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Abstract: Rod outer segments (OS) express the F,F{-ATP synthase and the respiratory chain,
conducting an ectopic aerobic metabolism that produces free radicals in vitro. Diabetic retinopathy,
a leading cause of vision loss, is associated with oxidative stress in the outer retina. Since metformin
and glibenclamide, two anti-type 2 diabetes drugs, target the respiratory complexes, we studied the
effect of these two drugs, individually or in association, on the free radical production in purified
bovine rod OS. ATP synthesis, oxygen consumption, and oxidative stress production were assayed by
luminometry, oximetry and flow cytometry, respectively. The expression of F,F;-ATP synthase was
studied by immunogold electron microscopy. Metformin had a hormetic effect on the OS complex I
and ATP synthetic activities, being stimulatory at concentrations below 1 mM, and inhibitory above.
Glibenclamide inhibited complexes I and 111, as well as ATP production in a concentration-dependent
manner. Maximal concentrations of both drugs inhibited the ROI production by the light-exposed OS.
Data, consistent with the delaying effect of these drugs on the onset of diabetic retinopathy, suggest
that a combination of the two drugs at the beginning of the treatment might reduce the oxidative
stress production helping the endogenous antioxidant defences in avoiding retinal damage.

Keywords: FoF1-ATP synthase; glybenclamide; diabetic retinopathy; light; metformin; oxidative
stress; reactive oxygen species and intermediates; rod outer segment

1. Introduction

Genetic and environmental factors are involved in the pathogenesis of Type 2 diabetes mellitus
(T2D), which is characterized by high blood glucose levels and insulin resistance in target organs [1].
In T2D, hyperglycemia and unbalanced oxidative stress determine both macro- and micro-vascular
damage, bearing multifactorial pathogenesis. Insulin resistance increases mitochondrial superoxide
production, promoting inflammation and triggering biochemical pathways associated with T2D
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complications, such as polyol metabolic pathway, advanced glycation end products formation, eNOS,
and prostacyclin synthase inhibition) [2]. These, in turn, promote reactive oxygen intermediates
(ROI) production.

The most common ocular T2D complication is diabetic retinopathy (DR) [3,4], characterized by
changes in the retinal microcirculation and neuronal damage. Establishing which of the two is the
primum movens has proven difficult. The most prominent DR presentation is vascular. However,
recently, it has been observed that retinal neurons are also damaged in the early stages of DR [5]. In fact,
a significant percentage of newly diagnosed T2D patients display some degree of retinopathy [5].
Neurodegeneration is an early manifestation of DR associated with oxidative stress [6]. Recently, it was
demonstrated that oxidative stress in early DR is restricted to photoreceptors [7]. Oxidative stress plays
a central role also in other retinal degenerations, including age-related macular degeneration (AMD) [8],
generally characterized by a photoreceptor and retinal pigmented epithelium (RPE) oxidative damage.

The electron transfer chain (ETC) is the principal source of ROI formation [9-11] as dysfunctional
oxidative phosphorylation (OxPhos) increases the likelihood of superoxide generation. Research has
mainly focused on anomalies in retinal mitochondrial function. However, experimental data have
also shown that the outer segments (OS) disks and other unrelated membranes express F,F;-ATP
synthase (ATP synthase) and ETC, conducting an ectopic aerobic metabolism (reviewed in [12,13]).
The expression of the mitochondrial OxPhos machinery in the OS [14-17] would account for the
high O, consumption of the outer retina [3]. A correlation has been reported among oxidative stress
correlated to the aerobic metabolism and the light absorption in isolated rod OS, showing for the first
time that the phototransduction requires an increase in ATP production through O, consumption
in the OS, which are devoid of mitochondria [18]. This supports the existence of a potential source
of oxidative stress in the rod OS disks that contain a high percentage of polyunsaturated fatty acids
(PUFA) [10,19]. Notably, ROI production appeared higher in the OS than the inner segment (IS) after
the irradiation with short-wavelength blue light (BL) [19].

T2D management encompasses lifestyle education programs and glycemic regulation by the use
of oral antidiabetic agents. These increase insulin secretion from the pancreatic 3 cells, reduce insulin
resistance as well as the postprandial glycemia [20]. Metformin (MTF) is a biguanide, recommended
as first-line therapy of T2D in non-pregnant adults by the American Diabetes Association (ADA) and
the European Association for the Study of Diabetes (EASD) [21,22]. MTF allows good glycemic control
with minimum hypoglycemic risk. In particular, MTF stimulates the AMP kinase (AMPK) pathway,
improving insulin sensitivity in muscle and adipose tissue, and inhibits the glucose-6-phosphate
phosphatase expression, suppressing the hepatic gluconeogenesis [23]. MTF has also anti-inflammatory,
and caloric restriction-related antiaging activity [24] consistent with the effect that we have previously
described in the rod OS [18]. Moreover, MTF displays an inhibitory effect on the complex I of the
ETC [25]. It was shown that MTF plays a protective role for both photoreceptors and RPE [20,26].
MTF can also be utilized in combination with sulfonylureas such as glibenclamide (GLB), also known
as glyburide in the US. Interestingly, GLB also targets the mitochondrial respiratory complexes I,
II, and III, but not IV, determining a reduction of oxygen consumption and ATP synthesis in H9¢2
cardiomyoblast cells [27,28]. GLB also caused a dose-dependent increment of the AMP/ATP ratio, due
to a deregulated energy balance similar to that obtained with MTF.

The purpose of this work was to study how MTFE, GLB or a combination of the two drugs affects
the production of ROI and the aerobic metabolism of the OS purified from bovine retinas in vitro.

2. Materials and Methods

2.1. Materials

All chemical compounds were of the highest chemical grade. Metformin (MTF) and glibenclamide
(GLB) were purchased from Sigma-Aldrich (S. Louis, MO, USA).
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2.2. Purified Bovine Rod OS Preparations

All operations were carried out under dim red light at 4 °C. Eye semi-cups were obtained from 24
freshly enucleated bovine eyes obtained from a local certified slaughterhouse in Ceva (Cuneo, Italy).
After the anterior chamber and vitreous removal, retinas were collected after inducing their free-floating
by filling the eye semi-cups with Mammalian Ringer (MR; composed of 0.157 M NaCl, 5 mM KCl, 0.5
mM MgCl,, 8 mM NaH;PO4, 7 mM Nay;HPO4 and 2 mM CaCl, pH 6.9) plus protease inhibitor cocktail
(Sigma-Aldrich, S. Louis, MO, USA) and 50 pg/mL ampicillin and incubating for 10 min [29]. Then rod
outer segments (OS) were purified following the method of Schnetkamp and Daemen [30]. The lower
band in the continuous Ficoll/sucrose gradient, corresponding to the sealed isolated OS was collected,
diluted with two volumes of 600 mM sucrose, 200 mM Tris-HCI pH 7.4, centrifuged at 5000x g for
20 min at 4 °C and stored at —80 °C [31]. Before use, OS aliquots were thawed and homogenized
by diluting the suspensions 1:4 (v/v) in ultrapure water (Milli-Q®: Millipore, Billerica, MA, USA),
and subjecting them to at least 10 passages through a needle (25 gauge) on ice [31]. The purity of
the OS preparations was assessed characterizing them for the integrity of the plasma membrane as
reported [30,32] by assaying the protein content of the supernatant, after centrifugation of samples
at 20,000x g for 2 min. Rhodopsin (Rh) concentration, as a specific OS marker was determined
spectrophotometrically by measuring the difference in absorption spectra at 500 nm recorded before
and after exhaustive bleaching (light, for 5 min) of samples (0.06 mg/mL, in ultrapure water, with a
dual-beam spectrometer (UNICAM UV2; Analytical S.n.c., Parma, Italy), using a molar extinction
coefficient of 41,000 cm~! M~ Rh concentration in the original OS preparation was around 0.7 mM.

2.3. Transmission Electron Microscopy

In order to localize the ATP synthase $-subunit, immunogold transmission electron microscopy
(TEM) was performed as described [31,33]. Bovine eye semi-cups were dissected and fixed with 4%
paraformaldehyde and 0.1% glutaraldehyde in PBS buffer. After fixation (ON at 4 °C.), pieces of fixed
cups were dehydrated, embedded in LR White Resin, and polymerized at 58 °C. Specimens were then
cut, using an ultramicrotome; sections about 90 nm thick were placed on nickel grids and used for
post-embedding immunogold experiments. Sections on grids were treated with blocking solution (1%
BSA, 0.1% Tween 20, PBS), then with mouse monoclonal anti-thodopsin (1:100) (Sigma Aldrich, St.
Louis, MO, USA) and rabbit polyclonal anti-ATP synthase (3-subunit (diluted 1:50) (Sigma—Aldrich)
overnight at 4 °C. For antibody binding detection, secondary goat anti-mouse IgG (Sigma Aldrich)
(diluted 1:100) coupled to gold particles (40 nm), and goat anti-rabbit IgG (Sigma Aldrich) (diluted
1:100) coupled to gold particles (10 nm) were used. Controls were performed by omitting primary Ab,
which resulted in absence of cross-reactivity (data not shown). Grids were analyzed at a FEI Tecnai G?
transmission electron microscope operating at 100 KV. In negative controls, the pre-immune serum
was applied to the sections instead of the specific primary Ab. Images were acquired with OSIS Veleta
cameras, collected and typeset in Corel Draw X8.

2.4. Antidiabetic Drugs Treatment on Rod OS

MTF and GLB were resuspended in ultrapure water or DMSO, respectively. Rod OS were
incubated with GLB (25, 50, 100, 200 uM) or with MTF (15 uM, 150 uM, 1.5 mM, 2.5 mM, 5 mM) for 1 h
in the dark at 25 °C. For the combination experiments, the samples were incubated with 5 mM MTF +
100 or 200 uM GLB, or with 150 uM MTF + 25 or 50 uM GLB. Afterward, aliquots of suspension were
employed for the biochemical analyses.

2.5. Respiratory Complex I Activity Assay

Complex I (NADH-ubiquinone oxidoreductase) activity was measured spectrophotometrically
at 420 nm, following the reduction of ferricyanide (e for FeCN™ =1.0 M~! cm™!). For each assay,
0.035 mg/mL of total protein were used. The assay solution contained: 0.6 mM NADH, 0.8 mM
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ferricyanide, 50 mM Tris-HCI pH 7.4 (TRIS pH 7.4), 50 mM KCl, 5 mM MgCl,, 1 mM EGTA, and 50 uM
Antimycin A [14,31].

2.6. Respiratory Complex III Activity Assay

Complex III (cytochrome c reductase) activity was evaluated spectrophotometrically at 550 nm,
following the reduction of oxidized cytochrome c (Cyt ¢, emm for Cyt ¢ = 20 M~!-cm™!), employing
0.035 mg/mL of total protein. The assay medium contained: 0.03% oxidized Cyt ¢, 0.6 mM NADH,
20 mM succinate, 50 mM TRIS pH 7.4, 5 mM KCl, 2 mM MgCl,, and 0.5 M NaCN [14,31].

2.7. ATP Synthesis Assay

An amount of 20 pug of total OS homogenate protein was incubated for 5 min at 37 °C in an assay
solution composed by: 50 mM Tris-HCI pH 7.4, 50 mM KCI, 1 mM EGTA, 2 mM MgCl,, 0.6 mM
ouabain, 0.25 mM di(adenosine)-5-penta-phosphate (Ap5A, adenylate kinase inhibitor), and 25ug/mL
ampicillin (0.1 mL final volume). As respiratory substrates, 5 mM pyruvate plus 2.5 mM malate were
added to the incubation medium. ATP synthesis was induced by the addition of 5 mM KH,PO, and
0.2 mM ADD, at the same pH of the mixture. ATP formation was followed for 2 min in a luminometer
(Lumi-Scint, Bioscan, Washington, D.C. USA) by the luciferin/luciferase chemiluminescent method
(Roche Diagnostics Corp., Indianapolis, IN, USA). The calibration curve was obtained with ATP
standard solutions (Roche Diagnostics Corp., Indianapolis, IN, USA) from 102 and 10~7 M in the same
solution of the experiments [14,31].

2.8. Cytofluorimetric Assays

Reactive oxygen intermediates (ROI) production by the purified OS homogenates (1.8 mg/mL)
(40 pg of total protein/0.6 mL) was analyzed by flow cytometry, carried out using an ADA CyAn
cytometer (Beckman Coulter, Brea, CA, USA) equipped with three laser lamps, using the fluorescent
probe dihydrorodamine 123 (DHR) (Molecular Probes, Life Technologies, Carlsbad, CA, USA) as
described [18,31]. Aliquots of the OS homogenates were first incubated for one hour at 25 °C with
GLB (25, 50, 100, 200 uM) or with MTF (15 uM, 150 uM, 1.5 mM, 2.5 mM, 5 mM) dissolved in DMSO
or ultrapure water, respectively. In other experiments, the combination of the two drugs has been
employed. Incubation with only DMSO was made as control of GLB treatment experiments. Treated
samples were resuspended in 500 pL of the following solution: 10 mM HEPES, 135 mM NaCl, 5 mM
CaCl,. Then, DHR (2.5 mg/mL) and respiring substrates (0.2 mM NADH and 10 mM succinate)
and 0.1 mM ADP were added to the suspension. Samples were kept in ambient light to elicit the
light-dependent development of ROL

2.9. Statistical Analysis

Statistical significance was tested by the analysis of variance (ANOVA) for multiple comparisons,
using the GraphPad Prism version 5.00 statistical software (GraphPad Software Inc., La Jolla, CA, USA).
Values of p < 0.05 were considered significant [31].

3. Results

3.1. F1F,-ATP Syhthase is Expressed in Bovine Retinal Mitochondria as well as Rod Outer Segments

The Transmission Electron Microscopy (TEM) immunogold analysis confirms the localization of
ATP synthase in the OS of the bovine retinal rod [15,31] (Figure 1). In detail, Panel B shows that the
signal of rhodopsin (Rh; 40 nm diameter gold particles) colocalizes with the signal of 3-subunit of ATP
synthase (10 nm diameter gold particles) in rod OS disks. Conversely, rod IS mitochondria display
only the ATP synthase signal (Panel C).
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Figure 1. Immunogold experiment with transmission electron microscopy (TEM) on bovine retina.

(A) Retina section showing inner (IS) and outer (OS) photoreceptor segments. (B,C) Enlargements
corresponding to the squared areas B, C in Panel A, to show a detail of an OS and mitochondrion.
Largest gold particles (40 nm width, arrows) reveal Ab against anti-rhodopsin in OS. The smallest gold
particle (10 nm width, arrowhead) reveals Ab against anti-ATP synthase 3-subunit in both OS and
a mitochondrion.

3.2. Metformin Displays a Hormetic Effect on Aerobic Metabolism and Oxidative Stress Production,
While Glibenclamide Inhibits the Oxidative Metabolism

To evaluate the effect of metformin (MTF) and glibenclamide (GLB) on the rod OS
extramitochondrial aerobic metabolism, the activity of the respiratory complexes I and III, and of ATP
synthase were evaluated in the presence of the antidiabetic drugs, compared to controls in which only
the vehicles (ultrapure water or DMSO) were present. As reported in Figure 1, pre-treatment of the OS
with MTF displays a hormetic effect on complex I (Figure 2A): it induces an enhancement of activity at
low concentrations (15 and 150 uM), while determining a drastic reduction at higher concentrations
(1.5, 2, or 5 mM). A similar trend was observed on the ATP synthesis (Figure 2C), confirming that
complex I activity in rod OS is linked to energy production [14]. By contrast, MTF does not affect the
activity of complex III either at low or at high concentrations (Figure 2B).

Since oxidative metabolism is always associated with oxidative stress [34], we have also assayed
the ROI production in rod OS suspended in a glucose medium and exposed to light. In this way,
the ETC is strongly activated, and the production of ROI sensibly enhanced [18]. It was observed that
the therapeutic concentrations of MTF (15 and 150 pM) determine an increment, while the higher MTF
concentrations induce a reduction of ROI production (Figure 2D). Conversely, pre-treatment of the OS
with all the employed GLB concentrations (25, 50, 100, and 200 uM) displays a negative effect on both
the aerobic metabolism and the ROI production. In particular, both complex I and complex III appear
affected by GLB, determining a significant reduction of both the ATP synthesis and the associated
oxidative stress production (Figure 2).
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Figure 2. Effect of metformin (MTF) and glibenclamide (GLB) on the aerobic metabolism and reactive
oxygen intermediates (ROI) production in rod OS; the figure reports the effect of 15 uM, 150 uM, 1.5 mM,
2.5 mM, 5 mM MTF and 25, 50, 100, 200 uM GLB on the aerobic metabolism in rod OS. (A) Complex
I activity, expressed as U/mg of total protein. (B) Complex III activity, expressed as mU/mg of total
protein. (C) ATP synthesis trough F,-F; ATP synthase expressed as nmol of ATP produced/min/mg
of total protein. (D) ROI production in rod OS, exposed to light. Data are from n = 5 independent
experiments; ¥, ***, or **** indicate a significant difference for p < 0.05, 0.001, or 0.0001, respectively,

between treated and untreated samples (CTRL).

3.3. The Combination of High Concentrations of Metformin and Glibenclamide Determines a Drastic Reduction
of Aerobic Metabolism and Relative Oxidative Stress Production

The literature reports in vitro studies using high MTF concentrations to inhibit the OxPhos activity
in several cell types, including tumors [25,35]. Since GLB shows a similar behavior on complex I
activity but also affects the complex III activity [27], we evaluated whether a combination of these
anti-diabetic drugs can exert additive effects on the aerobic metabolism of rod OS. Data show that
the combination of MTF and GLB determines a significant additive inhibitory effect on complex I
activity, in comparison to the single treatment with GLB. However, the inhibitory effect of GLB is
weaker in comparison to that induced by MTF (Figure 3A). The double treatment exhibited stronger
inhibitory activity also on the ATP synthase activity compared with the decrement obtained with single
treatments (Figure 3B). This is probably due to the combined additive effect on complex I plus the
inhibition of complex III activity.
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Figure 3. Effect of combination treatment with high doses of MTF and GLB on the aerobic metabolism
and ROI production in rod OS. Figure reports the effect of the combination treatment compared with
the single treatment. The used treatments are: 5 mM MTF + 100 uM GLB and 5 mM MTF + 200 uM
GLB. (A) Complex I activity, expressed as uU/mg of total protein. (B) ATP synthesis trough F,—F;
ATP synthase expressed as nmol of ATP produced/min/mg of total protein. (C) ROI production in rod
OS exposed to the light. Data are from n = 5 independent experiments. * or ** indicate a significant
difference for p < 0.05 or 0.01, respectively, between the combination treatment and 5 mM MTF treatment.
#i## or ##H#H indicate a significant difference for p < 0.001 or 0.0001, respectively, between the combination
treatment and the respective exclusive GLB treatment.

This inhibitory effect is also exerted on the production of free radicals, which appear to be further
reduced by the combination compared to the single treatments (Figure 3C).

3.4. The Metformin-Dependent Increment of Energy Metabolism and Oxidative Stress is Reduced by the
Addition of Low Concentrations of Glibenclamide

As shown in Figure 2, and as reported in the literature [36], the therapeutic doses of MTF induce an
increment of the oxidative metabolism and the related oxidative stress production, which can negatively
affect the OS and the retina. Therefore, we asked whether the combination of the therapeutic doses
of MTF with low GLB concentrations, which showed a mild inhibitory effect on energy metabolism,
could reverse such increase.

Data show that the activity of complex I in the combination condition is significantly lower than
in samples untreated or treated with low MTF doses (Figure 4A). By contrast, complex I activity was
higher compared to single treatment with GLB. The same trend is observed for the ATP synthesis
and ROI production (Figure 4B,C), suggesting that GLB can mitigate the enhancement of aerobic
metabolism and oxidative stress induced by the low MTF doses.
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Figure 4. Effect of combination treatment with low doses of MTF and GLB on the aerobic metabolism
and ROI production in rod OS. Figure reports the effect of the combination treatment compared with
the single treatment. Treatments were: 150 uM MTF + 25 uM GLB and 150 uM MTF + 50 uM GLB.
(A) Complex I activity, expressed as uU/mg of total protein. (B) ATP synthesis trough Fo,—F; ATP
synthase expressed as nmol of ATP produced/min/mg of total protein. (C) ROI production in rod OS
exposed to the light. Data are from 1 = 5 independent experiments. **** indicates a significant difference
for p < 0.0001 between the combination treatments and 150 uM MTF treatment. #, ## or #### indicate
a significant difference for p < 0.05, 0.01 or 0.0001, respectively, between the combination treatment
and the respective only GLB treatment. °, °° or °°° indicate a significant difference for p < 0.05, 0.01 or
0.001, respectively, between the combination treatment and the untreated samples.

4. Discussion

Diabetic retinopathy (DR) is one of the complications of T2D and represents the principal cause of
blindness in adults [37]. Many metabolic abnormalities have been associated with the development of
DR, including an unbalanced local oxidative stress in the outer retina [7,38—40]. In particular, rod OS
appear vulnerable to oxidative stress [8,17,41,42], which drives the retinal degeneration [17,18]. On the
other hand, antioxidants were shown to mitigate signs of DR in animal diabetic models [43] and in
cultured photoreceptor cells (661W) [44].

Oxidative stress is mainly due to the mitochondrial aerobic metabolism [34], and, in particular, is
correlated to complex I activity [45]. However, the oxidative stress in the outer retina may not solely
depend on the mitochondrial OxPhos, but also on an extramitochondrial aerobic metabolism [14]
functionally expressed in the OS [15,18], as confirmed by the TEM immunogold analysis reported in
Figure 1, showing the ectopic expression of ATP synthase in the OS. Such aerobic energy production
in the rod OS would sustain the ATP/GTP supply for the phototransduction, together with the IS
mitochondria [16,46]. However, the OxPhos is a major producer of oxygen radicals, with the ETC
being the principal ROI producer in the cell [47]. Indeed, samples come from healthy bovine retinas,
but the OS is a suitable model to evaluate the effect of modulators of the ETC, such as MTF and
GLB, on the oxidative stress produced by the aerobic metabolism. In fact, our positive controls
were samples exposed to light, in order to hyper activate the OS ectopic ETC, functionally linked to
phototransduction [18], and enhance ROI production [31]. This phenomenon likely occurs, in vitro
as the OS have lost the dioptric media of the eye and preparation has diluted the physiological
concentrations of antioxidants. Supposing that such free radical production can occur also in vivo in
pathological conditions, the extramitochondrial rod OS metabolism could be the main contributor to
the oxidative stress production in the OS, which is the recognized basis of the DR pathogenesis.

Both MTF and GLB, largely used in type 2 diabetes therapy, target the respiratory complexes.
This work aims to evaluate the effect of these two drugs, in a single treatment or in combination, on the
activity of respiratory complexes I and III, ATP synthase, and on the ROI production in the rod OS.
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The OS appears to be a suitable experimental model, as the OS disks display a similar sidedness of the
inverted mitochondrial vesicles. Moreover, OS homogenates in vitro produce ROI upon exposure to
light, acting as a “molecular switch” [18], as the aerobic OS metabolism is linked to phototransduction.
In addition, the oxidative damage of OS has been related to sunlight and blue light exposure [19,48]
and to the elevated PUFA content of the OS disks [49]. Notably, 4-hydroxynonenal (4-HNE), a lipid
peroxidation product, is found primarily in the OS [19,50].

MTF is used as the first choice for T2D patients since it reduces gluconeogenesis and improves
glucose uptake and utilization [24]. Recently, relatively high MTF concentrations have been found to
also display an effect on aging and cancer [24,51], as well as in oxidative stress response [52], since doses
greater than 1 mM result in inhibition of the respiratory complex I [25]. However, the in vivo effects of
MTF remain not fully understood [53]. Nonetheless, GLB exerts an action on aerobic metabolism, by
inhibiting the respiratory complexes I, II, and III [27].

Our data show that MTF displays a hormetic behavior: doses similar to the plasma drug
concentration in diabetic patients (15-150 uM) [25,35,54] increase OxPhos activity and an increment
of ROI production. By contrast, high concentrations (1.5, 2.5, 5 mM) inhibit the activity of complex I
and the associated aerobic metabolism, as already previously reported [18]. Such a hormetic effect of
MTF in vitro is confirmed by previous results on H9c2 cells [27]. Since the modulator effects of MTF
on OS aerobic metabolism were observed after a very short incubation time, it is possible to speculate
that these effects are due at least partly to a direct action on the molecular machinery of the OxPhos.
On the other hand, in hepatocyte cultures, the positive effect of low MTF concentration on the aerobic
metabolism seems correlated to AMPK activation, which would promote mitochondrial fission in
order to improve mitochondrial respiration [55]. Since the positive effect on MTF in hepatocytes is
observed after a few hours of treatment, it may be speculated that the same mechanism occurred in
our experimental conditions. Accordingly, AMPK exerts a neuroprotective effect in case of rod and
cone inflammation [56].

The aerobic OS metabolism is also negatively affected by GLB, which acts on both complex I
and complex III activities [27]. Although the inhibitory effect mediated by GLB on complex I activity
appears lower in comparison to that of MTF, it is important to note that GLB also inhibits complex III,
inducing a complete blockade of the OxPhos pathway. This effect was reflected in the ATP synthetic
activity, similar to what observed with MTE.

When the high MTF dose (5 mM) was combined with the high GLB doses (100 or 200 uM),
we observed a strong decrement of OxPhos activity and ROI production, suggesting an additive effect
between the two drugs. In particular, the double inhibitory effect on complex I and the negative
regulation of complex III by their combination drastically reduced the ETC activity, reflected on both
the ATP synthetic ability and the ROI production.

The most interesting data are the inhibitory effect of low GLB doses on the increase in OxPhos
activity observed with plasma doses of MTF (150 uM). In fact, while the single treatment with 150 uM
MTF induces an increment of OxPhos metabolism and related ROI production, the combination with
low doses of GLB (25 or 50 uM) determines a significant reduction of respiratory complexes activity, the
ATP synthesis, and oxidative stress production in comparison to the single MTF low-dose treatment.
This suggests that the combination of the two antidiabetic drugs could avoid the increment of oxidative
damage triggered by MTF, while maintaining the aerobic metabolism at a good level, thus ensuring
enough energy supply to support phototransduction.

However, our data do not wish to suggest that MTF therapeutic dosages would induce retinal
damage due to increased local oxidative metabolism. By contrast, the literature reports that MTF plays
a protective role on the photoreceptors and the RPE [26]. For example, according to a retrospective
study there is a correlation between the long-term MTF treatment and the reduced severity of DR in
patients with T2D, regardless of their HbAlclevel [57]. Long-term use of metformin was independently
associated with a significantly lower rate of severe non-proliferative or proliferative DR [57] and
significantly lower risk of development of AMD [58]. This apparent discrepancy could depend on
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two factors. Firstly, it can be supposed that the natural antioxidant systems would be sufficient
to overcome this transient damage due to the increased OxPhos activity associated with the MTF
treatment, even though a relative deficiency in reduced glutathione was observed in the OS, explaining
its vulnerability to oxidation [59]. On the other hand, the oxidative damage does not depend only on
an increase in the production of oxidative stress, but also on the unbalance between ROI production
and antioxidant response [39]. Secondly, the beneficial effect of MTF therapy on glycemic control
would decrease inflammation levels and the relative oxidative stress production, independently of
glucose catabolism.

Therefore, from a clinical point of view, our data allow us to speculate that in diabetic patients
without a severe DR, the administration of MTF could be sufficient to avoid retinal damage. Conversely,
the combination of GLB and MTF could be useful for those patients bearing advanced DR, to improve
the metabolic state of the OS while at the same time avoiding the increment in local oxidative stress
production. Further studies are needed to confirm these hypotheses.

We have previously shown that modulation of ATP synthase by polyphenols and terpenes sensibly
lowers ROI production by light-exposed OS [18,31]. Such an action is beneficial until the oxidative
damage uncouples the respiring disks: then, inhibition of the ectopic ATP synthase would not stop ROI
production anymore. By contrast, modulation of the ETC complexes with substances able to inhibit
some of the complexes may protect from oxidative damage interrupting the vicious cycle causing
metabolic dysfunction and photoreceptor apoptosis. This scenario may not be remote, since, in the
central nervous system, photoreceptors consume more oxygen (about 4 times) than the other tissues
do, on a weight basis [60]. Measurements of the oxygen tension in human subjects with DR showed
high oxygen tensions at the posterior pole, absent in controls [49]. The present data also suggest that
the RPE would be an innocent bystander damaged by trafficking the oxidized cargo represented by the
oxidatively damaged OS disks. It was proposed that changes in the subretinal space hydration, as
measured by optical coherence tomography, represent its oxidation state [43], which is impaired by
oxidative stress in DR patients.

5. Conclusions

The results reported here add new data on the action of GLB and MTF as inhibitors of the ETC, in a
model of OxPhos. Data confirm that the rod OS ectopic ETC is a source of cytosolic oxidative stress in
saturating light in vitro, which is prone to generating oxidative damage. Free radical production linked
to phototransduction may occur also in vivo, under dysmetabolic and membrane damage conditions
such as those occurring in the pathogenesis of DR.
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