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Abstract
Background: Metformin, which has been shown to be highly effective in treating type 2 
diabetes (T2D), is also believed to be valuable for Alzheimer’s disease (AD). Computer 
simulation techniques have emerged as an innovative approach to explore mechanisms.
Objective: To study the potential mechanism of metformin action in AD and T2D.
Methods: The chemical structure of metformin was obtained from PubChem. The targets of 
metformin were obtained from PubChem, Pharm Mapper, Batman, SwissTargetPrediction, 
DrugBank, and PubMed. The pathogenic genes of AD and T2D were retrieved from the 
GeneCards, OMIM, TTD, Drugbank, PharmGKB, and DisGeNET. The intersection of metformin 
with the targets of AD and T2D is represented by a Venn diagram. The protein-protein 
interaction (PPI) and core targets networks of intersected targets were constructed by 
Cytoscape 3.7.1. The enrichment information of GO and Kyoto Encyclopedia of Gene and 
Genomics (KEGG) pathways obtained by the Metascape was made into a bar chart and a 
bubble diagram. AutoDockTools, Pymol, and Chem3D were used for the molecular docking. 
Gromacs software was used to perform molecular dynamics (MD) simulation of the best 
binding target protein.
Results: A total of 115 key targets of metformin for AD and T2D were obtained. GO analysis 
showed that biological process mainly involved response to hormones and the regulation of 
ion transport. Cellular component was enriched in the cell body and axon. Molecular function 
mainly involved kinase binding and signal receptor regulator activity. The KEGG pathway was 
mainly enriched in pathways of cancer, neurodegeneration, and endocrine resistance. Core 
targets mainly included TP53, TNF, VEGFA, HIF1A, IL1B, IGF1, ESR1, SIRT1, CAT, and CXCL8. 
The molecular docking results showed best binding of metformin to CAT. MD simulation 
further indicated that the CAT-metformin complex could bind well and converge relatively 
stable at 30 ns.
Conclusion: Metformin exerts its effects on regulating oxidative stress, gluconeogenesis and 
inflammation, which may be the mechanism of action of metformin to improve the common 
pathological features of T2D and AD.
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Introduction
Dementia is a severe public health issue. It has 
affected about 57.4 million people all over the 
world as of 2019.1 According to the World 
Alzheimer’s report, by 2050, the prevalence of 
dementia will triple worldwide. Alzheimer’s dis-
ease (AD) is one of the most common neurode-
generative diseases, accounting for two-thirds of 
all dementia cases.2 AD drugs that have been 
approved by FDA can only improve cognitive 
function in a short time, and no drugs have been 
approved specifically for the treatment of moder-
ate and severe AD cognitive impairment.3 One of 
the important reasons for the slow development 
progress of effective drugs against AD is that the 
molecular changes in the course of AD remain 
unclear.4 Finding therapeutic targets is urgent for 
the prevention and treatment of AD.

High blood glucose levels and aging are impor-
tant risk factors for dementia.5,6 AD is also known 
as ‘brain diabetes’ or ‘type 3 diabetes (T3D)’.7 
Many studies have shown that there is a close 
relationship between T2D and AD and that many 
of the pathogenic mechanisms between the two 
may be the same, although the exact pathophysi-
ological mechanisms are not clear yet.8–11

Metformin, derived from a plant named ‘galega 
officinalis’ is currently widely used as a first-line 
drug for the treatment of T2D. Its efficacy has 
been proven, and it has few adverse effects. Recent 
studies have proved the effect of metformin on the 
prophylaxis and treatment of neuropsychiatric 
degenerative diseases in addition to its significant 
hypoglycemic effects, especially in patients with 
T2D.12,13 However, the mechanism of action of 
metformin in both diseases is not yet clear. 
Screening common drug targets is a potential 
strategy for identifying molecular linked pathways. 
Molecular dynamics (MD) simulation is an indis-
pensable classical technique in computer-aided 
drug design and is often used to study the dynamic 
processes of targets-drug interactions. It plays a 
key role in the study of drug-protein interaction 
mechanisms and in the drug design process. The 
combination of the two approaches may offer new 
possibilities for the treatment of T2D and AD. 
Early studies have shown that metformin improves 
metabolism by inhibiting mitochondrial complex 
I, but only at suprapharmacological or high con-
centrations (>250 μmol). The mechanism of 
action of metformin at therapeutic concentrations 

is unclear. At therapeutic doses, the LKB1-AMPK 
axis becomes a more reliable mechanism for the 
action of metformin.14 In addition, human liver 
and endothelial tissue never reach such high con-
centrations but still inhibit gluconeogenesis at 
pharmacological concentrations, which may be 
related to the ability of metformin to minimize the 
reactive oxygen species via orphan nuclear recep-
tors (NR4A1/Nur77) at therapeutic blood con-
centrations.15 High mobility group protein B1 
(HMGB1) and presenilin enhancer protein 2 
(PEN2) could also be potential therapeutic targets 
for metformin.16,17 In addition to the above tar-
gets, other targets derived from PubMed refer-
ences can also be used as supplements to the 
metformin target repertoire and are thoroughly 
described in the discussion section. In this study, 
we focused on the main mechanisms of metformin 
action on the common pathogenic targets of AD 
and T2D at pharmacological concentrations 
based on network pharmacology, bioinformatics 
analysis, and molecular docking. The flow chart is 
shown in Figure 1.

Materials and methods
Potential targets for metformin. Metformin tar-
gets were collected and integrated from Pub-
Chem, BATMAN-TCM, SwissTargetPrediction, 
PharmMapper, DrugBank, and references in 
PubMed for the past 5 years.

Potential pathogenic targets for AD and T2D. A 
search on GeneCards, OMIM, TTD, Drugbank, 
PharmGKB, and DisGeNET was performed with 
‘Alzheimer’s Disease’ and ‘Type 2 Diabetes Mel-
litus’ or ‘Diabetes Mellitus, Type 2’ as keywords to 
obtain the pathogenic genes for AD and T2D.

The plotting of the Venn diagram and the construction 
of the protein-protein interaction network. The 
active target genes of metformin intersect with the 
pathogenic targets of AD and T2D. The results 
were presented as a Venn diagram based on R soft-
ware. The intersected target genes were imported 
into the List of Names under Multiple Proteins on 
the STRING (https://cn.string-db.org/), and 
Homo sapiens were selected from the Organism. 
The minimum required interaction score was set 
to 0.400, disconnected nodes in the network were 
hidden, and the protein-protein interaction (PPI) 
network was constructed and downloaded as a 
high-resolution bitmap.

https://journals.sagepub.com/home/tae
https://cn.string-db.org/
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The construction of the PPI of core targets by Cyto-
scape 3.7.1 software. After completing the above 
steps on the STRING, the result was exported 
and downloaded as tabular text output in TSV 
format additionally. The TSV file was imported to 
Cytoscape 3.7.1 software (UC San Diego & UC 
San Francisco & Gladstone Institute, California, 
USA; University of Toronto ,Ontario, Canada) to 
obtain the network.  The following parameters 
were set in the Network Analyzer – Visualize 
Parameters module: map node size and color to 
degree. The plug-in named cytoHubba was down-
loaded in the APP Manager, and each gene was 
assigned by the cytoHubba according to the topo-
logical network algorithm. The top 10 targets in 
terms of degree were screened as core targets for 
subsequent analysis.

Enrichment analysis. Metascape (http://metascape.
org/), which contains data resources such as 
Gene Ontology (GO) and Kyoto Encyclopedia 
of Gene and Genomics (KEGG), has the advan-
tages of rich content and timely updates over 
DAVID.18 In this study, the enrichment of these 
targets in the KEGG pathway and GO was ana-
lyzed based on the Metascape. GO terms include 
Molecular Function (MF), Biological Processes 
(BP), and cellular components (CC). The cutoff 
criteria were p-value <0.01, a minimum overlap 
of 4, and a minimum enrichment of 1.5. The 
data that met the above criteria were arranged 
according to the requirements in the example. 
The third column was set to ‘count’ and 
arranged in descending order. The sorted data 
was imported into the online bioinformatics 
platform (http://www.bioinformatics.com.cn/) 
for image optimization to obtain a three-in-one 
histogram of BF, CC, and MF. The construction 
of the KEGG enrichment bubble chart was sim-
ilar to the above. The bar chart and the drawing 
data (pathway, enrichment, p-value, count) 
required in the example were exported in 
Metascape, and the drawing data was imported 
into the online platform to construct the dot 
bubble chart.

The construction of a network map of ‘compound-
target-pathway’. Targets were imported into the 
KEGG Mapper-Color to obtain the pathways in 
which the targets were contained. The network 
table file and attribute table file were constructed 
based on EXCEL, and these tables were imported 
into Cytoscape 3.7.1 to construct a ‘compound-
target-pathway’ network.

Molecular docking. Molecular docking of metfor-
min with the core targets was performed based on 
AutoDock 1.5.6, Pymol, and Chem3D 18.1. The 
metformin 2D structure file was first downloaded 
from PubChem, then imported into Chem3D 
18.1, optimized to a minimum energy structure, 
and saved in MOL2 format. PDB files for the 
crystal structures of candidate protein targets 
were downloaded from RCSB Protein Data Bank 
(https://www.rcsb.org/). The 10 core targets 
screened were used for molecular docking. Reso-
lutions between 1.5 and 2.5 Å are considered a 
good quality for docking studies.19 These proteins 
were imported into Pymol for removing solvent 
and organic and saved in PDB format. If the pro-
tein was a multimer of the same monomer, one of 
the monomers would be extracted. Ligand-recep-
tor complexes were introduced into AutoDock 
1.5.6 for hydrogenation and saved in PDBQT  
format as docking ligands. Set the active pocket to 
encompass the entire receptor as much as possi-
ble and obtain the active pocket coordinate 
parameters. Set the docking times to 20 in the 
Vina input parameters module, and save the gen-
erated txt file. The file in PDBQT format obtained 
by running vina was imported into Pymol for 
optimization and adjustment to obtain the molec-
ular docking conformation.

MD simulation. Molecular docking results often 
have errors with the actual situation. MD simula-
tion can simulate the dynamic process of protein-
drug interactions, discover potential lowest-energy 
conformations, and improve the rationality and 
accuracy of drug design.20 Currently, MD simula-
tion has been widely used for problems that are 
difficult to be solved solely by experiments, such 
as the pathogenic mechanisms of diseases caused 
by amyloid misfolding, virtual screening, drug 
and target interaction mechanisms, and drug 
resistance mechanisms caused by target muta-
tions.21 We used GROMACS 2020.5 software for 
MD simulation. AMBER99SB field was used for 
the protein system, GAFF field was used for met-
formin small molecule drugs, SPC/E water mol-
ecule model was used for water molecule model, 
and regular dodecahedron – water box was used 
for simulation box. Protein charge: add 3 NA +; 
NVT balance: 100ps; NPT equilibrium: 100ps. 
The root-mean-square deviation (RMSD), which 
indicates the sum of all atomic deviations from 
the resulting conformation and the target confor-
mation at a given time, is an important basis for 
measuring the stability of the system. We obtained 

https://journals.sagepub.com/home/tae
http://metascape.org/
http://metascape.org/
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https://www.rcsb.org/


X Shi, L Li et al.

journals.sagepub.com/home/tae 5

the RMSD results of the whole system and con-
ducted the analysis. The combined free energy 
was calculated with the MM/PBSA method. The 
Gibbs Energy Landscape shows that the overall 
conformation of the molecule is stabilized to the 
local minimum free energy during the simula-
tion.22 In this study, RMSD and Gyrate were used 
to map Gibbs Energy Landscape and obtain the 
docking results of the lowest energy 
conformation.

Results
Metformin targets prediction. Thirteen known 
active targets were obtained from PubChem, 101 
from BatMan, 1 from SwissTargetPrediction, 3 
from DrugBank, 74 from PharmMapper, and 
105 from Pubmed references. A total of 291 were 
obtained after deduplication.

AD and T2D pathogenic targets prediction. Eighty-
nine targets were obtained from the Drugbank 
database, 131 from TTD, 87 from Pharm GKB, 
123 from DisGeNET, 658 from OMIM, and 
10,973 from Genecards. We selected 3116 targets 
with a correlation score larger than 5 from Gene-
cards. A total of 3669 AD pathogenic targets were 
obtained after reweighting all targets.

For T2D pathogenic targets, 154 were obtained 
from the Drugbank database, 89 from TTD, 49 

from PharmGKB, 7 from DisGeNET, 513 from 
OMIM, and 5064 with correlation scores greater 
than 10 from Genecards. A total of 5283 T2D 
pathogenic targets were obtained after reweighing 
all targets.

Venn diagram of compound-diseases common tar-
gets. The Venn diagram is shown in Figure 2. The 
network constructed after hiding nodes is shown 
on the right side of Figure 2, which contains 115 
nodes and 864 edges, significantly higher than the 
expected 330 edges (p < 1.0e-16).

The acquisition of core targets. The PPI derived 
from STRING was imported into the PPI estab-
lished in Cytoscape 3.7.1, as shown in Figure 3 
(left). The color and size of the dots vary with the 
degree, with darker and larger circles indicating a 
higher degree. The average degree was 15.5 based 
on cytoHubba. The top 10 targets with the high-
est degree values are shown in Table 1, and the 
complete table is available in the supplementary 
material. The PPI network of core targets is shown 
in Figure 3 (right), including TP53, TNF, 
VEGFA, HIF1A, IL1B, IGF1, SIRT1, ESR1, 
CAT, and CXCL8.

Results of the enrichment analysis. The three-in-
one histogram of BP, CC, and MF GO enrich-
ment based on Metascape and the online 
bioinformatics platform is shown in Figure 4, 

Figure 2. Venn diagram showing the number of intersected targets: orange, purple, and blue circles represent 
the number of targets for metformin, AD, and T2D, respectively.

https://journals.sagepub.com/home/tae
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with ‘count’ indicating the number of genes 
enriched to the corresponding items. The results 
showed that BP was mainly enriched in response 
to the hormone, regulation of ion transport, and 
positive regulation of cell migration. CC are 
mainly enriched in the cell body, axon, membrane 
raft, and apical part of the cell. MF mainly 
involved kinase binding and signal receptor 

regulator activity. The KEGG pathway bubble 
map and histogram are shown in Figure 5. The 
p-value of bubble chart enrichment results is 
reflected by color. Genes are represented by bub-
ble size. Y-axis indicates pathway or disease, and 
X-axis indicates gene ratio. The KEGG pathway 
analysis indicated that these targets are mainly 
enriched in pathways in cancer, pathways of  

Figure 3. PPI diagram of drug-diseases common targets (left) and core targets screened by the cytoHubba 
(right).

Table 1. The 10 core targets with the highest degree ranking.

Rank Gene Name Protein Uniprot ID Degree

1 TP53 Cellular tumor antigen p53 P04637 64

2 TNF Tumor necrosis factor P01375 58

3 VEGFA Vascular endothelial growth factor A P15692 54

4 HIF1A Hypoxia-inducible factor 1-alpha Q16665 50

5 IL1B Interleukin-1 beta P01584 48

6 IGF1 Insulin-like growth factor I P05019 45

7 ESR1 Estrogen receptor P03372 41

8 SIRT1 NAD-dependent protein deacetylase sirtuin-1 Q96EB6 38

9 CAT Catalase P04040 34

9 CXCL8 Interleukin-8 P03372 34

9 LEP Leptin P41159 34

https://journals.sagepub.com/home/tae
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neurodegeneration, endocrine resistance and lon-
gevity regulating pathway.

Construction of the ‘metformin-target-pathway’ 
network based on Cytoscape. The pathways were 
acquired using the KEGG Mapper Color to 
embrace most core targets, and the ‘metformin-
target-pathway’ network was drawn using Cyto-
scape 3.7.1 software, as shown in Figure 6.

Molecular docking results. All predicted targets 
were successfully docked with metformin, and the 
docking binding energy results are shown in Table 
2. In general, stable docking models have negative 
binding energies, with binding energy <4.0 kcal/
mol indicating certain binding activity and <5.0 
kcal/mol indicating good binding activity.23 The 
lower the energy score, the stronger the ligand-
receptor binding capacity and the more stable the 

structure.24,25 In this study, stable docking models 
with specific binding sites, binding distances, and 
binding atoms were obtained. Among them, CAT 
was the most stable receptor binding to metfor-
min, with a binding energy of −6.0 kcal/mol. Met-
formin acted on GLU- 330 (2.1 Å and 2.7 Å) and 
two SER-120s (2.4 Å and 2.2 Å) amino acids resi-
dues through five hydrogen bonds (Figure 7(a)). 
The binding energy of TP53-metformin (Figure 
7(b)) is −5.6 kcal/mol, and metformin interacts 
with THR-230 (2.3 Å, and 2.4 Å) and SER-227 
(2.5 Å) via hydrogen bonding. The binding energy 
of SIRT1-metformin (Figure 7(c)) was −5.6 kcal/
mol, and metformin interacted with SER-442 
(1.8 Å) residues through hydrogen bonding.

Results of MD simulation. The CAT protein 
docked best with metformin molecular was 
selected for 50 ns MD simulation and system 

Figure 4. Enrichment analysis of the BP, CC, and MF modules.

https://journals.sagepub.com/home/tae
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stability analysis (Figure 8). A smaller RMSD 
value indicates a more stable conformation. In 
general, the optimal score for the RMSD value 
should be close to 2 Å.26 The results show that the 
structure of the CAT-metformin was relatively 
stable at around 30 ns, and the RMSD fluctuates 
at 0.2 nm (2 Å) attachment. Energy low-lying 
maps in the Gibbs Energy Landscape indicated 
low-energy conformations, as shown in Figure 9 
(left). The darker color indicates the lower binding 
energy. The lowest energy conformation is shown 
in Figure 9 (right). Metformin acts on AYP-259 
amino acid residue through three hydrogen bonds 
(3.1, 3.0, 3.0 Å). MM/PBSA further demonstrated 
the stability of metformin within the active pocket 
of the CAT protein. The total binding free energy 
obtained by the MM/PBSA calculation was 
−67.732 ± 16.655 kcal/mol.

Discussion
AD is one of the common neurodegenerative dis-
eases with progressive cognitive decline as its 

common clinical symptom. Metformin is a widely 
used drug for diabetes. It has recently been shown 
that diabetic patients receiving metformin have a 
lower risk of dementia and a slower cognitive 
decline.27,28 In experimental studies of non-dia-
betic animals, a meta-analysis29 and clinical 
research13,30 confirmed that metformin benefits 
the cognition of animals with AD. By integrating 
information from multiple databases, we obtained 
115 intersected targets for metformin in AD and 
T2D pathology. In order to further understand 
the interactions between these targets, we per-
formed GO and KEGG pathway enrichment 
analysis. The results suggested that metformin 
might affect AD with T2D mainly by regulating 
the pathways of cancer, neurodegeneration, and 
longevity regulation. Simultaneously, based on 
the cytoHubba plug-in, TP53, TNF, VEGFA, 
HIF1A, IL1B, IGF1, SIRT1, ESR1, CAT, and 
CXCL8 were considered as possible core targets 
of metformin for intervention in AD and T2D. 
The molecular docking results showed that met-
formin had the best affinity for CAT.

Figure 5. KEGG pathway enrichment analysis.

https://journals.sagepub.com/home/tae
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Although the exact mechanism of action of met-
formin is unclear, it is well established that it does 
not exert its therapeutic effect through inhibition 
of mitochondrial complex I in vivo, as was ade-
quately expressed by Triggle et al. 31 Below are the 
mechanisms at pharmacologic concentration, 
which is in keeping with the predicted affinity con-
centration of metformin for CAT, etc. (Figure 10).

Metformin exists as a cation in the body and is 
rarely bound to hemoglobin, but it can act as a 
substrate for organic cation transport proteins 
(OCTs), which are mainly mediated by OCT1 
from the blood into the liver and excreted from 
hepatocytes by the multidrug and MATE1.32,33 
The liver is the primary organ involved in glucose 
metabolism, and high expression of OCT1 in the 
liver can promote the absorption of metformin.34

Liver kinase B1 (LKB1) is mainly expressed in the 
nucleus and cytoplasm, and NR4A1 is one of the 
proteins that can directly bind metformin (NR4A1-
metformin binding energy: −5.0 kcal/mol). In vitro 
studies have shown that NR4A1 plays an impor-
tant role in metformin-mediated protection against 
vascular disorders in patients with T2D, which is 
independent of the effect on blood glucose.15 
Binding of NR4A1 to LKB1 in the nucleus attenu-
ates AMPK activation.14 However, they separated 
in reaction to metformin, and LKB1 was released 
and shuttled into the cytoplasm to activate AMPK 
in primary hepatocytes by increasing AMPK-
catalyzed phosphorylation of the α-subunit at 
Thr172.14,35–37 Activation of AMPK to inhibit glu-
coneogenesis is an anabolic process regulated pri-
marily through the cAMP response element 
binding (CREB) co-activation complex, which 

Figure 6. The ‘metformin-target-pathway’ network.

https://journals.sagepub.com/home/tae
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ultimately leads to reduced expression of glucose 
isomerase genes (PEPCK and G6Pase).37 In addi-
tion, the NR4A1-metformin interaction releases 
NR4A1 into the cytosol, where it is translocated 
into the mitochondria to inhibit the production of 
reactive oxygen species (ROS). This action has 
been demonstrated to maintain endothelial func-
tion in hyperglycemia.15 Notably, the endothelial 
protective effect of metformin was observed in the 
low micromolar range of 1–10 μM. This effect was 
associated with a protective effect due to a hyper-
glycemia-mediated reduction in mitochondrial 
production of ROS. Direct binding of metformin 
to HMGB1 inhibits its activity, which in turn 
inhibits its mediated inflammation.17 It has been 
also found that low doses of metformin specifically 
activate the lysosomal AMPK through a novel 
PEN2-ATP6AP1 pathway,16,38 axis inhibition pro-
tein 1 (AXIN) and late endosomal/lysosomal 
adaptor, MAPK and MTOR activator 
(LAMTOR1) are required in this process.38,39

Oxidative stress has been considered to be one of 
the most important factors in the development of 
AD and T2D.10,40–43Metformin may acts directly 
on these targets to reduce ROS and oxidative 
damage (Figure 11). Free radicals are active bio-
molecules produced in metabolic pathways or  
the physiological processes of immune cells.44 
They are important components in maintaining 

biological homeostasis. Free radicals mainly 
include ROS and reactive nitrogen species.45 In 
electron transfer, mitochondrial respiratory chain 
complexes inevitably leak electrons, and the 
leaked electrons interact with oxygen to form O2- 
and H2O2. Oxidative stress occurs when free radi-
cals exceed human antioxidant capacity and 
cannot be removed in time,46 causing cell dam-
age. Fortunately, most biological cells have an 
intrinsic defense mechanism45 that can protect 
them from free radical attack.47 This process 
involves a variety of enzymes, such as SOD, CAT, 
and GPX1. The relationship between different 
antioxidant enzymes is shown in Figure 12. CAT 
can decompose H2O2 into water and oxygen to 
avoid cell damage. In addition to the known 
direct interaction of NR4A1 with metformin to 
increase the expression of SOD1 and GPX1 to 
attenuate oxidative stress and reduce cellular 
damage,48,49 other potential targets of metformin, 
CAT, TP53, and SIRT1, may also play an impor-
tant role in oxidative stress. Under pathological 
conditions, oxidant-sensitive islet cells can cause 
oxidative damage under CAT inactivation or 
deficiency.50–52 Aβ causes increased levels of 
H2O2 and lipid peroxides to accumulate in cells.53 
CAT can resolve hydrogen peroxide and main-
tain intracellular redox homeostasis,45 protecting 
cells from Aβ toxicity and oxidative damage.53 
Metformin may promote endogenous antioxidant 

Table 2. Molecular docking results.

Predicting targets Binding energy (kcal/mol) PDB ID Protein Degree

CAT −6.0 1DGF Catalase 34

TP53 −5.6 5AOL Cellular tumor antigen p53 64

SIRT1 −5.6 4KXQ NAD-dependent protein 
deacetylase sirtuin-1

38

ESR1 −5.3 7QJY Estrogen receptor 41

IL1B −5 1L2H Interleukin-1 beta 48

CXCL8 −5 4XDX Interleukin-8 34

TNF −4.9 7KP9 Tumor necrosis factor 45

IGF1 −4.8 1TGR Insulin-like growth factor I 68

VEGFA −4.5 4QAF Vascular endothelial growth 
factor A

50

HIF1A −3 3HQU Hypoxia-inducible factor 
1-alpha

58

https://journals.sagepub.com/home/tae
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Figure 7. Binding models of metformin to central targets. Active residues are represented by stick models, 
yellow dashed lines represent hydrogen bonds, and metformin is represented by stick models: (a) CAT-
metformin, (b) TP53-metformin, and (c) SIRT1-metformin.

Figure 8. Changes of RMSD values in MD simulation. The purple, blue, and green fold lines represent the 
CAT-metformin complex (CAT-Met), metformin (Met), and CAT, respectively.

https://journals.sagepub.com/home/tae
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Figure 9. Gibbs Energy Landscape (left) and CAT-Met lowest energy conformation (right). Active residues are 
represented by stick models, yellow dashed lines represent hydrogen bonds, and metformin is represented by 
stick models.

Figure 10. Potential molecular mechanisms of metformin at pharmacological concentrations.
AMPK, AMP-activated protein kinase; ATP6AP1, v-type proton ATPase subunit S1; HMGB1, high mobility group protein 
B1; LKB1 liver kinase B1; M, metformin; MATE1, multidrug and toxin extrusion1; NR4A1, orphan nuclear receptor; PEN2, 
presenilin enhancer protein 2; OCT1, cation transporter1.
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effects by enhancing CAT effects, which is con-
sistent with the conjecture in ref.54

Dai et al. found a dose-dependent enhancement 
of CAT activity and a reduction in ROS in the 
presence of liver injury. The results showed that 
neither the expression level of CAT protein nor 
the activation of AMPK was responsible for the 
increased CAT activity. The molecular docking 
results indicated that metformin might interact 

with CAT residues through hydrogen bonding, 
leading to enhanced CAT activity.55 In their 
study, the binding mode of CAT-metformin in 
mice was simulated using a homology modeling 
approach (Uniprot ID: P24270) with a binding 
energy of −1.63 kcal/mol. In contrast, the present 
study simulated the binding mode of CAT-
metformin in humans (Uniprot ID: P04040) with 
a binding energy of −6.0 kcal/mol. In addition, we 
repeated Dai’s computer simulation experiments. 

Figure 11. Relationship between CAT and other related antioxidant targets.
FOXO3a: Forkhead box protein O3a; GPX1, glutathione peroxidase; GR, glutathione reductase; GSH, glutathione; GSSG, 
oxidized glutathione; NADP+: oxidized form of nicotinamide adenine dinucleotide phosphate; NADPH, nicotinamide adenine 
dinucleotide phosphate; PGC-1α: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; PIG3, p53-
inducible protein 3; SOD1, superoxide dismutase 1.

Figure 12. CAT-metformin (PDB ID: 3RGS).
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The results showed that the docking binding 
energy was −5.8 kcal/mol (PDB ID:3RGS). 
Metformin interacted with CAT through hydro-
gen bonding with residues TYR-358 and GLY-
147 (2.2A, 2.0A) and with ARG-72 and GLY-147 
residues via electrostatic interaction, as shown in 
Figure 12. The reason for the different results 
between the two is the different stencils used for 
modeling. In conclusion, if our simulation results 
are closer to the reality, it is more likely that the 
direct action of metformin on CAT residues is 
responsible for the dose-dependent enhancement 
of CAT activity and reduction of ROS in liver 
injury by metformin treatment, both in human 
and murine.

TP53 is a key regulator of intracellular ROS lev-
els.56 The relationship between TP53 and ROS is 
complex and mutually regulated.57 A recent study 
has shown that TP53 exhibits antioxidant and pro-
oxidant abilities under different stress intensities 
and cellular environments.56 After genotoxic stress, 
high levels of TP53 and the tumor protein PIG3 
synergistically inhibit CAT, leading to a shift in oxi-
dative/antioxidative balance toward an oxidative 
state, which may increase apoptotic cell death,58 
and metformin may reverse this deterioration.

Another potential direct target of metformin, 
SIRT1, is an ‘anti-aging’ gene dependent on an 
AMPK-mediated increase in nicotinamide phos-
phoribosyltransferase.59 The interaction of SIRT1 
downstream factors PGC-1α and FOXO3a can 
regulate the expression of CAT, which reduces 
ROS and protects cells from oxidative stress. In 
addition, other antioxidant enzymes such as man-
ganese superoxide dismutase and peroxiredoxin 3 
are also regulated by this pathway; the mecha-
nisms involved have been elaborated in detail by 
Olmos et al.60

However, whether CAT, TP53, and SIRT1 are 
direct targets of metformin needs to be verified in 
further experiments.

In addition, an interesting phenomenon was 
found during our study that the ‘longevity regula-
tory pathway’ may be one of its co-acting mecha-
nisms. However, there is still no evidence that 
metformin is anti-aging or life-extending in 
humans, and the evidence summarized by 
Mohammed et al. 61 suggests that the beneficial 
effects of metformin on aging and life occur 

primarily through indirect actions on cellular 
metabolism in patients with type 2 diabetes. 
These effects arise from its anti-hyperglycemic 
effect, enhanced insulin sensitivity, reduction of 
oxidative stress, and protective effects on endothe-
lial cells and vascular function. In contrast, the 
protective effects of metformin in healthy popula-
tions are still controversial and further explora-
tion is also necessary in the future.

Restrictions
Following are a number of issues that place some 
restrictions on the interpretation of our bioinfor-
matics analysis and computer simulation approach.

Expansion of target datasets
Since the drug databases were updated earlier 
and in smaller numbers, we expanded these target 
sets as much as possible by manual search.

Explanation of molecular docking results
Selection of protein crystal structure. A Uniprot 
ID usually has more than one protein crystal 
structure, and we selected the protein crystal 
structure based on different characteristics, 
such as the resolution and the presence of eutec-
tic ligands. The binding energy and molecular 
docking results obtained from different PDB ids 
may vary. Therefore, it is important to ensure 
that the proteins used in the experiments and 
the proteins in the calculation are of the same 
species when performing cellular or animal 
experiments.

Combined energy. Different docking softwares 
have different evaluation functions and docking 
methods. Even if the receptors and ligands are 
the same, the docking results may be slightly dif-
ferent. In the process of molecular docking, the 
highest binding energy is not necessarily the 
most correct one, and a more stable result can 
be selected by multiple docking. Docking can 
result in multiple poses and can bind to many 
different amino acid residues. Furthermore, 
molecular docking is used to predict the binding 
ability of the recipient ligand, and MD simula-
tion can further verify the results of molecular 
docking and the equilibrium state of binding, 
serving as a bridge between theories and experi-
mental results.
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Conclusion
In summary, this research revealed the potential 
molecular mechanism of action of metformin on 
AD and T2D through network pharmacology, 
molecular docking, and MD simulation. The 
molecular docking results showed that metformin 
had the best binding effect on the CAT target. MD 
simulation demonstrated the stability of the CAT-
metformin complex. The effects of target CAT, 
TP53, SIRT1, and NR4A1 in terms of oxidative 
stress were also investigated. Metformin exerts its 
effects on regulating oxidative stress, gluconeogen-
esis and inflammation, which may be the mecha-
nism of action of metformin to improve the 
pathological features of T2D and AD. The appli-
cation of network pharmacology and molecular 
docking provides new technologies and methods 
for drug research, which is useful for the efficient 
prediction and screening of relevant targets and 
pathways. However, these results are based on 
computer simulations and big data analysis, which 
needs to be further verified by cell or animal 
experiments.
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Appendix

Abbreviations

AD  Alzheimer’s disease
AMPK  AMP-activated protein kinase
ATP6AP1 V-type proton ATPase subunit S1
AXIN  Axis inhibition protein 1
BP  Biological process
BP53R2  P53-inducible ribonucleotide 

reductase M2
CAT  Catalase
CBP  CREB-binding protein
CC  Cellular component
CREB  cAMP response element binding
CRTC2/  CREB-regulated transcription
TORC2 coactivator 2T
CXCL8  Interleukin-8
ESR1  Estrogen receptor
FOXO3a Forkhead box protein O3a
GO  Gene Ontology
GPX1  Glutathione peroxidase
GSH  Glutathione
HIF1A  Hypoxia-inducible factor 1-alpha
HMGB1 High mobility group protein B1
IGF1  Insulin-like growth factor I

IL1B  Interleukin-1 beta
KEGG   Kyoto Encyclopedia of Gene 

and Genomics
LAMTOR1  Late endosomal/lysosomal adap-

tor and MAPK and MTOR acti-
vator 1

LEP  Leptin
LKB1  Liver kinase B1
MATE1 Multidrug and toxin extrusion 1
MD  Molecular dynamics
MF  Molecular function
MM/PBSA  Molecular mechanics with 

Poisson – Boltzmann and sur-
face area solvation

NR4A1/Nur77 Orphan nuclear receptor
OCTs  Organic cation transporters
OMIM   Online Mendelian Inheritance in 

Man
PEN2  Presenilin enhancer protein 2
PGC-1α  Peroxisome proliferator-acti-

vated receptor gamma coactiva-
tor 1-alpha

PharmPKB  Pharmacogenetics and Phar-
macogenomics Knowledge Base

PIG3   Tumor protein p53-inducible 
protein 3

PPI  Protein-protein interaction
RMSD  Root-mean-square deviation
SIRT1   NAD-dependent protein deacet-

ylase sirtuin-1
T2D  Type 2 diabetes
TNF  Tumor necrosis factor
TP53  Cellular tumor antigen p53
VEGFA  Vascular endothelial growth  

factor A
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