as outcomes the count of infected, hospitalized and death cases 
of Covid-19 (data up to 5th June 2020) and as long term exposure the annual concentrations averaged over the 
period 2015–2019 of PM2.5. Using a negative binomial regression model, adjusting for different confounding 
effects (demography, social and physical proximity, employment, education, spatial and health variables), the 
study revealed statistically significant positive relationship between air pollution and Covid-19 cases, finding an 
increase of 9.4 more Covid-19 cases, 3.0 more hospital admissions, and 2.3 more deaths per unit increase of PM2.5.

An important strength of our study is that it integrates Covid-19 global epidemic data with an extensive set 
of spatially explicit covariates related to socio-demographic, climatic, air quality and environmental variables at 
fine spatial scale. The geographic database populated with up-to-date datasets at full global extent, also including 
products distributed by the services developed under the European Copernicus program, allowed to conduct a 
statistical analysis at an unprecedent spatial detail, revealing the implications of diverse factors in the epidemic 
spread. It should be noticed that although minor biases in the air pollution estimates using the CAMS ensemble 
median datasets might be present, spatial associations with response variables should be unbiased. The estimates 
of the pollution effects obtained from mixed models remained the same in fixed effect models, pointing to the 
fact that most of the variation in the response variable is probably due to differences between countries31. Our 
findings have also implication for preparedness to future waves of Covid-19 or other respiratory viruses. It 

Table 3.   Sensitivity analysis: coefficients (exponentiated betas, 95% confidence interval) of associations 
between main outcome (Covid-19 cumulative number of cases in the 14 days following the date when > 10 
cumulative cases were reported) and air pollutants in models adjusted by all but one variable in turn. Temp 
and rh: temperature and relative humidity in the 30 days before the outcome date; spatial components: cubic 
splines of distance and bearing. Reported values are the exponentiated betas and 95% confidence interval.

Removed variable from the full model PM10 AIC PM2.5 AIC

Total population 1.011 (1.009, 1.014) 7964.7 1.016 (1.013, 1.020) 7968.4

Per capita annual GDP ($) 1.007 (1.005, 1.010) 8070.6 1.010 (1.007, 1.014) 8070.2

Stringency index 1.008 (1.005, 1.011) 7976.8 1.012 (1.008, 1.015) 7976.3

Cumulative number of tests 1.008 (1.005, 1.010) 9179 1.011 (1.007, 1.014) 9178.4

Proportion of population 65 +  1.008 (1.006, 1.011) 7954.2 1.012 (1.008, 1.015) 7953.7

Sex 1.008 (1.005, 1.010) 7963.4 1.011 (1.007, 1.014) 7962.9

Diabetes prevalence 1.010 (1.008, 1.013) 8034.9 1.012 (1.008, 1.015) 7949.5

Temp and rh 1.008 (1.005, 1.011) 7951.8 1.012 (1.008, 1.015) 7951.3

Spatial components 1.008 (1.005, 1.010) 7961.7 1.011 (1.007, 1.015) 7961

None 1.008 (1.005, 1.011) 7949.7 1.012 (1.008, 1.015) 7949.2
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appears urgent to understand the role played by multiple environmental and socio-economic variables that could 
confound or possibly modify the association between air pollution and epidemic spread. The design of collabo-
rative observational studies using detailed individual-level data on Covid19 cases coupled with environmental 
exposures should therefore be prioritized. However, in the view of the precautionary principle, the partial or 
incomplete evidence already provided by observational studies published so far should be considered by policy 
makers, without waiting for further confirmation.

This study has also several limitations. We inferred an ecological association and we could not make any 
inference about causal relationships. Although our findings are correlative, several plausible mechanisms through 
which the long term exposure to air pollution might affect Covid-19 spread and mortality were reported16. Air 
pollution is associated with increase inflammatory cascade in exposed subjects and consequent overstimulation 
of the immune system. Chronic inflammation might therefore increase the susceptibility of exposed population 
to Covid-19, increasing the risk of Covid-19 related hospitalization. Since the link between air pollutants and 
other respiratory viruses was already reported in the literature13, it is plausible that areas were more population 
is exposed to the effect of air pollutants are also the areas were faster spread of Covid-19 cases are reported. 
Second, we attributed exposure levels on a geographical basis at the lower geographical resolution scale that was 
possible, given the global nature of our effort. This may lead to exposure misclassification as we are assuming 
that air pollution levels in a specific area are representative of the real long-term exposure of each individual 
living in that area. Third, bias in reported number of cases, especially in regions where the health system was 
unprecedently under pressure, might also affect this analysis. However, the results were substantially the same 
when we used as outcome the number of cases in the two weeks following the day when 50 cases (rather than 
10) were recorded that implies also a time window shift and a different attribution of exposure level. Fourth, 
the exclusion of potentially important covariates that were not available at regional level (e.g. number of tests) 
might also affect our analysis. For some important covariate like cumulative tests performed or population dia-
betes prevalence we could use the country level (i.e. aggregated) value in the statistical models. It should also be 
remarked that in our statistical models all variables had little influence on the pollution term, with the exception 
of population density. Also including country as fixed and not random effect, and therefore capturing all residual 
variance associated with between country differences, caused a small decrease of the pollution term. Still, the 
association between Covid-19 cases and PM levels remained positive and above the null.

Conclusion
This study investigated the effects on Covid-19 infections of PM2.5 and PM10 after adjusting for temperature, 
relative humidity and other socio-demographic and economic covariates. We found an association between 
Covid-19 cases and pollution level suggestive of the existence of a possible causal link among those two factors. 
This finding has obvious implications for policymakers, clinicians and public health authorities. The burden 
of Covid-19 cases due to air pollution represent an additional cost in terms of population health that might be 
avoidable by reducing pollution levels.

Data availability
All data used in this manuscript is publicly available. An automated linux bash script for downloading data and 
build our dataset will be available at the gitHub repository https://​github.​com/​rando​mxsk8/​covid​19_​regio​nal.
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