
Frontiers in Immunology | www.frontiersin.

Edited by:
Willa Ann Hsueh,

The Ohio State University,
United States

Reviewed by:
David Bradley,

The Ohio State University,
United States

Aimin Xu,
The University of Hong Kong,

Hong Kong

*Correspondence:
Tuo Deng

dengtuo@csu.edu.cn

Specialty section:
This article was submitted to

Immunological Tolerance
and Regulation,

a section of the journal
Frontiers in Immunology

Received: 09 August 2020
Accepted: 27 October 2020

Published: 27 November 2020

Citation:
Song J and Deng T (2020) The

Adipocyte and Adaptive Immunity.
Front. Immunol. 11:593058.

doi: 10.3389/fimmu.2020.593058

REVIEW
published: 27 November 2020

doi: 10.3389/fimmu.2020.593058
The Adipocyte and Adaptive Immunity
Jianfeng Song1,2 and Tuo Deng1,2,3*

1 National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second
Xiangya Hospital of Central South University, Changsha, China, 2 Key Laboratory of Diabetes Immunology, Ministry of
Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University,
Changsha, China, 3 Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, China

Not only do Adipocytes have energy storage and endocrine functions, but they also play
an immunological role. Adipocytes are involved in adaptive immunity to mediate the
pathological processes of a variety of chronic inflammatory diseases and autoimmune
syndromes. The adaptive immune response consists of T cell-mediated cellular immunity
and B cell-mediated humoral immunity. Obese adipocytes overexpress MHC class II
molecules and costimulators to act as antigen-presenting cells (APCs) and promote the
activation of CD4+ T cells. In addition, various adipokines secreted by adipocytes regulate
the proliferation and differentiation of T cells. Adipokines are also involved in B cell
generation, development, activation, and antibody production. Therefore, adipocytes
play an important role in B cell-mediated adaptive immunity. This review describes how
adipocytes participate in adaptive immunity from the perspective of T cells and B cells, and
discusses their role in the pathogenesis of various diseases.
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INTRODUCTION

Adaptive immunity is characterized by specificity, immunological memory, and self/nonself
recognition (1). The function of the adaptive immune system is to recognize, remember and
destroy invading pathogens through their antigens, and relieve pathogen-associated toxicities. There
are two main mechanisms in the adaptive immune system—humoral immunity and cellular
immunity, which are mediated by antibodies and cells respectively. The T and B cells are the major
components of adaptive immunity. T cells play a large role in the cellular immune response, while B
cells are intimately involved in the humoral immune response.

Adipocytes are the main constituent cells of adipose tissue. Their main function is to store energy
in the form of lipid droplets when there is excess energy and to supply energy when the body
demands it. In addition to their main functions, adipocytes have endocrine functions and can
secrete a variety of adipokines such as leptin, adiponectin, and resistin (2–4). Recently, an increasing
number of studies have shown that adipocytes have immunological functions capable of recruiting
and activating immune cells. The adipocyte was reported as an antigen-presenting cell (APC) which
expresses CD1d and MHC class I and II molecules. Several studies have shown that adipocytes
highly express CD1d, which presents lipid antigens to invariant natural killer T (iNKT) cells and
stimulates the activation of iNKT cells (5–7). Moreover, like other nucleated cells, adipocytes
express MHC class I molecules. However, there is no clear evidence that adipocytes interact directly
org November 2020 | Volume 11 | Article 5930581
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with CD8+ T cells through antigen:MHCI complex. In our recent
research, we observed that adipocytes express MHC class II
molecules and co-stimulatory molecules CD80/CD86, and that
their expression significantly increases in response to high fat
diet (HFD) challenges (8). Adipocytes can directly activate CD4+

T cells through antigen:MHCII complex in a contact-dependent
manner. Simultaneously, adipocytes secrete various cytokines
including leptin, resistin, TNF-a and IL-6 to regulate the
differentiation and function of T and B lymphocytes.

Adipocytes can regulate adaptive immunity, which is involved
with various metabolic diseases. Since there have been many
reports on the regulation of metabolic diseases through adaptive
immunity (9–11), we focus on how adipocytes regulate adaptive
immunity in this review. First, we introduce adipocytes as APCs
to participate in T cell-mediated adaptive immune response.
Next, we summarize various cytokines produced by adipocytes
that regulate the survival, activation and differentiation of B cells.
Adaptive immunity mediates the pathological processes of a
variety of chronic inflammatory diseases, autoimmune
syndromes and cancers. Thus, we discuss the role of adipocytes
in adaptive immunity in the context of inflammatory and
autoimmune diseases.
THE ROLE OF ADIPOCYTES IN T CELL-
MEDIATED ADAPTIVE IMMUNITY

The activation and differentiation of T cells require three signals:
antigen presentation, costimulation, and cytokine stimulation.
APCs are required for T cell activation. They can process and
present antigens to T cells in the form of antigen peptide:MHC
molecular complexes, which are recognized by TCR on T cells to
provide the first signal for T cell activation. Moreover, APCs
highly express co-stimulatory molecules and pair with the
corresponding receptor or ligand molecules on the surface of T
cells, constituting the second signal for T cell activation. After T
cells are fully activated, the further proliferation and
differentiation of T cells depends on a variety of cytokines,
including IL-2, IL-4, IL-6, IL-10, IL-12, and IFN-g. In this
section, we will describe how adipocytes act as APCs to
provide all three signals for T cells activation and differentiation.

Adipocyte-Mediated Antigen Presentation
Adipocytes express both MHC classes I and II molecules. MHCI
molecules are expressed in all nucleated cells and mediate CD8+

T cell activation, while MHCII molecules are restricted to
antigen-presenting cells (APCs) and induce CD4+ T cell
activation by antigen presentation. APCs are divided into
professional APCs and non-professional APCs. The former
includes dendritic cells (DC), monocytes/macrophages, and B
lymphocytes, and the latter comprises endothelial cells, epithelial
cells and fibroblasts (12). In our previous studies, we found that
adipocytes also express MHCII molecules, and that their levels
are significantly increased in adipocytes of HFD fed mice (8). In
contrast, MHCI-related genes in adipocytes remain unchanged
during obesity.
Frontiers in Immunology | www.frontiersin.org 2
Adipocyte MHCII begins to increase at 2 weeks of HFD, and
the expression of pro-inflammatory Th1 marker genes Tbx21
and Ifng in adipose tissue resident T cells (ART) increase at 2–3
weeks following HFD, suggesting that adipocyte MHCII may
mediate Th1 cell activation and trigger obesity-induced adipose
inflammation. In vitro adipocyte-T cell co-culture experiments
show that the activation of T cells by adipocytes is dependent on
direct contact between adipocytes and T cells and the MHCII
expression in adipocytes (8). Large adipocytes (diameter >25
mm) express higher levels of MHCII than small adipocytes
(diameter <25 mm) in both ND (normal diet)- and HFD-fed
mice. In obesity, large adipocytes are accumulated in adipose
tissues and they overexpress MHCII molecules. These
hypertrophic adipocytes can function as APCs to activate
CD4+ ART and instigate adipose tissue inflammation, which
could cause many obesity-related medical complications (13).
Adipocyte-specific MHCII deficient (aMHCII−/−) mice are
significantly more sensitive to insulin and glucose tolerant than
their wild type (WT) littermates when fed with HFD (14). In
addition, adipocytes of HFD-fed aMHCII−/− mice exhibit
reduced capacity to activate CD4+ T cells, as manifested by
attenuated secretion of IFN-g, a major Th1 cytokine (14).
Furthermore, adipocyte MHCII has an indirect effect on Tregs
in visceral adipose tissue (VAT). aMHCII−/− mice show
increased Treg abundance in VAT, compared with WT mice
under HFD. In vitro experiments show that IFN-g dose-
dependently inhibits Treg differentiation (14). Thus, in the
HFD-fed aMHCII-/- mouse model, the drop of IFN-g may
explain the increase of Tregs in VAT. Given that VAT Treg is
a negative regulator of adipose inflammation and insulin
resistance (15–17), the improved adipose inflammation and
insulin resistance in HFD-fed aMHCII−/− mice may result
from the increase of Tregs in VAT. Indeed, the preserved
insulin sensitivity of HFD-fed aMHCII−/− mice is attenuated
by ablation of Tregs in adipose tissue (14). These results indicate
that adipocyte MHCII can promote adipose inflammation and
insulin resistance. Consistently, adrenomedullin 2 improves
adipose insulin resistance by inhibiting the adipocyte MHCII
expression in the early stage of obesity (18). HFD-fed adipocyte
HIF-1a KO mice show decreased expression of MHCII genes,
and can protect themselves from obesity-induced adipose
inflammation (19). In summary, the adipocyte can function as
APCs to induce CD4+ T cell activation and polarization in
MHCII and antigen dependent pathway.

Current research on adipocyte MHCII antigen presentation
and co-stimulation focuses on obesity and type 2 diabetes (T2D).
Therefore, the metabolic diseases we have discussed in this
review are obesity and T2D. Since adipocyte-mediated antigen
presentation promotes adipose inflammation, which is strongly
associated with a variety of metabolic diseases, including
nonalcoholic fatty liver disease (NAFLD), atherosclerosis, heart
disease, etc., adipocyte-mediated antigen presentation may
contribute to these metabolic diseases indirectly.

Co-Stimulatory Molecule in Adipocyte
TCR recognition of antigen peptide/MHCII provides the
primary signal for CD4+ T cell activation, while the full
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activation of CD4+ T cells requires the costimulation signal.
Costimulatory molecules on the surface of T cells and APCs bind
to each other in a receptor– ligand pairing manner.
Costimulatory molecules expressed by T cells interacts with its
ligands or receptors on the membrane of APCs, resulting in the
activation of these cells and thus triggering immune
response (20).

Recent studies have reported the role of T cell costimulators
in HFD-induced obesity (21), but the contribution of adipocytes
in T cell costimulation is still unclear. CD40 (22), CD80 (B7-1),
CD86 (B7-2) (8, 23) and HVEM (24, 25) are induced in
adipocytes of obese human or mice, and may costimulate
adipose resident T cells (ARTs) in obesity. However, studies
show that both CD40 knockout mice and CD80/CD86 double
knockout mice under HFD feeding exhibit exacerbated adipose
tissue inflammation and metabolic disorders. To understand
these unexpected results, investigators explored the
involvement of other factors that can also influence the
phenotype of these mice. After binding with CD40L, CD40
triggers the recruitment of adaptor proteins, the TNFR-
associated factors (TRAFs), to activate intracellular signaling
(26). The cytoplasmic region of CD40 contains a proximal
binding site for TRAF6 and a distal binding site for TRAF2/3/
5. Mice that are deficient in CD40-TRAF2/3/5 signaling in
MHCII+ cells display a similar phenotype as CD40−/− mice
under HFD, whereas mice with disrupted CD40-TRAF6
signaling in MHCII+ cells are protected against obesity-
induced metabolic dysfunction (27). CD40-TRAF2/3/5 and
CD40-TRAF6 signaling have opposite effects in obesity-related
metabolic disorders. This may explain the unexpected phenotype
of CD40−/− mice. In addition, CD80/CD86 double knockout
mice have congenital defects in the development of Tregs, which
may explain the aggravated adipose inflammation in these mice.
Indeed, using antibodies to block both CD80 and CD86 can
alleviate adipose inflammation, insulin resistance and fatty liver
of diet-induced obese mice (23, 28). Another costimulatory
receptor–ligand pair, HVEM-LIGHT, is also involved in the
ART activation of DIO mice. LIGHT is expressed in both
Frontiers in Immunology | www.frontiersin.org 3
activated and resting T cells in mice (29). LIGHT binds to
HVEM on adipocyte, and promotes the secretion of pro-
inflammatory cytokines and chemokines in adipocytes by
activating the NF-kB signaling pathway in human and mice
(30, 31), thereby inducing the recruitment of T cells and
macrophages in adipose tissue. Both HVEM genetical deletion
and treatment of HVEM blocking antibodies in HFD-fed mice
ameliorates obesity-induced adipose tissue inflammation and
metabolic deterioration (24, 32).

These studies have suggested that T cell costimulatory
molecules may be involved in the obesity-induced activation of
ART and the development of adipose tissue inflammation.
However, it is still uncertain whether adipocytes provide the T
cell costimulatory signal to activate ARTs during obesity, because
no studies have used adipocyte-specific costimulator knockout
mice to confirm the function of adipocytes in T cell
costimulation. Moreover, several costimulatory molecules have
been linked to obesity-induced adipose inflammation and insulin
resistance, but it is still unclear which costimulator plays the
central role. Further studies are warranted to address these
unanswered questions.

Adipokines That Regulate Activation
and Polarization of T Cell
A variety of cytokines secreted by adipocytes can regulate the
activation and differentiation of T cells and B cells, and
participate in various metabolic and non-metabolic diseases.
Since the topic of how adipokines contribute to metabolic
diseases has been extensively described in many reviews (33–
36), in this review, we focus on non-metabolic diseases.

Leptin
Leptin is basically a pro-inflammatory adipokine that directly or
indirectly regulates T cells proliferation and differentiation (Table
1). As early as 1998, Lord et al. found that leptin promotes the
proliferation of naïve and memory T cells and increases the
secretion of Th1 cytokines, but suppresses the production of Th2
cytokines (37). Subsequently, it has been reported that leptin
TABLE 1 | The effects of adipokines on T lymphocytes.

Adipokines Naïve CD4+ T Th1 Th2 Th17 Treg Tfh CD8+ T

Leptin Proliferation↑ Differentiation↑
Cytokines
secretion ↑

Differentiation↓
Cytokines
secretion ↓

Differentiation↑
Cytokines
secretion ↑

Differentiation↓ Differentiation↑
Cytokines secretion ↑

Activation↑

Adiponectin Proliferation↓
Apoptosis↑

Differentiation↑↓
Cytokines
secretion ↑↓

Differentiation↑
Cytokines
secretion ↑

Differentiation↑↓
Cytokines
secretion ↑↓

Differentiation↑ Activation↑ Development↑

IL-6 Proliferation↑
Apoptosis↓

Differentiation↓
Cytokines
secretion ↓

Differentiation↑
Cytokines
secretion ↑

Differentiation↑
Cytokines
secretion ↑

Differentiation↓ Differentiation↑ Differentiation↑
Activation↑

TNF-a Proliferation↑ Differentiation↑
Cytokines
secretion ↑
Migration↑

Differentiation↓
Cytokines
secretion ↓

Differentiation↑
Cytokines
secretion ↑
Migration↑

Differentiation↓ — Activation↑
Proliferation↑
Migration↑

Resistin Migration↑ — — — Differentiation↑ — —

Visfatin Activation↑ — — — — — —
Nov
ember 2020 | Volume 11 |
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constrains the activation and proliferation of Treg cells (38).
Mechanism studies have shown that leptin activates the mTOR
pathway, thereby exerting a positive effect on CD4+ CD25−

FOXP3− effector T cells (Teffs), but inhibiting Foxp3 expression
and the proliferation of Treg cells (39, 40). Leptin also promotes
Th17 responses by inducing the transcription of retinoid-related
orphan receptor gt (RORgt), the key transcription factor for Th17
differentiation (41). In addition, leptin has positive effects on the
generation, maturation and survival of thymic T cells by reducing
their apoptosis (42). Furthermore, leptin increases the secretion
of inflammatory cytokines (e.g. IL-6, IL-12 and TNF-a) as well as
the expression of chemokine ligands (e.g. CCL3, CCL4 and
CCL5) by activating the JAK2–STAT3 pathway in monocytes/
macrophages from human or mice (43, 44), thereby indirectly
promoting differentiation and adaptive immune response of
T cells.

Due to its strong effects on T cells, leptin participates in the
pathological processes of a variety of inflammatory and
auto immune diseases . In obes i ty- induced ad ipose
inflammation, leptin stimulates IFN-g secretion from ART,
which leads to an increase in pro-inflammatory Th1 cells and
a decrease in anti-inflammatory Tregs in adipose tissue (8).
Leptin gene expression in adipocytes is elevated within 1 week
of HFD, suggesting that leptin plays a role in initiating the
cascade of adipose inflammation. Moreover, because leptin can
promote the proliferation of autoreactive T cells and
differentiation of pro-inflammatory Th1 and Th17 cells in
human and mice, it has been reported to be involved in the
induction and progression of IBD (45, 46), multiple sclerosis
(47–49), rheumatoid arthritis (50, 51) and systemic lupus
erythematosus (41, 52)

Adiponectin
Adiponectin has dual effects on T cell function. Several studies
have shown that adiponectin is a negative regulator of T cell
activity. It has been reported that adiponectin inhibits the
proliferation and cytokine production of T cells, and promotes
their apoptosis (53). Recent data indicates that adiponectin
inhibits Th1 and Th17 differentiation through the upregulation
of SIRT1 and PPARg and inhibition of RORgt (54). It also
suppresses IL-17 production from gd-T cells (55). Therefore,
adiponectin ameliorates Th17 cell-mediated autoimmune
diseases, including experimental autoimmune encephalomyelitis
(EAE) (54) and psoriasiform skin inflammation (55). In a mouse
model of abortion, adiponectin increases Treg cell population via
enhancing Foxp3 expression, thereby improving the pregnancy
rate of this model (56). Furthermore, the immunomodulatory
effect of adiponectin on T cells is partially mediated by its ability
to suppress the allostimulatory capacity of dendritic cells (DCs)
(57). Adiponectin suppresses the expression of MHCII and co-
stimulators CD80 and CD86, and induces the expression of co-
inhibitor PD-L1 in DCs. Adiponectin-treated DCs show a
reduced capacity to promote CD4+ T cell proliferation and an
enhanced capacity to induce Treg expansion in DC-T cell
cocultures (57).

However, some studies showed opposite results that
adiponectin is a pro-inflammatory adipokine. In human
Frontiers in Immunology | www.frontiersin.org 4
polyclonally activated CD4+ T cells, adiponectin treatment
results in the increased secretion of IFN-g and IL-6,
phosphorylation of p38 MAPK and STAT4 and expression of
T-bet, which indicates a potential function of adiponectin
promoting Th1 differentiation (58). Moreover, adiponectin
aggravates collagen-induced arthritis (CIA) via enhancing
Th17 cells and T follicular helper (Tfh) cells response (59).
Adiponectin also reduces the apoptosis of lamina propria T
lymphocytes (LPL-T) in IBD patients by inducing expression of
anti-apoptotic proteins Bcl-xL and Bcl-2, leading to T cell-
mediated inflammation (46). Adiponectin also indirectly
promotes Th1 and Th17 polarization by activating DCs
through PLCg/JNK/NF-kB signaling pathway (60).

The reason for the discrepancy in effects of adiponectin on T
cells is unclear. Adiponectin circulating in plasma has three
major forms: trimer, hexamer, and high molecular weight
(HMW) multimer (61). Different oligomers activate different
intracellular signaling pathways, resulting in significantly
different effects (62). It is possible that different oligomers of
adiponectin were used in different studies, which results in
this discrepancy.

IL-6
IL-6 is a pro-inflammatory cytokine that is secreted by various
immune cells. Adipocytes also express IL-6. Although adipocytes
are not the main source of IL-6 in adipose tissue, IL-6 has been
considered as an adipokine (63). IL-6 has different effects on
different CD4+ T cell subsets. It was reported that IL-6 inhibits
Th1 differentiation by upregulating the expression of a
suppressor of cytokine signaling,(SOCS)-1, a potent inhibitor
of IFN-g signaling (64). IL-6 also inhibits TGF-b-induced Treg
cell’s differentiation (65, 66). However, IL-6 induces the
production of IL-4, resulting in increased Th2 polarization
(67). In addition, IL-6 is a crucial cytokine for lineage
commitment to Th17 cells. IL-6 promotes Th17 differentiation
by activating STAT3, which upregulates the expression of RORgt
and RORa (68, 69). Furthermore, IL-6 is a positive regulator of
Tfh cells (70), which is supported by the observation that the
early differentiation of Tfh cells is severely impaired in IL-6
deficient mice (71).

Although the regulatory effect of IL-6 on CD4+ T cells has
been extensively studied, the effect of IL-6 on CD8+ T cells is still
poorly understood. IL-6 may positively regulate CD8+ T cell
function. IL-6 was found to promote the generation of CD8+

cytotoxic T cells (72). It was reported that IL-6 induces the
differentiation of naïve CD8+ T cells into IL-21-producing CD8+

T cells, which improve IgG isotype switching in B cells during
influenza virus infection (73). This is a new function for IL-6 in
the prevention of viral infection. Furthermore, IL-6 promotes the
differentiation of IL-22-producing CD8+ T cells, a CD8+ T cell
subset with antitumor function (74).

Other Adipokines
In addition to the adipokines mentioned above, some other
secreting factors of adipocytes, including resistin, visfatin, and
TNF-a, also regulate T cell function. Resistin induces activation of
Src and PI3K in human CD4+ T lymphocytes and serves as a
November 2020 | Volume 11 | Article 593058
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chemokine for these cells (75). Moreover, resistin indirectly
enhances Treg expansion through the regulation of DCs, in
which interferon regulatory factor (IRF)-1 pathway is
suppressed by resistin (76). Visfatin is an adipokine that
upregulates the activation of T cells. It promotes the production
of IL-1b, IL-1Ra, IL-6, IL-10, and TNF-a and the expression of
costimulatory molecules CD80, CD40 and ICAM-1 (CD54) in
monocytes, thereby stimulating the activation of T cells (77). It is
worthy to note that although visfatin is expressed in adipose
tissue, its expression is higher in bone marrow, the liver and
muscles (78). Additionally, in the adipose tissue, visfatin is not
only expressed in adipocytes. Studies have found that visfatin is
mainly produced and released by macrophages in white adipose
tissues (79). Therefore, adipocytes may not be the major source of
visfatin expression. TNF-a is an important immunomodulatory
cytokine, which plays a critical role in regulating the proliferation,
differentiation, and apoptosis of T cells, the generation of memory
T cells, and maintenance of immune tolerance (80). It has been
reported that TNF-a is secreted by adipocytes and other immune
cells (81, 82). However, whether adipocytes produce TNF-a is
still controversial.
THE ROLE OF ADIPOCYTES IN B CELL-
MEDIATED ADAPTIVE IMMUNITY

Similar to T cell activation and differentiation, B cell activation
and differentiation also requires three signals. But unlike T cells
that recognize antigens presented by APCs, B cells recognize free
antigens through B cell receptor (BCR). B cells specifically
recognize antigens through BCR, generating the first signal for
B cell activation. B cells are per se professional APCs. B cells
internalize the antigen bound by BCR and process the antigen to
form an antigen peptide–MHCII complex, which is presented to
antigen-specific Th cells. After Th cells are activated, they express
high levels of co-stimulatory molecules and combine with
matched ligands or receptors on the surface of B cells, which
provides the second signal for B cell activation. Activated B cells
express multiple cytokine receptors, and proliferate and
differentiate into antibody-forming cells under the action of
Frontiers in Immunology | www.frontiersin.org 5
cytokines that are secreted by activated T cells or other cells.
For B cell activation, the role that adipocyte plays on the two key
signals, antigen recognition and costimulation has not yet been
reported, but some studies have reported that several adipokines
play a role in the development and differentiation of B cells. Here
we discuss the role that adipocytes play in regulating B cell-
mediated adaptive immune responses through secreted cytokines
(Table 2).

Leptin
In addition to regulating T lymphocytes mediated immune
responses, leptin plays an important role in the regulation of B
cell development and function. Deficiency of leptin signaling in
ob/ob and db/db mice leads to the decrease of B cells in bone
marrow and peripheral blood, while intraperitoneal injection of
leptin in ob/ob mice restores the number of bone marrow B cells
(83), suggesting that leptin plays a critical role in supporting B
cell development. Fasted mice, characterized by low serum leptin
levels, show decreased pro-B and immature B cells and increased
mature B cells in bone marrow (84). Leptin receptor is expressed
on B cells, suggesting a direct effect of leptin on B cells (85).
However, the fasting-induced atrophy of bone marrow B cells is
reversed by intracerebroventricular leptin injection, indicating
that leptin may indirectly regulate B cell development through
the central nervous system (86). In addition to its effects on the
regulation of B cell development, leptin suppresses apoptosis and
induces cell cycle entry of B cells by upregulating the expression
of Bcl-2 and Cyclin D1 (87). Moreover, leptin stimulates human
B cells to secrete proinflammatory (TNF-a and IL-6) and anti-
inflammatory (IL-10) cytokines, via activation of JAK2/STAT3
and p38MAPK/ERK1/2 signaling pathway (88). Interestingly,
leptin-induced production of TNF-a, IL-6 and IL-10 in B cells
from aged individuals are significantly higher than that in B cells
from young individuals (89). Furthermore, leptin promotes
immunosenescence of human B cells. Leptin treatment results
in declined immunoglobulin class switch and influenza vaccine-
specific IgG production in human B cells (90).

Adiponectin
Adiponectin has two receptors, ADIPOR1 and ADIPOR2. Both
are abundantly expressed on the surface of circulating B cells (91).
TABLE 2 | The effects of adipokines on B lymphocytes.

Adipokines Pro-B Pre-B Immature B Mature B Plasma B

Leptin Development↑ Development↑ Development↑ Development↓
Cytokines secretion↑

Antibody production↑

Adiponectin Development↓ Development↓ — Cytokines secretion↑ —

IL-6 — — — Differentiation↑
Proliferation↑

Antibody production↑

Visfatin — Colony formation↑ — Activation↑
Migration↑

—

BAFF — — — Survival↑
Maturation↑
Proliferation↑

Antibody production↑

Other soluble factors Development↓ Development↓ — — —
November 2020 | Volum
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However, the immunomodulatory effects of adiponectin on B
lymphocytes are not very clear. It has been reported that
adiponectin inhibits B lymphopoiesis in long-term bone marrow
cultures. This effect is highly dependent on the presence of both
stromal cells and early B lineage precursors in the cultures (92).
Adiponectin deficient mice treated with dextran sulfate sodium
(DSS) present more significant B cells infiltration in colons and
appear more severe colitis than WT littermates, indicating that
adiponectin may suppress B cell-mediated inflammatory response
in DSS-induced colitis (93). Moreover, adiponectin stimulates B
cells to secret a peptide, PEPITEM, which specifically inhibits the
migration of CD4+ and CD8+ memory T cells (94). Further studies
are guaranteed to address the detailed role of adiponectin in
regulating B lymphocytes function.

Other Adipokines
Leptin and adiponectin are exclusively expressed in adipocyte.
Some other adipokines that are secreted by both adipocytes and
other types of cells also have regulatory effects on B cells. These
adipokines include visfatin, B cell activation factor (BAFF), and
IL-6. Visfatin was previously called ‘pre-B cell colony-enhancing
factor (PBEF)’, since it enhances pre-B-cell colony formation in
the presence of both IL-7 and SCF (78). Visfatin is a potent
chemotactic factor for B cells and promotes B cell migration in
vitro cell culture (77). BAFF, also known as ‘B lymphocyte
stimulator (BlyS)’, promotes B cell proliferation, survival,
maturation and immunoglobulin secretion (95, 96). The
production of BAFF is upregulated in obese human adipocyte,
and it may activate B cells in adipose tissue during obesity (97).
IL-6 was originally named ‘B-cell stimulatory factor 2 (BSF-2)’.
This name reflects its function to induce differentiation of
activated B cells into antibody (Ab)-producing cells (98). IL-6
is abundantly secreted by adipocytes during obesity, and
Frontiers in Immunology | www.frontiersin.org 6
aggravates obesity-induced insulin resistance (99). In addition,
some unidentified soluble factors secreted by adipocytes inhibit B
lymphopoiesis (100, 101). These factors may mediate the decline
of B lymphopoiesis in aged and obese individuals, and both
conditions are characterized by increased fat accumulation in
bone marrow.
CONCLUSION AND FUTURE DIRECTIONS

Recently, the immunological function of adipocytes has received
increasing attention. Mounting evidence indicates that
adipocytes play an important role in adaptive immunity
(Figure 1). Adipocytes can serve as APCs to regulate T cell-
mediated adaptive immunity. The MHCII molecules are
expressed in adipocytes and their expressions are upregulated
during obesity, providing the first signal for CD4+ T cell
activation. Simultaneously, adipocytes of obese mice and
humans overexpress several costimulatory molecules, including
CD40, CD80 (B7-1), CD86 (B7-2) and HVEM. Those
constimulators are associated with obesity-induced adipose
inflammation and metabolic disorders. However, studies
exhibited conflicting results and did not provide convincing
data from adipocyte-specific knockout mouse models.
Therefore, it is too early to draw a conclusion that adipocytes
provide the key costimulatory signal for ART activation. In
addition, adipocytes secrete various cytokines, such as leptin,
adiponectin, IL-6, resistin, visfatin and TNF-a, which regulate
the proliferation and differentiation of T cells and are involved in
many chronic inflammatory and autoimmune diseases. In B cell-
mediated humoral immunity, adipocytes regulate B cell
development, proliferation, differentiation, activation and
antibody production through secreted adipokines.
FIGURE 1 | The role of adipocytes in adaptive immunity. Adipocytes express MHC class II molecules and several T cell costimulators to act as antigen-presenting
cells (APCs), and induce the activation of CD4+ T cells in visceral adipose tissue during obesity. In addition, adipocytes secrete various adipokines, including leptin,
adiponectin, IL-6, TNF-a, resistin, and visfatin, to regulate the proliferation and differentiation of T cells. In B cell-mediated humoral immunity, adipocytes modulate B
cell generation, development, aging, activation and antibody production mainly by secreting adipokines, including leptin, adiponectin, IL-6, visfatin, and BAFF.
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In the past few years, although great progress has been made
in understanding the mechanism and function of adipocytes in
adaptive immunity, there are still many imperative questions
remaining to be answered in this emerging field. Many studies
have implied the existence of specific antigens to activate T cells
in adipose tissue, but up until now, no any adipose antigen has
been reported. In addition, although many T cell costimulators
have been linked to obesity-induced adipose inflammation and
insulin resistance, the key co-stimulator(s) in obesity-induced
ART activation are not known. Identifying of antigen(s) which
are recognized by ART in obesity and the key co-stimulatory
signaling in ART activation may provide new targets for
specifically block obesity-induced adipose inflammation. We
found that obesity induces MHCII expression in adipocytes
and causes adipocytes to become APCs. But it is still unclear
whether all adipocytes or just a subset of adipocytes are
converted to APC in obesity. If the latter is true, further
studies are warranted to investigate the origin and features of
this special adipocyte subpopulation. Finally, compared with the
number of studies which concern adipocytes regulating the
function of T cells, there are far fewer studies on adipocytes
Frontiers in Immunology | www.frontiersin.org 7
regulating the function of B cells. Except for adipokines, we know
little about how adipocytes regulate the B cell-mediated adaptive
immune response. Future studies on the mechanisms by which
adipocytes regulate B cell function will help us better understand
the physiological and pathological functions of adipocytes in B
cell-mediated humoral immunity.
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