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Abstract. N-PAT is a new model-checking tool that supports the ver-
ification of nested-models, i.e. models whose behaviour depends on the
results of verification tasks. In this paper, we describe its operation and
discuss mechanisms that are tailored to the efficient verification of nested-
models. Further, we motivate the advantages of N-PAT over traditional
model-checking tools through a network security case study.

1 Introduction

Model-checking is the problem of formally verifying that a model of a sys-
tem meets a given specification. Automated model-checking techniques have
been successfully applied to find subtle errors in complex industrial designs of
e.g., hardware circuits, software controllers, and communication protocols [1].
However, the adoption rate of model-checking remains low in software engi-
neering because of the computational complexity of model-checking algorithms.
The state-space explosion problem [2] makes the verification of large models
intractable unless high-level abstractions are used in the development and lever-
aged during verification.

Nowadays, complex systems are often designed in a modular and hierarchical
fashion. Hierarchical models, also called multilevel models, are abstract repre-
sentations of systems that span multiple levels of abstraction. They encode the
hierarchical structure of systems explicitly and therefore enable reasoning about
how properties of one level reflect across multiple levels of the model [5].

In this paper, we introduce the notion of nested model and nested model-
checking. The main idea is to break up a large model-checking task into a hier-
archy of smaller model-checking tasks. A Nested model is a high-level model
which may contain several child models nested inside; its behaviour depends on
the verification results of its child models. Note that the properties to be verified
in child tasks may be different from the properties to be verified in parent tasks.
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We present N-PAT – a nested model-checker suited to the verification of
hierarchical systems and designed to perform nested model-checking tasks. In
hierarchical modelling, some verification tasks may be used to determine and
lift the properties of underlying child models to parent models. This structural
abstraction provides modellers with the ability to structure the verification and
guide the state-space exploration of model-checking methods, it also provides
significant benefits in term of scalability for verification when compared to the
traditional approach to modelling. We implement several optimisations leverag-
ing the hierarchical structure of nested models. Also, since the time and space
complexity of model-checking algorithms with respect to the size of models is
super-linear, the divide-and-conquer approach employed by N-PAT significantly
reduces the overall verification time. What sets N-PAT apart from existing model
checkers (e.g., [4,6,7]) is the abstraction level of the modelling language. In our
work, the modelling language of nested models has high-level primitives such as
model checking and nested model instantiation.

2 Nested Model-Checking

Standard model checking is the problem of verifying whether a standard model
complies with a given property. A standard model is a static and finite-state
representation of a system, which may exhibit non-deterministic and proba-
bilistic behaviours. The semantics of a standard model can be specified as a
labelled transition system or a Markov decision process. Properties that can be
verified include reachability, deadlock-freeness, divergence-freeness, reachability,
and LTL formulae. The result of a model checking task depends on the type of
the model. When checking a property over a non-probabilistic model, the result
is 0 (not satisfied) or 1 (satisfied). When checking a property over a probabilistic
model, the result is the min (alt. max) probability that the property is satisfied.
Note that we only consider results in natural numbers, and a probability is repre-
sented in e.g., per thousand. Formally, let Ms be the set of standard models and
Φ be the set of properties. We denote by mc : Ms × Φ → N the model checking
function that returns the results of checking a property over a standard model.

A meta model, also commonly referred to as a template, is a model of standard
models. It can be viewed as a function that has a finite number of arguments
and returns a standard model. Formally, a meta model is a function of the form
A1 × ... × An → Ms where n ∈ N and A1, ..., An ∈ N. We denote by Mm the
set of meta models. In order to instantiate a meta model, every argument must
be known. An instantiated meta model is a standard model and can be verified
using standard model checking.

Traditionally, meta models are instantiated from values specified by the mod-
eller. In our work, we consider the verification of meta models instantiated from
values that are the result of model checking tasks. Such a meta model is called a
nested model and denoted as Mn. Figure 1 illustrates the structure and compo-
nents of a nested model. Each diamond represents a standard model. Each box
represents a meta model. Verification tasks are symbolised by circles. The text
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Fig. 1. Illustration of the structure of a nested model.

binding ::= const = expr mc ::=mc(model, )
model ::=Ms | Mm(binding [, binding]∗) op ::= expr (+ | − | × | /) expr
de f ::= let binding [, binding]∗ in expr expr ::= N | op | mc | const | de f

Fig. 2. The BNF grammar of nested model checking problems.

within each circle is the property to be checked in the corresponding verifica-
tion task. The arrows symbolise dependencies among verification tasks. In Fig. 1,
there are two standard models: M2 and M3, and two meta models: M0 and M1.
For instance, M1 requires the verification results from mc(M2, φ2) and mc(M3, φ3)
to be instantiated. After instantiation, M1 will become a standard model. To ver-
ify the property φ0 over the nested-model M0, we need to evaluate the following
expression: mc(M0(mc(M1(mc(M2, φ2), mc(M3, φ3)), φ1), mc(M3, φ4)), φ0).

A nested model checking problem is an expression that can be evaluated to
an integer; it is formulated in a language that has two main primitives: meta
model instantiation and standard model checking. For convenience, the language
of nested model checking problems is extended with integers, basic arithmetic
operations and restricted scope constant definitions. Let const be the set of
constant identifiers, the syntax of nested model checking problems is given by
the grammar in Fig. 2, where [α]∗ denotes repeating α zero or more times.

eval(n, ) = n eval(ms, ) = ms eval(c, ) = v where 〈c,v〉 ∈
eval(e1 op e2, ) = eval(e1, ) op eval(e2, ) eval(mc(m, ), ) = mc(eval(m, ), )
eval(mm({〈c1,e1〉, ...,〈cn,en〉}), ) = m({〈c1,v1〉, ...,〈cn,vn〉}) where

v1 = eval(e1, ), ..., vn = eval(en, )
eval(let {〈c1,e1〉, ...,〈cn,en〉} in e) = eval(e, ′) where

′ = ∪{〈c1,eval(e1, )〉, ...,〈cn,eval(en, )〉}

Fig. 3. The semantics of nested model checking problems.

We assume that the set of verification tasks related to a nested model form a
directed acyclic graph (as in Fig. 1), which defines the dependencies of tasks, and
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that the tasks and the graph are known before the verification stage. When a let
expression introduces multiple bindings, these bindings must be independent of
one another, non-recursive, and may be evaluated in parallel.

The semantics of nested model checking problems in a given context is defined
by the evaluation function eval, given in Fig. 3. A valued binding is a tuple 〈c, v〉
where c ∈ const and v ∈ N. A context is a set of valued bindings. Let Γ be a
context, e, e1, ... ∈ expr be expressions, c, c1, ... ∈ const be constant identifiers,
ms ∈ Ms be a standard model, mm ∈ Mm be a meta model, m ∈ Ms ∪ Mm be
a model, φ ∈ Φ be a property, n, v, v1, ... ∈ N be numbers, and op ∈ {+,−, ∗, /}
be an integer operator.

3 N-PAT: Implementation

N-PAT is built on top of Process Analysis Toolkit [7] (PAT) – an industrial scale
model-checker which employs an expressive modelling language called Commu-
nicating Sequential Processes with C# (CSP#) developed by Hoare [3] and oth-
ers [9]. PAT features a model editor and an animated simulator using a mature
and IDE-style user interface. Further, PAT facilitates new language and algo-
rithm design and implementation as extended modules. Over the past 10 years,
we have extended PAT with new verification modules for timed automata [9],
real-time systems [8], and probabilistic systems [10]. We implemented N-PAT in
C# as an extension of PAT. N-PAT is open-source and freely available online.1

CSP# Models

N-PAT

Results

M-CSP# Models

Nested Model
Checking Problem

PAT

Fig. 4. N-PAT data-flow overview.

Standard models are specified by (probabilistic) CSP# models and properties
are specified by CSP# assertions [7]. Meta models are specified by a meta-level
CSP# language. This language, called meta-CSP#, introduces labelled place-
holders, of the form [id ] where id ∈ const is a label. These labelled place-holders
extend the CSP# language and can be used in place of integer constants (e.g.,
variable initial values, choice probabilities). Let m be a meta-CSP# model and
id1, ..., idn where n ∈ N be the set of placeholders that appears in its definition.
1 https://formal-analysis.com/research/npat/index.html.

https://formal-analysis.com/research/npat/index.html
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Let v = {〈id1, v1〉, ..., 〈idn, vn〉} where v1, ..., vn ∈ N be a set of valued bindings.
The meta-CSP# model m can be instantiated using v into a CSP# model by
substituting the occurrences of [id i] by vi for all i ∈ {1, ..., n}. Nested model
checking problems are specified using the language described in Sect. 2. Model
checking is performed by N-PAT through the orchestration of calls to PAT.

Figure 4 depicts the overall data-flow of N-PAT. The input of N-PAT is a set
of standard CSP# and meta-CSP# models and a nested model checking prob-
lem. N-PAT evaluates the result of the nested model checking problem similarly
to how a dynamic interpreter evaluates an expression. The nested model check-
ing problem is first parsed, and a corresponding abstract syntactic tree is built.
This step is implemented using parser combinators (i.e., using recursive descent
parsing). The resulting abstract syntactic tree is then recursively evaluated in a
bottom-up fashion.

N-PAT exploits the hierarchical nature of nested models and provides
improved verification scalability when compared to traditional model checkers
that operate on flattened models. First, since CSP# models are static (i.e., they
are not modified during execution), N-PAT applies stage-wise partial evalua-
tion of verification sub-tasks to optimise the verification phase of nested CSP#
models. Second, given a nested CSP# model, we assume that its verification
sub-tasks are independent and can be computed concurrently. Thus N-PAT uses
parallelism to speed up verification on modern architectures with multiple cores.
This parallelism manifests itself in three places: bindings, operands, and the
evaluation of meta model arguments.

4 Case Study and Experiment

We introduce a network security case study to illustrate the modelling and scal-
ability advantages of nested model-checking. The case study is concerned with
computing the probabilistic security level of a network. It is a simplified version
of a real-life example which is studied by Australian Defence. The problem is
hierarchical by nature, which illustrates code-reuse and modularisation of the
proposed modelling approach. Another nice property of this example is that we
can create models of different sizes to test the scalability of the verification, as
will be shown in the experiment.

The details of the example are as follows: suppose there is a cluster of compu-
tation nodes, and each node can be in one of the three states: safe, compromised,
and isolated. Initially, each node is safe, but it has a chance to be hacked, which
changes the state of the node to compromised. When a node is compromised, it
can either be patched, which will make the node safe again, or be isolated, which
will disconnect the node from the cluster. If a node is isolated, then it loses
the connection to other nodes and thus cannot contribute to the computational
power of the cluster. When the node is isolated, it has a chance to be recovered,
which will lead the node to the safe state again. Otherwise, the node stays iso-
lated, in which case we increase down nodes counter, i.e., the number of nodes
that are offline, by 1. For simplicity, we assume that the hacking of each node
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Fig. 5. The Markov chain of the traditional model, exemplified with two nodes.

is independent. We model two types of nodes: normal node and premium node,
where the latter has a higher chance to be patched when it is compromised and
a higher chance to be recovered when it is isolated.

Traditional Method: We shall formalise the above as a Markov chain in CSP#,
and we have to define the state transitions for both types of nodes. Next, we
model a cluster manager, which iterates through each node in the cluster and
checks whether the node is offline. The manager will report that the cluster is in
critical condition if at least half of the nodes in the cluster are offline. Consider
an example where there are only two nodes in the network: the first node is
a normal node, and the second node is a premium node. We show the overall
Markov chain in Fig. 5. We annotate the event and its probability on the arrows.
The upper part of the figure describes the process of checking the normal node,
which can be either safe or isolated. The lower part of the figure splits into
two cases when checking the premium node. The Down = x line in each circle
indicates the down nodes counter. The premium node in Fig. 5 has a higher
chance to be hacked than because in our hypothetical scenario, the hacker is
more likely to target a premium node.

Nested Model Checking Method: We break the model in Fig. 5 down into two
levels of abstraction: the node level and the cluster level. The idea is to create
more modular models so that the model for a node can be used for both normal
nodes and for premium nodes, and potentially can be used in future develop-
ments of other models. At the node level, we study the common properties of the
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(a) Node Level (b) Cluster Level

Fig. 6. Modular models of Fig. 5 for nested model checking. a) Node Level b) Cluster
Level

two types of nodes, and try to generalise the model so that the model-checking
result is exactly what we need at the cluster level. As the cluster manager, we
only need to know whether a node is offline or not. Therefore, besides safe, iso-
lated, and compromised, we give a node two additional states: ok and down. Like
in the traditional model, each node is initialised to be in the safe state. Since we
do not consider cluster manager operations at the node level, we do not use the
counter for offline nodes. Instead, when the node stays isolated, we change its
state to down, and when it is not hacked/patched/recovered, we change its state
to ok. The state transition diagram is shown in Fig. 6a.

At the cluster level, we abstract the notion of a node into only two states:
ok and down. The probability of going to these two states will be given by the
model-checking results from the node level. If a node is down, then we increment
down nodes counter. We then model the cluster manager similarly as in the tra-
ditional model. The (partial) Markov chain for checking nodes is illustrated in
Fig. 6b, where we only show two nodes. Note that places holders for probabil-
ities in Fig. 6a, such as [Isolated], will be instantiated with specific values,
depending on the type of the node, at run-time. Place holders in Fig. 6b will be
instantiated with the results of node-level verification at run-time. Compared to
the traditional model (cf. Fig. 5), the nested model is much simpler, and we will
show that this leads to significant improvement in scalability.

Experimental Comparison: We compare the performance of both modelling
approaches by evaluating the overall security of network of different sizes. In each
case, the number of normal nodes are 4/5 of the total number. All experiments
were carried on a desktop with Core i7-7700 quad-core processor at 3.6 GHz and
32 GB RAM. We verify multiple instances of the above models, starting with 8
nodes in a cluster, and increase the number of nodes by 2 at a time, and main-
tain the number of normal nodes at (4×num of nodes)/5. We then observe the
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time used in model checking as the number of nodes increases. We run each test
5 times and compute the average time spent to obtain the results.

Table 1. Experiment of traditional (probabilistic) model-checking compared with
nested model checking.

Number of nodes 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Runtime traditional (ms) 248 306 569 1771 7411 35K 279K Out of memory

Runtime N-PAT (ms) 427 430 430 430 430 431 445 438 442 461 458 469 465 476

Discussion: As seen from the results in Table 1, the run-time of traditional
model-checking grows rapidly as the size of the model (the number of nodes)
increases. On the other hand, the run-time growth of nested model checking is
moderate, and it solves instances up to 34 nodes less than 0.5 s. N-PAT also
uses very little memory compared to PAT which uses up to 26.6 GB memory
when running the 20 nodes instance. For small examples, the traditional mod-
elling approach may be faster because the verification of nested models involves
several calls to PAT which incur marginal overhead. However, the nested model
checking approach scales better. The source code of this experiment, i.e. both
the traditional model and the hierarchical model, can be found online.2

5 Conclusion and Future Work

We presented N-PAT – a high-level model checker that enables the verification
of models that relies on the results of other verification tasks. We demonstrated
in a case study in network security that this tool permits the use of high-level
abstraction mechanisms and can therefore significantly improve the time and
memory efficiency of verification tasks. These results indicate that nested model
checking provides a novel modelling approach that can in some cases scale better
than traditional model-checking.

In future work, we intend to provide more modelling flexibility by allow-
ing dynamic calls to verification tasks that are not known a priori. We also
planned to apply dynamic language optimisation techniques such as memoisa-
tion to speed up verification. Finally, we planned on supporting a fully reflective
modelling language that permits inspection and modification of the behaviour
and structure of models at verification-time.
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