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Abstract
Rare earth elements (REEs) have become increasingly important metals used in modern

technology. Processes including mining, oil refining, discarding of obsolete equipment con-

taining REEs, and the use of REE-containing phosphate fertilizers may increase the likeli-

hood of environmental contamination. However, there is a scarcity of information on the

toxicity and accumulation of these metals to terrestrial primary producers in contaminated

soils. The objective of this work was to assess the phytotoxicity and uptake from contaminat-

ed soil of six REEs (chloride forms of praseodymium, neodymium, samarium, terbium, dys-

prosium, and erbium) on three native plants (Asclepias syriaca L., Desmodium canadense
(L.) DC., Panicum virgatum L.) and two crop species (Raphanus sativus L., Solanum lyco-
persicum L.) in separate dose-response experiments under growth chamber conditions.

Limited effects of REEs were found on seed germination and speed of germination. Effects

on aboveground and belowground biomass were more pronounced, especially for the three

native species, which were always more sensitive than the crop species tested. Inhibition

concentrations (IC25 and IC50) causing 25 or 50% reductions in plant biomass respectively,

were measured. For the native species, the majority of aboveground biomass IC25s (11 out

of 18) fell within 100 to 300 mg REE/kg dry soil. In comparison to the native species, IC25s

for the crops were always greater than 400 mg REE/kg, with the majority of results (seven

out of 12) falling above 700 mg REE/kg. IC50s were often not detected for the crops. Root

biomass of native species was also affected at lower doses than in crops. REE uptake by

plants was higher in the belowground parts than in the above-ground plant tissues. Results

also revealed that chloride may have contributed to the sensitivity of the native species, Des-
modium canadense, one of the most sensitive species studied. Nevertheless, these results

demonstrated that phytotoxicity may be a concern in contaminated areas.
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Introduction
Rare earth elements (hereafter referred to as REEs) are metals of the lanthanoid series in the pe-
riodic table. Though they are termed “rare”, REEs are in fact commonly found in soils world-
wide [1]; the classification of “rare” solely refers to the lack of large deposits or ores that are
characteristic of other elements such as silver and gold.

Once widely mined, China’s low production cost for REEs in the 1990s significantly reduced
the prices of REEs globally and consequently many other mines stopped extracting these valu-
able elements [2]. As a result, China currently mines and produces approximately 95% or more
of the world’s supply of REEs [3], and thus has a monopoly on these critical resources. Howev-
er, in recent years China has reduced its production and export of REEs to protect its industry
and to decrease the environmental impacts that may result from REE mining [4]. To supple-
ment their supplies, other countries including Canada and the USA (a former producer of
REEs) have begun the process of researching, developing or reopening REE mining facilities.
Of particular interest in North America are sites at Thor Lake, Northwest Territories [5] and
Strange Lake, Quebec [6] in Canada, and the pre-existing REE mine at Mountain Pass in Cali-
fornia, USA [7].

REEs are mined primarily for their usefulness in modern technologies, with many applica-
tions for green-technology developments [8,9,10,11,12]. Their most important usages are as
components of high strength magnets in electronic equipment, in wind turbines and electric
vehicles, for precision guided weapons, and in computers, audio equipment and automobiles,
amongst others. They are also used in low quantities as fluid cracking catalysts during oil refin-
ing, in the production of optical glass and as components in phosphors for energy efficient
lighting [11].

The risks of REE pollution due to mining and processing as well as from the improper dis-
posal of materials containing these compounds could potentially lead to elevated levels within
the environment. In addition, the processing of REE rich monazite rocks for the production of
phosphate fertilizers and the subsequent applications of these fertilizers could further elevate
REE soil concentrations, especially in agricultural areas [13,14,15]. In Canada, these fertilizers
are commonly used within agriculture in the prairies, with application levels in the late 1990s
reaching 775 000 tonnes per year [16]. Sneller et al. [17] reported that approximately 85 tonnes
of neodymium (Nd) were released into the environment from phosphate fertilizer production
in the Netherlands in 1994. Slooff et al. [18] reported that industrial emissions in air and water
due to fertilizer production in the Netherlands can contain over 500 mg/kg of REEs. Petroleum
refining processes can release similar amounts of REEs into the environment. In the USA, an
estimated 60–80 tonnes of REEs per day are released into the atmosphere by oil refineries [18].

In a study conducted by Li et al. [19], it was found that REE soil pollution due to tailings
from an REE processing plant in China can travel up to approximately seven kilometers before
soil concentrations stabilize to natural levels. Specifically, Nd and praseodymium (Pr) levels in
relation to the source were found to be, respectively, 5726 and 1614 mg/kg at 0.4 km, 2266 and
650 mg/kg at 0.8 km, 1279 and 373 mg/kg at 1.3 km, and 310 and 85 mg/kg at 2.1 km [19]. Slooff
et al. [18] also report that soils in polluted sites near industrial locations in the Netherlands con-
tain high levels of REEs [800–900 mg/kg cerium (Ce), 500–700 mg/kg lanthanum (La), 400 mg/
kg Nd and 100 mg/kg Pr], which are at least 100 times higher than background levels. Concen-
trations in mining areas in China reached upwards of 200 times that of baseline earth crust levels
for most REEs, including Pr, Nd and samarium (Sm) [20]. For these reasons, toxicity monitoring
will become crucial as REE mining activities commence in Canada and other countries.

Studies have indicated that REEs can be absorbed by plants due to the similar ionic radii
that they share with calcium [21,22]. As a result, REEs may replace calcium molecules in a
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number of physiological processes involving proteins and enzymes, including root growth,
photosynthesis, and flowering [15,21,23,24,25]. However, the mechanism of action of REEs in
plants is still poorly understood [15]. Many studies have documented the presence of REEs in
both the roots and shoots of a variety of different plant species; however, in these cases, the
studies were conducted on plants growing in soils containing low, natural levels of the REEs
[26,27,28,29]. Toxicological studies on the effects of REE soil contamination on plants are lack-
ing, as the majority of research has been conducted under hydroponic growth conditions
[21,30,31]. A wide range of reports from China, where REE fertilizers are regularly applied to
crops, report stimulatory, positive effects of various REEs on different aspects of plant metabo-
lism, growth and yield [22,32,33,34]. However, many of these positive effects are only observed
at low doses of the REEs, with negative effects becoming apparent as dosages are increased
[34]. Reported detrimental effects of elevated levels of REEs on plants include: decreased
growth, root function and nutritional uptake [31,35]; reduced root elongation (erbium, Er
[36]); decreased seed germination (La and mixed REE solution [37]); and chloroplast damage
(terbium, Tb [38]).

The importance of studying plants in the environmental assessment of contaminants can
often be overlooked in favor of other organisms. For instance, Li et al. [19] observed that the
soil macrofauna diversity near a REE processing plant in China was decreased at high REE con-
centrations, but unfortunately plant biodiversity and toxicity was not assessed. Plants, however,
can serve as strong indicators of environmental health since they are literally grounded and
cannot escape the presence of contaminants. In addition, since they are the primary producers
of many ecosystems they serve as a major entryway for many contaminants into the food
chain. For instance, Cowgill [39] observed uptake of several REEs by water-lilies (Nymphaea
odorata Aiton) and subsequently found these metals in aphids that fed on this species.

In a previous paper, two light rare earth elements (LREEs) elements (La and Ce) as well as yt-
trium (Y) were examined for their toxicity to crops and native plants [35]. In this companion
study we seek to assess the uptake and phytotoxicity of three light and three heavy rare earth ele-
ments (HREEs), on the germination and biomass of five plant species (three wild, native Canadi-
an species and two crops) grown in soils contaminated with increasing concentrations of REEs.

Materials and Methods

REE background information
Praseodymium (Pr), neodymium (Nd), and samarium (Sm) are members of the subgroup of
LREEs whose atomic numbers span from 57 to 64. The LREEs are often found in bastnäsite
and monazite minerals [8]. 60Nd is one of the most abundant REEs. Natural crustal levels of
Nd are approximately 40 mg/kg soil [40]; however, detected quantities vary greatly by both
locality and base soil type [28,41,42]. Concentrations in natural soils range from 1.2 to 52.5
mg Nd/kg dry soil worldwide [43,44]. In contrast, the abundance of both 59Pr and 62Sm is
lower at 8.20 mg/kg and 7.05 mg/kg, respectively [45]. Other documented background levels
of Sm and Pr in soils range from 3.7 mg/kg and 4.5 mg/kg in Japan [46], respectively, to 20.93
mg/kg and 46.90 mg/kg in Germany [42], respectively. Terbium (Tb), dysprosium (Dy), and
erbium (Er) are members of the HREE series (atomic numbers between 65 and 71). The
HREEs are commonly found together within ionic adsorption clays and in the phosphate
mineral xenotime [8,47]. 65Tb with an average natural crustal abundance of 1.2 mg/kg soil is
often less abundant than both 66Dy and 68Er that have natural abundances of 5.2 and 2.8 mg/
kg respectively [45]. Documented natural soil concentrations of these elements from around
the world range from 0.13 to 2.30 mg/kg for Tb, from 0.51 to 12.10 mg/kg for Dy, and from
0.35 to 6.20 mg/kg for Er [26,42].
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Soil preparation
An artificial soil was prepared following Environment Canada (EC) protocols [EC Formulation
of Artificial Soil (SOP 15.09/1.3/S)] consisting of 10% peat (Premier Sphagnum Peat Moss, Rivi-
ère-du-Loup, Quebec, Canada), 20% pulverized Kaolin clay (Edgar Minerals Inc., Edgar, Flor-
ida, USA) and 70% silica sand (OptaMinerals, Waterdown, Ontario, Canada) by dry weight.
New batches of soil were prepared for each experiment, except in the cases of Dy and Er where
the experiments were run concurrently. To ensure soil homogenization, soil was prepared in
small 2.7 kg batches that were thoroughly mixed using a commercial grade electrical mixer
(Axis M-20, Axis Equipment, Montreal, Quebec, Canada). Five hundred milliliters of water was
added to each batch of soil in order to attain an initial soil moisture content of approximately
20%. To adjust the pH of the soil to the desired pH range (approximately pH = 6), and to com-
pensate for the acidity of the peat (pH varying from 3.10–4.17), calcium carbonate was added at
a rate of 15.0–25.5 g per batch of soil. The resulting soil pH was 5.80 ± 0.03 to 5.85 ± 0.02. The
cation exchange capacity (CEC) of this soil blend was previously found to be approximately
7.7 ± 0.3 meq/100 g (analyses performed by EXOVA laboratory, Ottawa, ON, Canada using the
ammonium acetate extraction method [48]). Once mixed, all soils were placed into large plastic
storage containers and were allowed to settle for at least two days prior to use.

Plant species
Five plant species were tested in each experiment: three native, wild species with wide distribu-
tion ranges and of high ecological values as well as two crop species because crops are primarily
used in toxicity testing. The native species consisted of common milkweed (Asclepias syriaca
L.), showy ticktrefoil (Desmodium canadense (L.) DC.) and switchgrass (Panicum virgatum L.),
and the two crops were radish (Raphanus sativus L.) and tomato (Solanum lycopersicum L.)
(Table 1). Desmodium canadense and P. virgatum were selected based on their high coefficients
of conservation [49] (Table 1), while A. syriaca was chosen based on its importance to native
fauna (i.e. monarch butterfly). All native species were found to have seed germination rates of
>70% in Petri-dish pre-trials. Due to a stratification requirement, seeds of A. syriaca were cold
stratified in a 4°C refrigerator for approximately one to two months prior to the beginning of
each experiment; no other seeds required stratification.

Experimental setup
For all experiments, the chloride hydrate forms of each REE (Table 2) were selected as the
source compound of the REE due to their high solubility in water. All compounds were pur-
chased from Sigma Aldrich Canada Co., Oakville, ON. For all REEs except Pr, seven nominal
doses (plus controls) of the REE chloride hexahydrate were chosen following the same

Table 1. Plant species tested in the rare earth element (REE) experiments.

Species Common Name Crop/Native Family CC Scorea

Asclepias syriaca L. Common milkweed Native Asclepiadaceae 0

Desmodium canadense (L.) DC. Showy ticktrefoil Native Fabaceae 5

Panicum virgatum L. Switchgrass Native Poaceae 6

Raphanus sativus L. var. Sparkler Radish Crop Brassicaceae N/A

Solanum lycopersicum L. var. Beefsteak Tomato Crop Solanaceae N/A

a CC Score—Coefficient of conservation. Available only for native (wild) species. Scores range between 0 and 10 [49]. Higher numbers indicate plants of

higher conservation value as they have higher fidelities to specific sets of ecological/habitat variables.

doi:10.1371/journal.pone.0129936.t001
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geometric progression of 1.9 in order to produce equivalent nominal doses for each compound
(Table 2). In the case of Pr, since the true hydrate form was not clearly known (communication
with Sigma Aldrich indicated that it was most likely a hexahydrate; however the heptahydrate
is also common), the nominal doses for this compound were increased, but the same geometric
progression of 1.9 was followed with the assumption that the source compound was of the
hexahydrate form. The amount of (REE)Cl3�6H2O to add to each dose was determined based
on the percentage of the specific REE in the given compound. For simplicity, all results are
based on and reported in terms of mg REE/kg dry soil.

To contaminate the soil, approximately 10.5 kg of soil, or the equivalent of 300 g of artificial
soil per pot (pot dimensions: 10 cm x 10 cm x 9 cm), was added to a large plastic container.
Measured amounts of the (REE)Cl3�6H2O (depending on the REE and the dose) were dissolved
in one liter of water. This solution was then poured slowly into the container and mixed thor-
oughly into the soil. To further hydrate the soil, an additional two liters of water was added to
each batch by rinsing the solution flask in order to also ensure that all metal residues reached
the soil. Once thoroughly mixed, the soil was split between the 35 replicates in the dose treat-
ment. This was repeated for all (REE)Cl3�6H2O treatments, starting with the smallest dose.
Control treatments were prepared in a similar fashion, with the exception that only three liters
of water was added to the soil in order to maintain hydration consistency with the (REE)
Cl3�6H2O contaminated batches. For all doses (including the controls), one pot of excess soil
was bagged and refrigerated for soil REE concentration analysis (pre-experiment samples).
Once prepared, all soil pots were transferred to growth chambers (Conviron, model PGW36,
Winnipeg, Manitoba, Canada) and were left to settle for 24 hours before seeds were planted.

Seven replicates per species were used for each dose as well as the controls giving a total of
35 pots per dose, for 280 pots in each experiment, and 1680 pots overall. For each species, five
seeds were planted per pot/replicate, per dose for a total of 280 seeds per species per experiment.
Artificial light within the growth chambers followed a 16 hour light:8 hour dark light-cycle,
with an average photosynthetic active radiation of 314 ± 4 μmol photons/m2/s during the day.
Temperature within the module averaged 26.4 ± 0.5°C during the day cycle and 15.1 ± 0.1°C
during the night. In order to ensure uniformity of conditions and to prevent confounding envi-
ronmental factors, all plant trays were rotated within the growth chamber on a weekly basis.

Analysis of soil samples for the presence of Pr, Nd, Sm, Tb, Dy, and Er was performed by
Brooks Rand Labs (Seattle, Washington, USA) in order to validate the soil contamination
method used in this experiment. Two soil samples from each dose (one pre-, one post-experi-
ment) from each experiment were analyzed separately for their corresponding REE concentra-
tion using a modified USEPAMethod [50]. The pre-experiment soil sample was collected from

Table 2. Sources of rare earth elements (REEs) and range of doses used for all REE soil exposure experiments.

REE REE Source Compound Formula CAS Dosesa [mg (REE)Cl3�6H2O] % REEb Dosesa (mg REE/kg)

Pr Praseodymium chloride hydrate PrCl3�xH2Oc 19423-77-9 76.2–3590.5 39.65 30.2–1423.6

Nd Neodymium chloride hexahydrate NdCl3�6H2O 13477-89-9 71.4–3360.4 40.20 28.7–1351.3

Sm Samarium chloride hexahydrate SmCl3�6H2O 13465-55-9 69.7–3279.0 41.20 28.7–1351.3

Tb Terbium chloride hexahydrate TbCl3�6H2O 13798-24-8 67.9–3175.1 42.56 28.7–1351.3

Dy Dysprosium chloride hexahydrate DyCl3�6H2O 15059-52-6 66.6–3134.9 43.11 28.7–1351.3

Er Erbium chloride hexahydrate ErCl3�6H2O 10025-75-9 65.6–3084.2 43.82 28.7–1351.3

a In all cases, seven doses (+ controls) were used, with successive doses following a geometric progression of 1.9.
b %REE refers to the ratio of the molar mass of the rare earth element to the molar mass of the REE source compound, and is given as a percentage.
c The true hydrate form was not clearly known although it was most likely a hexahydrate.

doi:10.1371/journal.pone.0129936.t002
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the soil during the initial contamination (as mentioned above). The post-experiment samples
were obtained after the plants were harvested by homogenizing soil samples from all pots of a
given dose and after removing any remaining plant debris.

To examine the possible effect of chloride (Cl) on plant growth as a result of using Cl forms
of the REEs, an experiment was conducted on all plant species using calcium chloride (CaCl2).
Five chloride doses (62.5, 125, 250, 500, and 1000 mg Cl/kg dry soil) and two control doses
(one with CaCO3 added to balance the Ca level with the highest Cl dose, and one with no
CaCO3 added) were used. All other methodologies followed those used for the REE experi-
ments, though the resulting soil pH was slightly lower (approximately pH = 5.6).

Germination and harvest
Seed germination was recorded daily for all species by checking each pot for the presence of
emerging cotyledons. Approximately one week after the control pots for a given species had
reached 70% seed germination, all pots for that species were thinned to one plant per pot. To
prevent bias, a random number generator was used to determine which seedling was left in the
pot. Due to the uneven germinating times and sizes ofD. canadense seedlings within a given pot,
the alternate approach of leaving the largest seedling was preferred for all REE experiments.

In a previous experiment [51], it was found that plants growing in the artificial soil (as per
the EC protocol) and not supplied with nutrients failed to grow past the first true leaf stage,
thus limiting the possibility of detecting any real toxicological effects on exposed plants in
long-term studies. To supplement the low nutrient artificial soil, fertilizer (Plant-Prod 20-20-
20 All Purpose Fertilizer) was added to all pots on day 16 for Sm, day 17 for Nd and Tb, and
day 18 for Pr, generally after all species had been thinned to one seedling per pot (D. canadense
in the Sm experiment was fertilized prior to thinning). Due to an error, all pots in the Er experi-
ment were fertilized on day 0 (pre-thinning) while all those of Dy were fertilized on day 24
(post-thinning). Fertilizer was prepared by dissolving 7.8 g of the soluble fertilizer in 1 L of
water to make a stock solution. From the stock solution, 8.30 mL (approximately 65 mg of fer-
tilizer) was added to each pot by pipette. The amount of fertilizer was calculated based on the
recommended fertilization rates for the crop species (10% of the recommended doses for rad-
ish, R. sativus, and tomato, S. lycopersicum, was applied).

All plants of a given species were harvested 28 days after their respective controls had at-
tained 70% germination. All aboveground biomass was collected by cutting the plant at the
base of the soil, rinsing with water to remove residual soil debris, and placing it in a paper bag.
For R. sativus, the belowground bulb was also harvested, rinsed, and bagged. In addition, all
plants from the controls, as well as the 2nd, 4th and 6th nominal doses were selected for root
characterization for all species. Soil was separated from the roots delicately by hand in a water
basin and the roots rinsed under running water to remove excess soil debris. The roots were
bagged separately for biomass determination. All plant material (shoots and roots) was placed
in a drying oven for at least two days at approximately 70°C prior to dry biomass measure-
ments. After the biomass was recorded, all dried plant material was pooled by REE, type (shoot
or root), dose, and species for REE uptake/accumulation analysis. Only the controls, 2nd, 4th,
and 6th doses were evaluated. For R. sativus, radish bulbs were included with the root portion
of the corresponding samples for the root REE concentration analyses. All plant samples were
analyzed by Brooks Rand Labs using ICP-MS, and were processed and stored according to
their standard operating procedures and EPA methodology.

Due to an unknown event, several control plants of A. syriaca (n = 4), D. canadense (n = 4),
R. sativus (n = 3), and S. lycopersicum (n = 3), all within the same control tray of the Nd experi-
ment, became stunted and malformed near the mid-point of the experiment. Since we could
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not determine the reason behind this event, all affected replicates were eliminated from all bio-
mass statistical analyses; seedling germination data was unaffected and was thus still included
for these replicates. No plants of P. virgatum were affected, and therefore all seven replicates
for this species were used in biomass related analyses. In addition, due to accidental damage in-
curred while thinning the pots to one seedling, one P. virgatum replicate from the 207.7 mg Pr/
kg nominal dose was eliminated from all biomass (shoot and root) related analyses due to
stunted growth. However, due to minimum biomass weight requirements for Pr plant concen-
tration analyses, it was included in the sample that was analyzed by Brooks Rand Labs.

Statistical analysis
Statistical analyses were performed in Systat 13 (Version No.13.00.05). All analyses were run
separately for each REE evaluated.

Germination. Total percent germination was recorded for all pots over the course of each
experiment. In addition, in order to determine if there were time delays in seed germination at
different REE doses, speed of seed germination was calculated. This parameter is a more sensi-
tive measure than total percent germination as it gives more weight to earlier germinating
seeds and thus may detect subtle delays in germination even when all seeds germinate. Speed
of germination was determined for all species based on the number of seedlings that germinat-
ed in each pot per day until the end of the experiment and was calculated using the formula:

X N1

1
þ N2

2
þ N3

3
þ . . .þ Ni

i

� �

Where:
N1 = # of new seeds germinating on Day 1, N2 = # of new seeds germinating on Day 2, etc.

and Ni = # of new seeds germinating on Day i
Speed of germination was determined individually for each pot. Seven values were thus ob-

tained for each dose per species.
ANOVA, or the non-parametric Kruskal-Wallis test, was used to determine the effects of

REE dose on the germination of each species. The Kruskal-Wallis test was only performed if
the ANOVA model assumptions of normality of residuals (Shapiro-Wilk test) or homogeneity
of variance (Levene’s test) could not be met, even after transformation of the data. In all cases
where a significant effect (p< 0.05) was observed, post hoc comparisons (ANOVA: Dunnett’s
one-sided; Kruskal-Wallis: Conover-Inman test) were used to determine which doses were sig-
nificantly lower than the controls.

Biomass. Inhibition concentrations (IC25 and IC50) causing 25 or 50% reductions in plant
aboveground biomass (including the radish bulb for R. sativus) respectively, as compared to the
controls, were calculated using non-linear regression model analyses [52] when the model as-
sumptions of homogeneity of variance (Levene’s test) and normality of residuals (Shapiro-Wilk
test) were met. For the cases where the parametric model assumptions could not be met, even
after data transformations, the nonparametric ICPIN program [53] was used to determine the
IC values. Average measured concentrations in soil were used for calculating ICs (Table 3).

No observed effect concentrations (NOEC) and lowest observed effect concentrations
(LOEC) for aboveground biomass (including the bulb weight for R. sativus) were determined
for all species using either ANOVAs when data met the assumptions for parametric analysis,
or Kruskal-Wallis tests when the data failed to meet the model assumptions even after data
transformations were tested. Either Dunnett’s one-way post hoc test (ANOVA) or the Con-
over-Inman test (Kruskal-Wallis) was used to determine which doses had significantly lower
biomasses than the controls.

Rare Earth Metals in Plants in Contaminated Soils
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To determine differences in root growth amongst the doses of a given REE, ANOVA or
Kruskal-Wallis test were performed on root dry biomass in accordance with the model as-
sumptions. Comparisons between doses were made using Dunnett’s one-way post hoc test or
Conover-Inman test. The radish bulb was included in this measure for R. sativus.

Effects of chloride on plant biomass were assessed using ANOVA and Tukey’s honestly-sig-
nificant-difference post hoc test to detect significant differences between the Cl doses and the
controls where applicable.

Results

REE soil concentrations
All REEs were detected in all soils analyzed by Brooks Rand Labs, including the control soils
(Table 3). Recovery rates for the REE-spiked soils were consistently high (> 70% recovery),
with lower than expected recovery rates only apparent for doses four and six in the Sm experi-
ment and dose two in the Tb experiment. Since REEs were detected in the control soils, doses
used for all statistical analyses also included these background levels.

Seed germination
Percent seed germination was found to be unaffected by exposure to REEs (Kruskal-Wallis
tests or ANOVA, p> 0.05 for all species-REE combinations, see S1 Table and S2 Table), with
one exception. Slightly fewer R. sativus seeds germinated in the 1st dose of the Tb experiment
as compared to the controls (Kruskal-Wallis test, χ2 = 16.923, df = 7, p = 0.018). However,
since no effects were observed at the higher doses, this was attributed to overall seed viability
within that specific dose rather than to Tb toxicity.

Exposure to REEs in the soil did not have major negative effects on the speed of germination
of most species (Table 4; S1 Table). As compared to the controls, only seeds of R. sativus in the
Nd experiment and those of S. lycopersicum in the Er experiment were found to have reduced
germination rates at the highest dose evaluated (1545 mg Nd/kg and 1065 mg Er/kg respective-
ly; Table 4). In addition, though statistical negative effects were observed at lower doses for
both R. sativus in Pr and Sm soils and D. canadense in Sm soils, the negative effect did not per-
sist at the highest dose evaluated in each situation.

Table 3. Averagemeasured concentrations of rare earth elements (mg REE/kg dry soil) in control and dosed soils as compared to the expected
nominal doses.

Average Measured Concentration (% Recovery)

Dose Dosea Pra Nd Sm Tb Dy Er

Control 0.00 1.46 5.78 1.40 0.18 1.20 0.57

1 28.72 25.65(80) 26.1(71) 26.85(89) 23.25(80) 27.7(92) 25.8(88)

2 54.57 41.65(70) 65.1(109) 65.85(118) 37.0(67) 45.9(82) 40.95(74)

3 103.69 125.0(113) 101.0(92) 96.2(91) 79.05(76) 78.65(75) 78.75(75)

4 197.02 149.0(71) 188.5(93) 102.75(51) 152.5(77) 167.0(84) 146.5(74)

5 374.33 311.5(79) 319.0(84) 317.0(84) 326.0(87) 320.5(85) 328.0(87)

6 711.23 592.0(79) 819.0(114) 430.0(60) 497.0(70) 632.5(89) 738.0(104)

7 1351.34 1032.5(82) 1545.0(114) 1060.0(78) 1056.5(78) 1080.0(80) 1065.0(79)

Values for control soils represent the detected background REE levels in the artificial soil. Percent recovery for dosed soils, calculated as: (average [REE]

measured at a given dose—average measured [REE] in control soils) / (nominal dose), are presented in parentheses.
a Nominal doses for Pr were 0.00, 30.21, 57.40, 109.50, 207.68, 393.47, 747.66, and 1423.59; % recovery for Pr was based on these values.

doi:10.1371/journal.pone.0129936.t003
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Aboveground biomass—Inhibition concentrations
Effects on shoot biomass, as determined through IC analyses, varied between REEs and be-
tween species within a given REE (Table 5). For all REEs, the three native species, A. syriaca, D.
canadense, and P. virgatum, were always more sensitive than the two crops, R. sativus and S.
lycopersicum. For the native species, the majority of IC25s (11 out of 18) fell within 100 to 300

Table 4. Analyses (ANOVA or Kruskal-Wallis test) of the effects of rare earth element (REE) soil dosage on the speed of germination of five plant
species.

REE Species Days to 70% germination of
controls

df F or
χ2

p-
value

Doses Sig., Negatively different from controls (mg REE/
kg)

Pr A. syriaca 6 7,48 0.98 0.455 None

D. canadense 17 7,48 0.94 0.488 None

P. virgatum 7 7,48 0.96 0.472 None

R. sativus 3 7,48 4.66 <0.001 311.50; 592.00

S.
lycopersicum

7 7 11.76a 0.109 None

Nd A. syriaca 6 7,48 1.45 0.210 None

D. canadense 13 7,48 1.34 0.254 None

P. virgatum 6 7,48 1.38 0.236 None

R. sativus 3 7 16.39a 0.022 1545.00

S.
lycopersicum

10 7,48 2.18 0.053 None

Sm A. syriaca 6 7,48 0.86 0.544 None

D. canadense 16 7,48 2.55 0.026 102.75; 430.00

P. virgatum 8 7 2.79a 0.904 None

R. sativus 3 7,48 4.12 0.001 317.00

S.
lycopersicum

7 7,48 3.29 0.006 Noneb

Tb A. syriaca 6 7 17.87a 0.013 Noneb

D. canadense 14 7,48 1.02 0.428 None

P. virgatum 7 7 11.78a 0.108 None

R. sativus 3 7,48 0.77 0.612 None

S.
lycopersicum

8 7,48 1.60 0.159 None

Dy A. syriaca 6 7 13.67a 0.057 None

D. canadense 13 7,48 2.43 0.032 Noneb

P. virgatum 8 7,48 0.70 0.671 None

R. sativus 4 7 9.76a 0.203 None

S.
lycopersicum

7 7 10.16a 0.180 None

Er A. syriaca 6 7,48 1.11 0.371 None

D. canadense 17 7,48 1.58 0.164 None

P. virgatum 10 7,48 1.00 0.442 None

R. sativus 4 7 4.93a 0.668 None

S.
lycopersicum

7 7,48 3.45 0.005 1065.00

Post hoc tests [Dunnett's one-sided (ANOVA) or Conover-Inman (Kruskal-Wallis)] were performed in order to determine doses that negatively differed

from the controls. Additional information on calculated speed of germination is available in S1 Table.
a Indicates χ2 value for Kruskal-Wallis analyses.
b Though a statistical effect is present (p < 0.05), no doses were found to be significantly, negatively different from the controls.

doi:10.1371/journal.pone.0129936.t004
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mg REE/kg dry soil (all doses mentioned hereafter are in relation to dry soil concentration). In
four cases (D. canadense in Sm, A. syriaca and D. canadense in Tb, and P. virgatum in Er)
IC25s were found to be less than 100 mg REE/kg. Larger effects on biomass, as indicated by the
IC50s, generally occurred at doses above 400 mg REE/kg, though IC50 effects were seen at
smaller doses for D. canadense in both Sm and Tb soils. Overall, D. canadense was the most
sensitive species.

In comparison to the native species, IC25s for the crops were always greater than 400 mg
REE/kg, with the majority of results (seven out of 12) falling above 700 mg REE/kg. IC50s

Table 5. Summary of inhibition concentration (IC) values, calculated as the dosage (mg REE/kg dry soil) resulting in either a 25% (IC25) or 50%
(IC50) decrease in the dry biomass of exposed plants as compared to the controls, for all plant species grown in rare earth element (REE) contami-
nated soils.

REE Species Model [Transformation] IC25 IC25 95% CI IC50 IC50 95% CI R2

Pr A. syriaca Logistic[None] 260.82 138.96–488.78 523.81 340.98–804.38 0.464

D. canadense ICPIN 146.67 136.50–311.68 520.43 410.72–665.35 N/A

P. virgatum Gompertz[None] 199.91 73.64–541.00 547.28 307.32–971.75 0.401

R. sativus ICPIN 930.11 NCb No Effect N/A N/A

S. lycopersicum ICPIN 651.23 457.14–752.18 No Effect N/A N/A

Nd A. syriaca Logistic[None] 216.27 89.99–517.80 600.17 330.89–1085.43 0.516

D. canadense ICPIN 232.45 24.96–386.08 644.65 274.36–875.39 N/A

P. virgatum ICPIN 260.10 60.50–333.73 550.19 408.54–913.53 N/A

R. sativus ICPIN 541.88 370.36–911.43 1081.68 650.03–1411.86 N/A

S. lycopersicum Gompertz[None] 1024.65 834.60–1260.82 1481.52 1320.30–1666.25 0.672

Sm A. syriaca Logistic [None] 254.86 163.44–396.19 455.04 342.56–605.74 0.607

D. canadense Gompertz [None] 19.56 7.73–47.42 89.99 47.42–170.00 0.688

P. virgatum Gompertz [None] 440.57 212.80–908.91 775.25 487.65–1234.95 0.266

R. sativus Gompertz [None] 517.80 35.39–7378.04 No Effect N/A 0.286

S. lycopersicum ICPIN 457.35 226.30–641.84 No Effect N/A N/A

Tb A. syriaca Gompertz[SQRT] 66.61 32.57–135.14 403.58 250.19–649.13 0.730

D. canadense ICPIN 50.78 12.00–165.57 225.99 156.62–277.87 N/A

P. virgatum Logistic[None] 398.02 141.23–1118.44 No Effect N/A 0.234

R. sativus Logistic[None] No Effecta N/Ac No Effect N/A 0.064

S. lycopersicum Gompertz[None] 575.77 367.13–904.73 No Effect N/A 0.454

Dy A. syriaca Gompertz[None] 272.53 34.65–2093.11 No Effect N/A 0.194

D. canadense Gompertz[None] 212.30 72.28–618.44 757.58 407.32–1408.29 0.425

P. virgatum ICPIN 741.16 44.69–967.72 No Effect N/A N/A

R. sativus None No Effect N/A No Effect N/A N/A

S. lycopersicum ICPIN No Effect N/A No Effect N/A N/A

Er A. syriaca Logistic[None] 142.22 71.61–282.14 401.72 253.10–637.26 0.646

D. canadense Gompertz[None] 125.77 52.21–301.69 439.55 259.62–743.73 0.607

P. virgatum ICPIN 75.75 19.41–389.66 778.11 278.51–924.55 N/A

R. sativus ICPIN No Effect N/A No Effect N/A N/A

S. lycopersicum Gompertz[None] No Effect N/A No Effect N/A 0.226

Dry biomass includes all aboveground plant tissues (shoots), as well as the radish bulb for R. sativus. IC values were calculated through parametric, non-

linear regression models [52] or through the non-parametric ICPIN approach [53]. The 95% confidence intervals (CI) were determined through the Wald

method for parametric data or through boot-straps for ICPIN data.
a No effect. Either the IC value could not be determined, or the predicted value exceeded the range of doses evaluated in the experiment.
b NC = Not calculable. ICPIN could not accurately predict CIs due to too few doses exhibiting IC25 effects.
c N/A = Not available.

doi:10.1371/journal.pone.0129936.t005
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could only be calculated for the crops in the Nd experiment, likely due to the higher concentra-
tion of that specific REE in the final dose as compared to the other REE experiments. In all
other cases, predicted 50% effects on crop biomass either fell outside of, or were not apparent
within, the range of doses evaluated.

The REE dose at which significant reductions in biomass (as compared to the controls)
were first detected vary both by species within a given REE treatment and for a given species
across all REEs (Fig 1; S3 Table). Generally, negative effects of Pr and Nd on plant biomass first
appear at higher doses (149.00 and 319.00 mg REE/kg respectively) than for Sm (D. canadense
and R. sativus at 26.85 mg Sm/kg), Tb (A. syriaca at 23.25 mg Tb/kg), Dy (A. syriaca at 78.65
mg Dy/kg), and Er (D. canadense at 40.95 mg Er/kg). However, though effects were observed at
lower doses for Tb, Dy, and Er, not all species experienced significant reductions in biomasses
for these REEs as they did for Pr, Nd, and Sm. By species, REE doses causing a statistically sig-
nificant biomass reduction spanned from 23.25 (Tb) to 592.00 (Pr) mg REE/kg for A. syriaca;
from 26.85 (Sm) to 819.00 (Nd) for D. canadense; from 149.00 (Pr) to 1060.00 (Sm) or no effect
(Tb and Dy) for P. virgatum; from 26.85 (Sm) to 1032.50 (Pr) or no effect (Tb and Dy) for R.
sativus; and from 317.00 (Sm) to 592.00 (Pr) or no effect (Dy and Er) for S. lycopersicum. As
compared to their corresponding IC25 values (Table 5), the lowest dose at which ANOVA or
Kruskal-Wallis analyses predict as being statistically lower than its corresponding controls (Fig
1, S3 Table) is generally greater than its IC25 value. Interestingly, for P. virgatum grown in Tb
and Dy soils, though IC25 values were determined, no statistical differences between doses
were detected.

Belowground (root) biomass
Root biomass of the native species was generally affected at lower REE doses than the crops
(Fig 2; S4 Table). Desmodium canadense was often the most sensitive species, being the only
species with significant biomass reductions (as compared to the controls) detected at doses less
than 100 mg REE/kg (Sm, Dy, and Er). In addition, D. canadense was the only species for
which all REEs had a significant effect on root biomass in at least one dose, though the dosage
at which the effects were noticeable varied considerably between the REEs (ranging from 40.95
mg/kg for Er to 819.00 mg/kg for Nd; Fig 2; S4 Table). Conversely, root biomass of R. sativus
(including the radish bulb) was unaffected by all REEs within the range of doses for which it
was evaluated. For the remaining species, REE concentrations causing significant effects on
root biomass ranged from 146.50 (Er) to 430.00 mg REE/kg (Sm) for A. syriaca, with no effects
observed in Nd or Dy; from 146.50 (Er) to 819.00 mg REE/kg (Nd) for P. virgatum, with no ef-
fects observed in Sm, Tb, or Dy; and from 152.50 (Tb) to 819.00 mg REE/kg (Nd) for S. lycoper-
sicum, with no effects observed in Dy.

Chloride experiment
Results revealed that there were no consistent significant differences among doses of calcium
chloride and control with calcium carbonate in four species (although differences were ob-
served with controls with no additional calcium added). However, significant differences were
observed for D. canadense at doses from 125 mg/kg CaCl2 to 1000 mg/kg CaCl2 (S1 Fig).

REE plant accumulation
REEs were detected in all root and shoot samples analyzed, including in the controls (Table 6).
Measured concentrations in the shoots and roots always increased as the REE concentration in-
creased, with the only exception occurring for R. sativus roots in Sm soils (measured concentra-
tions dropped from 8.060 to 1.750 mg Sm/kg dry biomass between the 2nd and 4th doses).

Rare Earth Metals in Plants in Contaminated Soils

PLOS ONE | DOI:10.1371/journal.pone.0129936 June 15, 2015 11 / 21



Measured concentrations were always found to be greater in the roots than in the shoots for
any given dose, with three exceptions: A. syriaca grown in the Tb control soils (0.18 mg Tb/kg
soil), P. virgatum in the Dy control soils (1.20 mg Dy/kg soil), and R. sativus in the 102.80 mg
Sm/kg dosed Sm soil. Overall, no species showed any distinct trend in REE root accumulation
(i.e. lower vs. higher accumulation rates) at any given REE soil concentration. However, at any
given soil dosage for a given REE it was observed that the crop R. sativus often had the highest

Fig 1. Dose-response curves for the aboveground, shoot (leaves and stems) biomass of all five tested plant species grown in rare earth element
(REE) contaminated soils. Biomass is presented as the average percent biomass as compared to the controls, such that the controls always have a mean
of 100%. Doses that were found to be significantly, negatively different from the controls based on statistical analyses using ANOVA (Dunnett's one-way post
hoc comparison) or the Kruskal-Wallis test (Conover-Inman post hoc comparisons) are indicated with open bullets. Error bars represent standard error. AS =
Asclepias syriaca, DC = Desmodium canadense, PV = Panicum virgatum, RS = Raphanus sativus and SL = Solanum lycopersicum.

doi:10.1371/journal.pone.0129936.g001
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concentration in its shoots (13 out of 24 cases), whereas the grass P. virgatum often had the
lowest detected shoot concentration (19 out of 24 cases).

REE Root:soil and shoot:soil ratios were fairly consistent within a given species for each
REE, with no obvious increases or decreases with increasing soil concentrations (S5 Table).
These ratios were also fairly consistent across REEs. The root:soil ratios (or transfer factor)
ranges were: 0.07–0.33 (Pr), 0.07–0.35 (Nd), 0.03–0.19 (Sm), 0.03–0.18 (Tb), 0.03–0.14 (Dy),
and 0.01–0.14 (Er) and the shoot:soil ratios: 0.008–0.068 (Pr), 0.006–0.050 (Nd), 0.002–0.057

Fig 2. Dose-response curves for the belowground, root dry biomass (and including the radish bulb forRaphanus sativus) of all five tested plant
species grown in rare earth element (REE) contaminated soils.Only the controls, 2nd, 4th, and 6th REE doses were evaluated. Biomass is presented as
the average percent biomass as compared to the controls, such that the controls always have a mean of 100%. Doses that were found to be significantly,
negatively different from the controls based on statistical analyses using ANOVA (Dunnett's one-way post hoc comparison) or the Kruskal-Wallis test
(Conover-Inman post hoc comparisons) are indicated with open bullets. Error bars represent standard error. AS = Asclepias syriaca, DC = Desmodium
canadense, PV = Panicum virgatum, RS = Raphanus sativus and SL = Solanum lycopersicum.

doi:10.1371/journal.pone.0129936.g002
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(Sm), 0.001–0.021 (Tb—though much higher ratios were observed in the control dose), 0.005–
0.108 (Dy), and 0.003–0.067 (Er).

Discussion
Due to the increasing worldwide demands for REEs in modern technology, global REE mining
and extraction activities have been on a steady rise. Though they have become widely used,
very little is currently known about the potential environmental impacts and toxicities of these
elements to native plants growing in contaminated soils, thus warranting further
environmental monitoring.

Effects on germination
Germination rates of all species were generally unaffected by REE soil concentrations. Some
negative effects on speed of germination were identified for both R. sativus in Nd soils and S.
lycopersicum in Er soils, but only at the highest dosage evaluated. Likewise, while effects were
observed at intermediate doses for both R. sativus in Pr soils and D. canadense in Sm soils, the
effect was not apparent at the highest dose. Due in part to these inconsistencies, it is not possi-
ble to rule out that these observed negative effects were due to variability in seed viability as

Table 6. Rare earth elements (REE) soil concentration (mg REE/kg dry soil) andmeasured concentrations (mg REE/kg dry biomass) in the roots
and shoots (aboveground biomass) of the five plant species grown in REE contaminated artificial soil.

REE REE soil concentration A. syriaca D. canadense P. virgatum R. sativus S. lycopersicum

Root Shoot Root Shoot Root Shoot Root Shoot Root Shoot

Pr 1.46 0.120 0.050 0.140 0.050 0.280 0.100 0.130 0.040 0.100 0.060

41.70 9.630 0.420 10.800 0.470 9.550 0.330 11.200 0.900 4.870 0.740

149.00 37.000 2.340 30.900 2.610 30.200 2.050 24.200 4.780 19.900 3.560

592.00 198.000 7.020 126.000 11.600 96.200 3.660 33.600 11.000 82.800 14.800

Nd 5.78 0.670 0.170 1.430 0.070 2.130 0.290 0.510 0.130 0.420 0.090

65.10 10.300 0.430 11.300 0.470 20.100 0.370 13.600 1.290 17.400 0.470

188.50 41.600 3.010 48.200 2.110 53.900 1.790 38.300 4.210 60.500 3.020

819.00 176.000 7.180 223.000 8.450 287.000 6.690 170.000 25.500 135.000 12.800

Sm 1.40 0.300 0.080 0.060 0.020 0.160 0.030 0.140 0.010 0.260 0.040

65.85 2.660 0.340 2.830 0.380 2.160 0.140 8.060 0.770 3.520 0.440

102.75 10.300 0.900 15.200 1.550 6.980 0.470 1.750 3.230 19.900 1.050

430.00 49.300 3.340 67.300 5.430 37.400 1.780 31.800 10.900 45.500 5.290

Tb 0.18 0.009 0.020 0.010 0.006 0.030 0.030 0.040 0.020 0.060 0.050

37.00 1.310 0.340 1.810 0.310 2.670 0.130 6.140 0.450 3.180 0.360

152.50 4.150 1.040 9.150 1.590 12.900 0.160 26.800 1.730 11.900 1.710

497.00 73.500 5.330 49.000 10.300 28.900 1.330 65.500 7.580 50.300 7.660

Dy 1.20 0.080 0.020 0.170 0.020 0.100 0.130 0.120 0.030 0.140 0.020

45.90 1.870 0.490 5.610 0.990 2.210 0.450 2.410 0.880 4.150 0.590

167.00 7.710 1.520 18.300 2.280 5.440 0.980 15.000 2.750 14.600 2.150

632.50 36.900 5.180 80.000 10.100 21.800 2.850 30.300 11.500 50.000 10.000

Er 0.57 0.050 0.020 0.070 0.010 0.080 0.009 0.020 0.010 0.070 0.030

40.95 1.150 0.880 4.410 2.730 2.150 0.240 3.510 1.360 4.480 1.070

146.50 5.650 3.160 12.000 3.870 11.200 0.650 13.400 3.380 15.500 3.030

738.00 19.800 5.700 44.000 7.150 10.900 2.130 42.900 8.980 47.300 10.900

Numbers represent the results of chemical analyses of pooled plant samples corresponding to the plant species and REE dose combination.

doi:10.1371/journal.pone.0129936.t006
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opposed to REE toxicity. The results obtained in this experiment are similar to those found in a
previous experiment with lanthanum (La), where no effects on germination were observed;
however, the range of doses tested in the La study was significantly lower [35]. In contrast, two
other REEs, yttrium and cerium, were observed to negatively affect the germination rates of the
same species evaluated in the present study [35].

There is a paucity of studies on the effects of REEs on germination and early growth. Hu
et al. [22,30] conducted studies in nutrient solutions rather than in soil and demonstrated both
growth stimulation and inhibition. In contrast, D’Aquino et al. [37] observed reduced germina-
tion of Triticum durumDesf. seeds placed on germination paper after soaking in a La3+ or a
combined REE solution, with the observed negative effects varying by both seed soaking times
(2–8 hours) and by concentration (0.01–10 mM). In the current experiment, when seeds were
grown directly in REE contaminated soils, no significant stimulation in germination was ob-
served for any of the species and REEs studied. Though the results indicate a potential slight
toxic effect of some REEs on the seeds of certain species, the high soil dosage required to elicit
these effects would be more representative of levels found at contaminated sites near mining or
processing facilities [19,20], as opposed to sites with more subtle inputs (e.g. fertilized lands,
landfill leaching).

Effects on aboveground and belowground biomass
High soil concentrations of the six REEs were needed to reduce the aboveground biomass of all
plant species (as determined through IC25 and IC50 analyses). Native species were found to be
significantly more sensitive to REEs (IC25s from 146.67 to 741.16 mg/kg dry soil) than crops
(IC25s from 651.23 mg/kg dry soil to no effect). The same trend was observed for the IC50s.
Likewise, effects on root biomass were more noticeable in native species than in the crops. Nev-
ertheless, it is believed that significant quantities of REEs would have to be released into the en-
vironment to attain these potentially toxic levels. For instance, according to the information
provided in Slooff et al. [18], the detected IC25 and IC50 values in this study are generally
greater than the Nd and Pr soil concentrations reported at contaminated sites in the Nether-
lands (i.e. 400 mg Nd/kg soil and 100 mg Pr/kg soil), with the exceptions of the results for the
three native species grown in Nd-spiked soils. In contrast to the HREEs (Tb, Dy and Er), levels
of the LREEs (Pr, Nd and Sm) in contaminated sites in China exceeded both the EC25s and
EC50s of most of the plant species investigated in this study [20]. Information on soil pollution
levels of Sm, Tb, Dy and Er is scarce. Low to medium background concentrations of these
REEs have been reported in natural soils, with high degrees of variability (0.51–20.93 mg Sm/
kg soil, 0.13–2.3 mg Tb/kg soil, 0.51–12.1 mg Dy/kg soil and 0.16–6.2 mg Er/kg soil; see sum-
maries in [54,55]). If a contamination factor of 100 times the background level is considered
(as for Nd and Pr in the Netherlands [18]), it is likely that some plant species will be affected by
these REEs; however, more site-specific baseline data from Canada and elsewhere around the
world is necessary in order to form conclusions about their potential environmental impacts.
In addition, further research on native species is required to properly measure hazards on
other plant groups, such as bryophytes, pteridophytes, and woody plants.

Chloride effect
In most cases, D. canadense was the most sensitive species tested (four cases for both the IC25
and IC50). However, the lower values observed for this species may have partially been the re-
sult of the significant sensitivity of this species to the chloride molecule. Damage to one-year
old avocado (Persea americanaMill.) and citrus (Citrus L. spp) plants in response to increased
concentrations of chloride in irrigation water has been demonstrated in previous studies ([56]
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and references therein). In another experiment, it was shown that accumulation of chloride
caused a reduction in gas exchange within leaves, as well as interacted with sodium to reduce
other physiological processes in Citrus sinensis (L.) Osbeck cv. Hamlin seedlings [57]. The ad-
verse effect of chloride associated with REEs had not been previously investigated. Our findings
suggest that other experiments performed under hydroponic or soil conditions and which
showed negative effects on plants [58,59,60,61,62] may be partly related to the chloride compo-
nent of the tested compounds. Yet, undesirable effects of lanthanum have been observed with
other REE forms [31,63,64], primarily with the nitrate form [30] that is more soluble than the
oxide and the phosphate forms. Further research is thus needed to unravel the effect of REEs
compared to their anions on plant phytotoxicity.

Uptake and accumulation
All species tested in this experiment were found to uptake and accumulate REEs from soils.
Uptake and accumulation of REEs by the roots and shoots, respectively, was generally propor-
tional to the doses tested. Accumulation into the shoots by the three native plant species (the
most sensitive species) at the analyzed dose closest to the IC25 values also varied. The artificial
soil used in this experiment was approximately pH = 6, representing a moderate value for Ca-
nadian soils that are more basic in the western Canada, but more acidic in the eastern Canada.
In a previous experiment, it was found that at a lower soil pH (4.08), cerium (Ce) was more
toxic to the majority of plant species than at a higher soil pH (6.74), and that Ce uptake by
roots and accumulation in shoots was also generally much greater at lower soil pHs [35]. Tyler
and Olsson [65] also studied the effects of soil pH on the uptake of metals by a grass, Agrostis
capillaris L. For the lanthanoids, it was observed that root concentrations were inversely related
to soil pH and positively correlated with soil concentration. Other research has indicated that
soil pH plays a vital role in the bioavailability of various REEs and their release into soils
[65,66,67,68]. It is probable that in a worse-case scenario, where soil has become acidic, REE
contamination would become more toxic to plants growing at the site.

As has been found in previous REE studies [27,35,42,65,69,70,71], accumulation of REEs
was higher in the roots than in the shoots on a dry biomass basis. Specifically, Tyler and Olsson
[28] found slightly lower concentrations of Pr, Nd, Sm, Tb, Dy and Er in the leaves of various
species as compared to the roots. Fu et al. [27] observed concentrations ranging from 0.019 to
0.595, 0.001 to 0.097, and 0.0007 to 0.104 mg REE/kg dry weight in the roots, leaves, and stems,
respectively, of ferns (Matteuccia Todaro spp.) in soils containing approximately 0.191 to 1.697
mg/kg of the six REEs studied in this experiment. Those results, as well as those of Markert and
Li [26], were in congruence with our detected plant concentrations at lower doses. Zhang et al.
[71] found significantly higher concentrations of REEs in ferns than in other plant groups, as
well as higher concentrations in leaves than roots, with root:soil and leaf:soil ratios much great-
er than those reported in this study (maximums of 7.26 (Sm) for root:soil and 16.07 (Nd) for
leaf:soil). Wyttenbach et al. [72] observed Nd, Sm, and Tb leaf concentrations ranging from
0.033 to 0.544 mg/kg, 0.006 to 0.103 mg/kg and ~0.001 to 0.016 respectively in a variety of spe-
cies grown in soils containing approximately 15.00 mg Nd/kg, 2.82 mg Sm/kg and 0.381 mg
Tb/kg. Shoot to soil ratios varied between 0.002 (Rubus fruticosus L. for Sm and Tb) to 0.044
(Acer pseudoplantus L. for Tb) which is in concordance with the ratios observed for lower soil
concentrations in our study (0.006 to 0.050). Another comprehensive experiment comparing
36 plant species grown in natural soils in Japan only detected REEs in 10 species, and only de-
tected our six study REEs in up to three species: Dicranopteris dichotoma (Thunb.) Bernh.,
Athyrium yokoscense (Fr. & Sav.) C. Ch. and Phytolacca americana L.; however, detected soil
concentrations were also low [44]. It was found that for Phytolacca americana, a species also
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native to Canada, leaf concentrations were sometimes higher than the corresponding soil con-
centrations [44]. On the high end, França et al. [29] measured Nd, Sm, and Tb leaf concentra-
tions of tropical plants grown in Brazilian soils and detected REE concentrations ranging
between 18 to 36 mg Nd/kg, 1.9 to 4.9 mg Sm/kg, and 0.24 to 0.47 mg Tb/kg to be< 1.5–28 mg
Nd/kg, 0.019–4.2 mg Sm/kg, and< 0.009–0.24 mg Tb/kg respectively. As with several other
studies, Pr, Dy and Er were not measured. Accumulation of REEs by plants at the lower doses
in these experiments appears to correspond to rates reported for similar, natural REE soil con-
centrations. Unfortunately, information for higher soil concentrations is lacking. In all cases it
can be seen that accumulation rates vary with plant group as well as with species; therefore,
testing a variety of plants other than the commonly used crops is highly desirable.

The REE plant:soil ratios, also referred to as transfer factors, in the present study were
found to range from 0.001 to 0.278 for aboveground parts with only five of the 120 values
above 0.100, with no immediate increase (hyper-accumulation) or decrease (plateauing) in ab-
sorption relative to the increasing soil concentrations. In contrast, the transfer factors of the
aboveground system varied between 0.010 to 0.369 with 63 of the 120 values at or above 0.100.
This is higher than values reported in other studies [26,41,73]; however, our control results
were on par with both the leaf:soil ratios (average = 0.051 to 0.276 for Pr, Nd and Sm, respec-
tively) and root:shoot ratios (average = 0.105 to 0.442) obtained where only background soil
concentrations were considered [74].

There is no indication in the literature that REEs are essential to plants [20]. Some studies
suggest that they may replace calcium and hence cause growth stimulation at low doses [66], al-
though this has been disputed [30,31]. In China, Changle and Nongle, two commercial formula-
tions comprising the nitrate form of REEs are used as seed treatment or sprayed at low doses on
crops as fertilizers with demonstrated positive effects ([75] and references therein). Other studies
conducted in hydroponic cultures have also demonstrated some growth stimulations. This was
not found in the present study in plants grown in low dose contaminated soils. Conversely,
higher soil levels of REEs that may arise in the vicinities of mining areas, landfills or where phos-
phate fertilizers are recurrently applied may be a concern for native terrestrial primary produc-
ers. The present study indicated that reductions in both aboveground and belowground biomass
of wild native plant species did occur in the presence of elevated soil levels of REEs, therefore
monitoring of sites near REE mines and processing facilities is of great importance.

Supporting Information
S1 Fig. Effects of chloride on the plant species tested in the rare earth element (REE) experi-
ments. Calcium chloride was used at doses relevant to those tested with the rare earth ele-
ments. Two control doses (one with calcium carbonate, CaCO3, added to balance the Ca level
with the highest Cl dose, and one with no CaCO3 added) were used to examine the effect of cal-
cium alone on plant biomass. Letters above bars represent results of Tukey’s honestly-signifi-
cant-difference post hoc test. Different letters represent significant differences.
(TIFF)

S1 Table. Average percent germination and average speed of germination (both ± standard
error) per pot of the five tested plant species grown in increasing soil concentrations (nom-
inal doses 1 to 7) of six rare earth elements (REEs).
(XLSX)

S2 Table. Analyses (ANOVA or Kruskal-Wallis test) of the effects of rare earth element
(REE) soil dosage on the percent germination of five plant species. Post hoc tests [Dunnett's
one-sided (ANOVA) or Conover-Inman (Kruskal-Wallis)] were performed in order to
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determine doses that negatively differed from the controls.
(XLSX)

S3 Table. Summary of ANOVA or Kruskal-Wallis analyses on aboveground, shoot biomass
(and including the radish bulb for R. sativus) for five plant species grown in rare earth ele-
ment (REE) contaminated soils.No observed effect (NOEC) and lowest observed effect
(LOEC) concentrations of the given REE were determined based on either Dunnett's one-way
post hoc comparisons (ANOVA) or Conover-Inman post hoc comparisons (Kruskal-Wallis)
for negative differences (i.e. reduced biomass) from the controls.
(XLSX)

S4 Table. ANOVA (or Kruskal-Wallis) results for root biomass for five plant species tested
in rare earth element (REE) contaminated soils. Only the control, 2nd, 4th, and 6th doses for
each REE were included. Dunnett's one-way post hoc comparison (or the Conover-Inman test)
was used to determine doses that were significantly negatively different from the controls.
(XLSX)

S5 Table. Root:soil and shoot:soil ratios based on detected rare earth element (REE) con-
centrations in dosed soils as well as in the roots and shoots of the five tested plant species.
(XLSX)
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