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Metabolic reprogramming is one of the emerging hallmarks of cancer cells. Various

factors, such as signaling proteins (S), miRNA, and transcription factors (TFs), may

play important roles in altering the metabolic status in cancer cells by interacting

with metabolic enzymes either directly or via protein-protein interactions (PPIs).

Therefore, it is important to understand the coordination among these cellular pathways,

which may provide better insight into the molecular mechanism behind metabolic

adaptations in cancer cells. In this study, we have designed a cervical cancer-specific

supra-interaction network where signaling pathway proteins, TFs, and microRNAs (miRs)

are connected to metabolic enzymes via PPIs to investigate novel molecular targets

and connections/links/paths regulating the metabolic enzymes. Using publicly available

omics data and PPIs, we have developed a Hidden Markov Model (HMM)-based

mathematical model yielding 94, 236, and 27 probable links/paths connecting signaling

pathway proteins, TFs, and miRNAs to metabolic enzymes, respectively, out of which

83 paths connect to six common metabolic enzymes (RRM2, NDUFA11, ENO2,

EZH2, AKR1C2, and TYMS). Signaling proteins (e.g., PPARD, BAD, GNB5, CHECK1,

PAK2, PLK1, BRCA1, MAML3, and SPP1), TFs (e.g., KAT2B, ING1, MED1, ZEB1,

AR, NCOA2, EGR1, TWIST1, E2F1, ID4, RBL1, ESR1, and HSF2), and miR (e.g.,

mir-147a, mir-593-5p, mir-138-5p, mir-16-5p, and mir-15b-5p) were found to regulate

two key metabolic enzymes, EZH2 and AKR1C2, with altered metabolites (L-lysine

and tetrahydrodeoxycorticosterone, THDOC) status in cervical cancer. We believe, the

biology-based approach of our system will pave the way for future studies, which could

be aimed toward identifying novel signaling, transcriptional, and post-transcriptional

regulators of metabolic alterations in cervical cancer.
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INTRODUCTION

Cervical cancer is the fourth most frequently occurring cancer
and the fourth leading cause of death in women worldwide
with an estimate of 5,70,000 cases and 3,11,000 deaths in
2018. Approximately 80–85% of the deaths from cervical cancer
occur in lower and middle-income countries compared to high-
income countries (1, 2). Squamous cell carcinoma (SCC) and
adenocarcinomas are the two main types of cervical cancer.
Above 90% of patients with cervical cancer belong to SCC (3).
The persistent infection with human papillomavirus (HPV), a
particularly high-risk type of HPV (mainly HPV16 and HPV18
type), is considered the primary cause of cervical cancer (4–6).
Only HPV16 and HPV18 types are responsible for almost 70%
of cases of cervical cancer globally (7). While infection by high-
risk HPV is necessary for developing cervical cancer, it alone may
not be sufficient. Various studies suggest that the pathogenesis
of cervical cancer depends on various other factors acting in
concert with disease-associated HPV types (8–10). Therefore, it
is important to understand the molecular mechanism behind the
development of cervical cancer.

Metabolic reprogramming is considered one of the emerging
hallmarks of cancer cells, and it is essential for cancer cell
growth and proliferation to evolve into a more aggressive
malignant state (11, 12). Understanding the coordination among
various biological pathways, such as gene-regulatory, signaling,
and metabolic pathways is important and may provide clues
into the molecular mechanism of metabolic adaptation in
cancer and associated cells. To understand that, one needs to
investigate the molecular mechanism by which the impact of
signaling, transcriptional, and post-transcriptional aberration
is transgressed to metabolic reprogramming. Various studies
demonstrated that the metabolic status in cancer cells is
regulated by oncogenic changes in signaling pathways (13–
15), transcription factors (TFs) (16–18), and miRNAs (19–21).
However, these studies are focused either on a single molecule
or pathways and may not capture the complex interconnectivity
among various biological processes.

To overcome the complexity of interconnected biological
pathways, biological approaches to efficient systems need to
be developed. Computational and/or mathematical model-based
system biology approaches provide an effective way to discover
new drug targets for cancer therapy (22, 23). Mathematical
model-based system biology approaches are successful for
signaling and metabolic network analyses (24–30). Mathematical
models for signaling pathways have been developed based on
logical models (27–30), kinetic models (31, 32), Petri nets (33),
decision tree (34), ordinary differential equations (35), and
linear programming (LP)-based model (22, 36). Previously, we
also have established a Hidden Markov Model (HMM)-based
mathematical model to analyze the signaling-metabolic (S-M)
interconnecting networks (37).

In the present study, we have designed a cervical cancer-
specific supra-interaction network model incorporating
transcriptome data onto a protein-protein interaction (PPIs)
network to investigate novel molecular targets and connections
regulating the status of metabolic enzymes. We have developed

a biology framework of a comprehensive system where signaling
(S) pathway proteins, miRNA, and TF-based gene-regulatory
modules are connected to metabolic (M) pathway proteins
through protein-protein interactors (PPIs; Figure 1). Initially,
network topologically IINs, such as a hub, central node (CN),
local network perturbing nodes (LNPNs), and global network
perturbing nodes (GNPN), were identified in different [S-M, TF-
metabolic (TF-M), and miRNA-metabolic] modules of cervical
cancer-specific networks using graph theory approach previously
reported by our laboratory (38). These IINsmay serve as potential
diagnostic and/or prognostic biomarkers in cervical cancer.
Furthermore, signaling pathway proteins, TFs, and microRNA
(miR) to metabolic enzymes interconnecting paths/links [S-PPI-
M, TF-target genes (TG)-PPI-M, and miR-TG-PPI-M] were
identified in cervical cancer. Publicly available transcriptomic
data derived from cervical cancer patients were incorporated into
the HMM-based mathematical modeling set-up to weigh and
rank the interconnecting link/paths in each module. Additional
confidence values based on biological and network topological
properties (hub, CN, GNPN, and LNPN) were assigned to each
gene/protein/miRNA in the paths/links identified after model
implementation to extract out high confident connections/links
specific to cervical cancer. In silico validation of these selected
genes/proteins/miRNAs and paths has been performed through
perturbation analysis, demonstrating the importance of
certain genes/proteins/miRNAs forming critical inter-pathway
connections. PPI links connecting to key metabolic enzymes,
such as RRM2, NDUFA11, ENO2, EZH2, AKR1C2, and TYMS,
are identified from signaling proteins (e.g., PPARD, BAD,
GNB5, CHECK1, PAK2, PLK1, BRCA1, MAML3, and SPP1),
TFs (e.g., KAT2B, ING1, MED1, ZEB1, AR, NCOA2, EGR1,
TWIST1, E2F1, ID4, RBL1, ESR1, and HSF2), and miR (e.g.,
mir-147a, mir-593-5p, mir-138-5p, mir-16-5p, and mir-15b-5p)
in cervical cancer scenario. Out of the six metabolic enzymes
that are commonly linked by 83 paths/links, EZH2 and AKR1C2
were mapped with deregulated metabolite status. Further,
comparative analysis of the identified genes/proteins/miRNAs
and the associated molecular pairs and paths in different
modules were performed using transcriptomics data obtained
from cervical, breast, and ovarian cancer patients. This study
led to novel inter–bio-molecular links between signaling, gene-
regulatory components, and metabolic enzymes paving the
probable way(s) to identify drug targets to inhibit cervical cancer
progression in a more specific manner.

MATERIALS AND METHODS

Messenger Ribonucleic Acid (mRNA) and
Micro Ribonucleic Acid (miRNA)
Expression Datasets
mRNA and miRNA expression datasets of cervical, breast cancer,
and ovarian cancer patients were extracted from the Gene
Expression Omnibus (GEO) database (39) to study the gene and
miRNA expression profiles. For the mRNA expression datasets,
similar microarray (Affymetrix microarrays) platforms were used
for each cancer type to minimize the undesirable variations that
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FIGURE 1 | Pictorial workflow of the study. CC, cervical cancer; S, signaling proteins; TF, transcription factor; miR, microRNA; M, metabolic proteins; PPI,

protein-protein interactors; CP, central proteins; LNPP, local network perturbing protein; GNPP, global network perturbing proteins.

occurred due to different microarray platforms. Further, the
cancer samples in each dataset were considered in a 1:1 ratio
with normal samples to avoid sample heterogeneity (as shown in
Table 1).

Differential Expression Analysis
The differential expression analysis of each dataset was
performed separately using the GEO2R web tool (40–42)
available at the GEO database. Genes having log2FC ≥ +1.5
and log2FC ≤ −1.5 were considered as upregulated and
downregulated genes, respectively. The genes with log2FC values
between −1.5 and +1.5 were considered only as neutrally
expressed genes (EG). Benjamini and Hochberg’s method (43)
was used to control the false discovery rate. Genes with an
adjusted p≤ 0.05 were considered significant. For ovarian cancer
datasets, the log2FC and p-value threshold of ± 2 and ≤0.01,
respectively, were considered for the selection of upregulated,
downregulated, and EG. For differential miRNA expression
adjusted p ≤ 0.05 and log2FC ≥ +1.0 and log2FC ≤ −1.0 were
considered as thresholds for the identification of upregulated and
downregulated miRNAs, respectively.

Construction of Human Protein-Protein
Interaction Network
The HPPIN was constructed by extracting experimentally
verified (confidence score ≥0.7) HPPIs available in the STRING
v11.0 (44) database. The resulting network (proteins as nodes and

edges demark interaction) consisted of 5,048 proteins and 18,044
interactions, respectively.

Construction of Cancer-Specific
Protein-Protein Interaction Network
Differentially expressed genes (dEXP) and EG from each cervical
cancer dataset (GSE9750, GSE63514, and GSE52904; Table 1)
were mapped onto the HPPIN to construct a cervical CC-
PPIN. The interactions were considered up to the second level
(i.e., interactors of interactors). In the first level, interactions
mediated by only deregulated genes were considered where their
interactors could be either deregulated or neutrally expressed.
The resulting network consisted of 2,240 proteins interconnected
via 5,452 edges. Similarly, breast and ovarian CC-PPINs were
constructed using the corresponding transcriptomic datasets
(Table 1).

Construction of Cancer-Specific
Transcriptional Regulatory Network
The transcriptional regulatory network was constructed
by collating deregulated TF-TG interaction and associated
protein-protein interactions. Experimentally verified strong
evidenced TF-TG interactions were retrieved from Human
Transcriptional Regulation Interactions database (HTRIdb)
(45) and Transcriptional Regulatory Relationships Unraveled
by Sentence-based Text mining (TRUSST) (46) databases and
were merged generating 22,480 interactions among 697 TFs
and 12,407 TG. The combined deregulated genes (differentially
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TABLE 1 | Differential expression analysis of mRNA and miRNA.

mRNA dataset Origin Normal

samples

Patient samples Up-Regulated Down-Regulated Neutrally expressed

Cervical cancer GSE9750 USA 19 19 330 634 4,338

GSE63514 USA 19 19 1,019 676 4,390

GSE52904 Mexico 17 17 177 322 6,228

Total – 45 45 1,250 1,331 10,053

Breast cancer GSE29044 Saudi Arabia 27 27 356 729 9,175

GSE42568 Ireland 17 17 1,270 1,343 7,636

GSE103512 USA 10 10 57 101 8,016

Total – 54 54 1,385 1,676 1,2717

Ovarian cancer GSE38666 USA 12 12 2,733 954 4,847

GSE54388 USA 6 6 232 527 4,087

GSE66957 USA 12 12 2,201 872 9,028

Total – 30 30 4,481 1,901 11,560

miRNA dataset Origin Normal

samples

Patient samples Up-regulated Down-regulated Neutrally expressed

Cervical cancer GSE30656 Netherland 10 10 4 12 NA

GSE81137 India 3 3 15 20 NA

Total – 13 13 19 31 NA

Breast cancer GSE45498 Switzerland 59 59 66 13 NA

GSE97811 Japan 16 16 39 15 NA

GSE143564 China 3 3 141 20 NA

Total – 78 78 197 40 NA

Ovarian cancer GSE23383 USA 3 3 53 15 NA

GSE47841 Norway 9 9 52 105 NA

GSE119056 China 3 3 55 147 NA

Total – 15 15 137 245 NA

expressed and neutrally expressed) of all the three datasets
(GSE9750, GSE63514, and GSE52904) were mapped on to
TF-TG interactions to filter the cervical cancer-specific TF-
TG interactions. In this study, only those interactions were
considered where both TFs and their TG were deregulated.
The deregulated TF-TG were further mapped to experimentally
verify HPPIs up to the second level, and only those interactions
were considered where the interacting partners were either
deregulated or expressed. Finally, the filtered TF-TG and PPI
interactions were merged to form the TF-TG-PPI network.
The resulting network consisted of 2,894 nodes interconnected
via 5,694 edges. Breast and ovarian cancer-specific TF-TG-PPI
networks were also constructed with the corresponding mRNA
transcriptomics data (Table 1) using the same protocol.

Construction of Cancer-Specific
Post-transcriptional Regulatory Network
The post-transcriptional regulatory network was constructed
by collating miRNA-TG interactions and protein-protein
interactions. The experimentally verified miRNA-TG
interactions were retrieved from mirTarbase (47) and Tarbase
(48) databases and merged, which consisted of 8,407 miRNA-
TG interactions forming among 743 miRNA and 2,891 TG.

Subsequently, the same procedure described for the construction
of the TF-TG-PPIN network was followed for the construction
of the miRNA-TG-PPIN network. The miRNA-TG-PPIN using
cervical cancer-specific miRNA transcriptomics data consisted of
1,017 edges connecting 1,718 nodes. Likewise, breast and ovarian
TF-TG-PPINs consisting of 2,668, 2,657 nodes and 6,197, 5,702
interactions, respectively, were also constructed.

Characterization of Cancer-Specific
Networks
The cancer-specific networks, PPIN, TF-TG-PPIN, and miRNA-
TG-PPIN, described above were compared with the respective
random networks of the same number of interactions. Ten
random networks were generated by the NetworkX program (49)
against each cervical cancer-specific network described above,
and the degree distribution of each network was compared with
the respective random networks. The degree distribution was
calculated using the following formula:

P
(

k
)

= nk/N

Where the degree distribution of network P(k) signifies the
fraction of the node with degree k. For the network with a node
size of N, nk nodes will have the degree k.
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Identification of IINs
Topologically IINs (genes/proteins/miRNA) of the constructed
cancer-specific networks described above were identified by
utilizing procedures based on graph theory methods described
earlier in Bhattacharyya and Chakrabarti (38). Identification of
important interacting genes/proteins/miRNAs in the network is
based on some independent network properties, such as hub
(highly connected nodes in the network), CNs of the network,
GNPN, and LNPN. The nodes (genes/proteins/miRNAs) that
were identified as topologically important in at least two
categories (Hub, CN, LNPN, and GNPN) were considered
as IINs.

Over-representation Analysis
Kyoto encyclopedia of genes and genomes (KEGG) pathway-
based ORA was performed with deregulated genes extracted
from the mRNA expression datasets used and IINs (except
miRNAs) identified in each of the regulatory networks described
above using “protein-coding gene set” as the reference gene set
in WebGestalt (50) web tool. The top 20 pathway categories
were ranked based on significant false detection rate (FDR)
calculated using Benjamini and Hochberg procedure (43) and
enrichment ratio.

Additionally, Gene Ontology (GO)-basedmolecular functions
and online mendelian inheritance in man (OMIM)-based disease
pathway over-representation analyses were also performed for
the deregulated genes/proteins in cervical cancer.

Construction of S-M Enzyme
Cross-Connecting Paths and Network
A signaling-metabolic inter-connection network was constructed
using 23 signaling pathway (cancer-specific) genes/proteins
and all the metabolic pathways (85 pathways) genes/proteins.
Signaling and metabolic gene/protein datasets were created
by extracting all the genes/proteins from the KEGG (51, 52)
database. All possible unique connections (maximum three
proteins involved in between) to a metabolic pathway protein
(M) were established through PPIs (up to the second level),
considering a signaling pathway protein (S) as a starting point
in the HPPIN. Four different types of linking paths were
established where signaling proteins were connected tometabolic
pathway proteins either directly (S-M) or via one (S-P-M), two
(S-P-P-M), or three (S-P-P-P-M) PPIs, respectively. NetworkX
program (49) was used to construct all possible signaling to
metabolic interconnecting paths. These paths/connections were
converted into a network to construct a signaling-metabolic
interaction network (SMIN).

Construction of TF to Metabolic Enzyme
Cross-Connecting Paths and Network
Connections between TFs and metabolic pathway genes/proteins
were established through TF-TG interactions and PPIs of TF-
TG (up to the second level) considering TFs as a source. In this
study, five different types of the path were established where TFs
were connected to metabolic pathway proteins either directly
(TF-TG/M), or TFs were connected to their TG, and their TG
were connected to metabolic proteins directly (TF-TG-M), or

through one (TF-TG-P-M), two (TF-TG-P-P-M), and three (TF-
TG-P-P-P-M) PPIs of TG, respectively. The resulting paths/links
were converted into a network to construct a TF-metabolic
interaction network (TFMIN).

Construction of miRNA to Metabolic
Enzyme Cross-Connecting Paths and
Network
MicroRNAs to metabolic pathway proteins interconnecting
all possible paths were established using the NetworkX
program (49). The miRs to metabolic pathway proteins
(M) interconnecting paths were established using miRNA-TG
interactions and PPIs (up to the second level) of miRNA TG
considering miRNA as the source. The resulting paths were
of five types viz; miRNA-TG/M, miR-TG-M, miR-TG/P-P-M,
miR-TG/P-P-P-M, and miR-TG/P-P-P-P-M paths. The resulting
paths were converted into a network to form a miR-metabolic
interconnecting network (miRMIN).

Contextualization of Regulatory Molecules
(Signaling Pathway Proteins, TF, and
miRNA) to Metabolic Enzyme
Cross-Connecting Paths and Network
The deregulated (upregulated and downregulated) and neutrally
EG and miRNAs identified from the cervical, breast, and
ovarian cancer patients specific transcriptomic datasets were
mapped onto all possible paths/connections mentioned
above to filter cancer-specific regulatory molecules (signaling
pathway proteins, TF, and miRNA) to metabolic enzymes
cross-connecting paths. For the signaling to metabolic
interconnecting paths/connections/links, the paths having
deregulated (upregulated and downregulated) genes/proteins at
the terminals and deregulated or EG/proteins in middle were
filtered out and converted into a network to form cervical, breast,
and ovarian cancer-specific signaling-metabolic interconnecting
subnetwork (CC-SMIN, BC-SMIN, andOC-SMIN, respectively).

Similarly, to construct the cancer-specific TF and miRNA
to metabolic interconnecting sub-networks (CC/BC/OC-TFMIN
and CC/BC/OC-miRMIN, respectively), the paths having
deregulated genes/miRNA at the terminal and their target and
deregulated or EG/proteins in the middle were considered.
The respective resulting paths were converted into a network
to form cancer-specific (CC/BC/OC-TFMIN and CC/BC/OC-
miRMIN) sub-networks.

Calculation of Edge Weight
The edge weights in each sub-networks (CC/BC/OC-SMIN,
CC/BC/OC-TFMIN, and CC/BC/OC-miRMIN) were defined in
terms of local entropy using an in-house program (37). The
probability of interactions of a gene/protein with its interactors
in the sub-network was determined by using the principle
of mass action to define the local entropy of a gene/protein.
The calculation of the interaction probabilities is based on the
assumption that two proteins known to interact will have a
higher probability of interaction when they are highly expressed.
The normalized expression values of sub-network genes in the
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samples of cancer patients used in this study were utilized to
calculate the interaction probabilities.

Calculation of Node Weight and
Effect-On-Node
To incorporate the importance and impact of the interactors
of a particular node in the sub-networks, the node-weight (Wi)
of every node i was defined based on its biological properties
[signaling cross-talk (SC) protein and rate-limiting enzyme
(RLE)], differentially expressed gene (dEXP), and network
topological properties [hub, CP, local network perturbing protein
(LNPP), and global network perturbing proteins (GNPP)] using
the following formula.

Wi =







1; if
(

dEXP = 1
7 , RLE = 1

7 , SC = 1
7 , HUB = 1

7 ,
CP = 1

7 , GNPP = 1
7 , LNPP = 1

7

)

0; else

Effect of interactors on a node in the sub-network was defined
as effect-on-node (effs) depending on the node weight of its
interactors up to the second level.

effs =

k
∑

j

(

n
∑

i

wi

ni
+

wj

nj

)

Where k is the degree of node s, ni is the degree of node i, nj is the
degree of node j, and wi and wj are the weights of nodes i and j.

Identification of Significant Regulatory
Molecules (S/TF/miR) to a Metabolic
Enzyme (M) Interconnecting Pairs and Path
To understand the information flow starting from a regulatory
molecule (S/TF/miRNA) to metabolic enzyme (M), cancer-
specific cross-connecting paths mentioned above were scored by
implementing an HMM-based mathematical model established
in our laboratory earlier (37). In this study, two separate models
were used to identify the significant S/TF/miR–M pairs (the
source; signaling pathway protein/TFs/miR; and destination:
metabolic pathway protein) and S/TF/miR–M interconnecting
paths. Model 1 was applied to identify the S/TF/miR–M pairs.
Model 2 was applied to identify the S/TF/miR–M interconnecting
paths between the S/TF/miR–Mpairs selected afterModel 1. Edge
weight and node weight of genes/proteins/miRNAs involved in
the S/TF/miR–M path were used to calculate the path scores.
The path score of each S/TF/miR to M linking path calculated
by Model 1 and Model 2 was converted into a statistical z-score
to identify paths deviating from the mean. A z-score (Z)≥ 1 filter
was applied to select the significant S/TF/miR–M pairs. Paths
having path score ≥ 80% of the highest path score for every
S/TF/miR–M pair were considered as significant S/TF/miR–M
interconnecting paths from Model 2.

All the networks were visualized and represented by using
Cytoscape (53). The signaling, TF, and miR to metabolic pathway
connections were represented as the Circos plot (54).

In-silico Perturbation Analysis
In-silico perturbation analysis was performed for each signaling
pathway protein, TF, and miRNA-based gene regulatory module
to identify the paths that change significantly upon removal of a
node (protein/TF/miRNA). To identify the key nodes in the final
paths/networks of every module, each of the nodes present in
the paths/network having z-score ≥ 1 was removed individually
from the HPPIN, and the path score was recalculated for the
resulting paths/network by using the HMMModels 1 and 2. The
perturbation score was calculated by using the average path score
before and after perturbation as below.

Perturbationscore = Pathscore′ − Pathscore

Where, Pathscore and Pathscore′ are average path scores before and
after perturbation, respectively.

The difference of average path score (before vs. after
perturbation) for each perturbed node was converted into a z-
score (Z), and the nodes for which z-scores deviated from the
mean as −1 ≥ Z ≥ 1 were selected as effective or key nodes in
significant paths/network.

Metabolomics Data Collection and
Integration Into Cancer-Specific Paths
The deregulated metabolites in cervical, breast, and ovarian
cancer patient were extracted from literature (55–57).
The cervical cancer metabolomic dataset consisted of 55
downregulated and seven upregulated metabolites. Twenty-one
downregulated and 41 upregulated metabolites were found in
breast cancer whereas the ovarian cancer metabolomic dataset
consisted of 46 downregulated and 116 upregulated metabolites.
The metabolic genes corresponding to these metabolites were
obtained from the Human metabolome database (HMDB) (58).
The deregulated metabolites were mapped to the paths obtained
after model implementation.

Survival Analysis
Kaplan-Meier (KM) plotter software (59, 60) was used to
perform the overall survival (OS) analysis of the constituent
genes/miRNAs of the identified cross-pathway paths/links. We
used a KM plotter using survival and expression data of
307 cervical cancer patients obtained from the TCGA dataset
(project ID: TCGA-CESC; phs000178). To estimate the survival
prognostic value of a specific gene/miRNA, the patient samples
were divided into high- and low-expression cohorts according
to the median expression of the given gene/miRNA, and KM
plots were created. Additionally, the hazard ratio (HR) and
the log-rank p-value were calculated. The survival estimate of
a gene/miRNA with a p-value < 0.05 was considered to be
statistically significant.

Drug/Chemotherapy Response Analysis
The receiver operator characteristic (ROC) plotter (61) was
used to predict the utility of the genes as predictive biomarkers
with respect to drug/chemotherapy response. ROC plotter is
capable to link gene expression and response to therapy using
transcriptome-level data of 3,104 breast cancer patients.
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FIGURE 2 | Differential expression analysis of transcriptomic datasets associated with cervical cancer. (A–C) represent the overlap of upregulated, downregulated,

and EG, respectively. (D–F) show the overlap of upregulated, downregulated, and expressed miRNAs, respectively.

RESULTS

mRNA and miRNA Expressions in Cervical
Cancer Patients
The individual differential expression analysis of three different
cervical cancer mRNA expression datasets (GSE9752, GSE63514,
and GSE52904) leads to the identification of several upregulated,
downregulated, and neutrally EG in cervical cancer (Figure 2,
Table 1). However, a comparison of the gene expression
patterns across datasets showed that only 54 upregulated,
59 downregulated, and 421 neutrally EG were found to be
overlapped (Figures 2A–C). The differential expression analysis
of miRNA resulted in four upregulated, 12 downregulated,
and 110 neutrally expressed miRNAs in GSE30656 and 15
upregulated, 20 downregulated, and 103 neutrally expressed
miRNAs in the GSE81137 dataset (Figures 2D–F).

Over-representation analysis-based enrichment for cellular
pathways, molecular functions, and biological processes was
performed using a merged list of deregulated (upregulated
and downregulated) genes of all the three mRNA datasets.
Supplementary Figures 1A,B show the top 20 most enriched
pathway filters based on FDR for proteins encoded by
upregulated and downregulated genes, respectively. Most highly
enriched pathways were found to be DNA replication (p =

4.42E−13) and arachidonic acid metabolism (p = 2.76E−08)
for the proteins encoded by upregulated and downregulated
genes, respectively. GO-based molecular function and biological
process ORA was also performed using deregulated genes
in cervical cancer. The most significantly enriched molecular

functions were found to be collagen binding (p = 4.36E−07)
and oxidoreductase activity (p = 4.35E−04) for proteins encoded
by upregulated and downregulated genes, respectively. However,
microtubule cytoskeleton organization involved in mitosis (p =

2.13E−14) and peptide cross-linking (p = 8.81E−11) were highly
enriched biological processes, for upregulated gene-encoded
proteins and downregulated gene-encoded proteins, respectively
(Supplementary Figure 1).

Construction and Characterization of
Cervical Cancer-Specific Networks
The cervical CC-PPIN, TF-TG-PPIN, and miR-TG-PPIN were
constructed by mapping differentially expressed genes, miRNA,
and neutrally EG from each cervical cancer dataset (see Methods;
Supplementary Figures 2A, 3A, 4A, respectively). The resulting
CC-PPIN, TF-TG-PPIN, and miR-TG-PPIN were validated by
comparing them with corresponding 10 random networks of the
same size. The degree distributions of CC-PPIN, TF-TG-PPIN,
and miR-TG-PPIN networks followed the Power law and were
considered to have scale-free organization. However, the degree
distribution of 10 corresponding random networks showed
binomial distribution (Supplementary Figures 2B, 3B, 4B).

IINs in Cervical Cancer-Specific Networks
Network topologically important nodes, such as hubs (highly
connected nodes in the network), CNs, LNPNs, and GNPNs
in a scale-free network could play important roles in
maintaining the network integrity and function. Various
topologically important interacting genes/proteins/miRNAs
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(hubs, CN, GNPN, and LNPN) in cervical cancer-specific
networks (CC-PPIN, TF-TG-PPIN, and miR-TG-PPIN) were
identified by implementing a graph theory-based method
described earlier by Bhattacharyya and Chakrabarti (38).
A total of 165, 167, 96, and 67 nodes/proteins in CC-
PPIN (Supplementary Figure 2C, Supplementary Table 1),
62, 36, 60, and 80 nodes/genes/proteins in TF-TG-PPIN
(Supplementary Figure 3C, Supplementary Table 2), and 45,
45, 30, and 24 nodes/genes/proteins/miRNAs in miR-TG-PPIN
(Supplementary Figure 4C, Supplementary Table 3) were
identified as hubs, CNs, GNPNs, and LNPNs, respectively. The
nodes/genes/proteins/miRNAs common in at least any two of the
four categories (hubs, CN, GNPN, and LNPN) were considered
as IINs in cervical cancer networks. When the IINs from each
network were compared, 30 IINs were found to be common in
CC-PPIN and TF-TG-PPIN, 38 IINs were common in CC-PPIN,
and miR-TG-PPIN, and 17 IINs were shared by TF-TG-PPIN
and miR-TG-PPIN. However, 17 IINs were found to be common
in all three cervical cancer networks (Supplementary Figure 5A,
Supplementary Table 4).

Over-representation analysis-based pathway enrichment was
performed using IINs in the above described cervical cancer-
specific regulatory networks. Top three enriched pathways were
found to be DNA replication (p = 1.30E−10), basal TFs (p
= 3.07E−10), and cell cycle (p = 0.00) for IINs in CC-PPIN
(Supplementary Figure 2D). DNA replication (p = 1.21E−10),
mismatch repair (p = 1.29E−04), and cell cycle (p = 1.44E−15)
were the top three enriched pathways for IINs in TF-TG-
PPIN (Supplementary Figure 3D), respectively. However, for
IINs (except miRNA) of miR-TG-PPIN, top three enriched
pathways were found to be DNA replication (p = 8.88E−16),
cell cycle (p = 0.00), and mismatch repair (p = 5.23E−06;
Supplementary Figure 4D). When the top 20 enriched pathways
for IINs in each network were compared, 8 enriched pathways
were found to be common (Supplementary Figure 5B). The
common pathways were cell cycle, DNA replication, nucleotide
excision repair, mismatch repair, prostate cancer, herpes simplex
infection, oocyte meiosis, and viral carcinogenesis pathways.

S-M Enzyme Cross-Connecting Paths and
Network in Cervical Cancer
Experimentally supported HPPIs (experimental score ≥ 0.7)
were utilized to establish all possible S-M cross-connecting paths,
where signaling pathway proteins were connected to metabolic
enzymes either directly (S-M paths) or via one (S-P-M paths), two
(S-P-P-M paths), and three (S-P-P-P-M paths) PPIs in between
them. The resulting S-M cross-connecting paths consisted of 210
direct (S-M) connections, 2,669 via one PPI (S-P-M), 40,266
via two PPIs (S-P-P-M), and 7,35,395 via three PPIs (S-P-P-P-
M) interconnections. These interconnections/paths were formed
between 210, 1,697, 7,965, and 28,920 S-M pathway protein pairs,
respectively. These S-M paths were converted into a network
to form a SMIN, which consisted of 11,442 interactions formed
among 2,603 genes/proteins.

To understand the flow of information from a signaling
protein to metabolic enzymes probably leading to metabolic

adaptations in the case of cervical cancer cells, we mapped
differentially expressed (up and downregulated) and neutrally
EG onto the abovementioned S-M interconnecting paths. The
S-M paths having deregulated genes at the terminal and
deregulated or EG in middle were extracted and considered for
further analysis. The resulting paths/interconnections consisted
of four (S-M), 47 (S-P-M), 639 (S-P-P-M), and 10,311 (S-P-
P-P-M) paths formed between 4, 39, 180, and 631 S-M pairs,
respectively. The filtered paths were converted into a network
to construct the cervical cancer-specific SMIN (CC-SMIN)
network. The CC-SMIN consisted of 1,425 interactions forming
among 439 genes/proteins.

To identify the potential disease-specific paths/pairs, each
node and each edge of the CC-PPIN network were weighted
based on their biological properties, differential expression
status, and network topological properties (hubs, CN, GNPN,
and LNPN) of CC-PPIN. Local signaling entropy (Si) was
integrated to understand the system-level network property. The
significance of each node (gene/protein) in the cancer-specific
network was estimated in the form of effect-on-node (effs) based
on SC, RLE, dEXP (differentially expressed genes), hub, CN,
GNPN, and LNPN, respectively. To identify the probable and
significant paths of information flow from signaling pathway to
metabolic pathway in cervical cancer cells, local signaling entropy
(Si) and effect-on-node (effs) properties were incorporated as
node weights. The edge weight of every two interacting nodes
of CC-PPIN was defined as the probability of interaction using
their normalized expression value in cervical cancer patient
samples. Node weight and edge weight were integrated into
HMM-based mathematical models (Models 1 and 2) to identify
S-M linking pairs and paths. Model 1 was applied to identify the
S-M pairs (the source signaling pathway protein and destination
metabolic pathway protein). Model 2 was applied to identify the
S-M interconnecting paths between the S-M pairs selected after
Model 1. The path score of each S-M linking path calculated
by Models 1 and 2 was converted into a statistical z-score to
identify paths deviating from the mean. A z-score ≥ 1 filter
was applied to select the significant S-M pairs. Using these
filtering criteria, we identified 81 S-M pairs and 94 S-PPI-M
paths in cervical cancer. The selected paths were converted into a
network to form a significant CC-PPIN network which consisted
of 152 interactions forming among 135 genes/proteins (Table 2,
Figure 3A).

Mapping pathway information to the terminal nodes (source
signaling protein and destination metabolic enzyme) showed
that the Ras signaling pathway had maximum connections
(50) to all the six metabolic pathways followed by cell cycle
(44), Map-kinase (44), epidermal growth factor receptor
(EGFR) signaling pathway (42), and p53 signaling pathway
(34), respectively. However, among metabolic pathways,
nucleotide metabolism had maximum connections (87) with
signaling pathways, followed by amino acid (63), energy (58),
xenobiotics (44), carbohydrate (42), and lipid metabolism
(11), respectively. 1:1 interconnections between signaling and
metabolic pathways showed that the cell cycle had maximum
connections with nucleotide metabolism (18 connections;
Figure 3B, Supplementary Table 5).
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Mapping the deregulated metabolites in cervical
cancer to significant S-M paths yielded 12 S-PPI-M
interconnections/paths where four metabolites [L-lysine,
oxoglutaric acid, tetrahydrodeoxycorticosterone (THDOC),
and pyruvic acid] were regulated by eight signaling pathway
proteins (BAD, CHEK1, GNB5, MAML3, MAP3K1, PAK2,
PPARD, and SPP1). The metabolic enzymes connecting these
four metabolites were enhancers of zeste homolog 2 (EZH2),
procollagen lysine hydroxylase and glycosyltransferase LH3
(PLOD3), aldo-keto reductase family 1 member C2 (AKR1C2),
and 3-mercaptopyruvate sulfurtransferase (MPST). L-lysine is
the substrate of both EZH2 and PLOD3. Whereas, THDOC and
pyruvic acid are the products of metabolic enzymes AKR1C2 and
MPST, respectively. Hence, these paths/connections showed the
correlated status of themetabolic enzymes and the corresponding
metabolites (Figure 3C).

TF to Metabolic Enzyme Cross-Connecting
Paths and Network in Cervical Cancer
All possible paths/links connecting TF to the metabolic enzyme
(M) were established using TF-TG interaction and HPPIN (refer
toMethods). The resulting paths/links consisted of 930 TF-TG/M
paths, 4,276 TF-TG/P-M, 114,844 TF-TG/P-P-M, 9,384,069 TF-
TG/P-P-P-M, and 188,563,171 TF-TG/P-P-P-P-M paths forming
between 930, 2,299, 9,121, 33,676 and 90,477 TF-M pairs,
respectively. These paths were converted into a network to
form a TFMIN.

All possible TF-TG-PPI-M paths were filtered by mapping
deregulated and neutrally EG to establish the context-specific
(cervical cancer-specific) paths and network. The resulting paths
consisted of 89 TF-TG/M, 20 TF-TG/P-M, 110 TF-TG/P-P-
M, 1,262 TF-TG/P-P-P-M, and 21,016 TF-TG/P-P-P-P-M paths
formed between 89, 17, 53, 162 and 508 TF-M pairs, respectively.
The filtered paths were converted into a network to construct the
cervical cancer-specific TFMIN (CC-TFMIN), which consisted of
815 nodes and 2,364 edges formed among them.

Each node and each edge in the CC-TFMIN were weighted
to identify the potential significant paths in the cervical
cancer-specific network. Node weights and edge weights were
incorporated into HMM-based mathematical models (Models
1 and 2) to identify TF-M pairs and TF-PPI-M paths forming
between them (refer to Methods). Model 1 resulted in the
identification of 172 significant (z ≥ 1) TF-M pairs and Model
2 resulted in 236 significant TF-PPI-M paths connecting the
TF-M pairs obtained after Model 1. The significant TF-PPI-M
paths in cervical cancer were converted into a network to form
significant CC-TFMIN that consisted of 179 interactions among
141 genes/proteins (Figure 4A, Table 3).

The metabolic pathway information was mapped onto
the terminal metabolic enzymes of the significant TF-PPI-
M paths to identify metabolic pathways that are highly
connected to specific TFs. Nucleotide metabolism yielded
maximum connections followed by energy metabolism, amino
acid metabolism, carbohydrate metabolism, lipid metabolism,
and xenobiotics biodegradation and metabolism (Figure 4B,
Supplementary Table 6).
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FIGURE 3 | Significant signaling-metabolic pathway interconnecting paths/network in cervical cancer. (A) represents a significant signaling metabolic interaction

network, (B) shows the signaling metabolic pathways interconnectivity, and (C) shows the significant signaling to metabolic paths regulating metabolites in cervical

cancer. Terminal signaling pathway proteins and metabolic enzymes are colored in purple and blue. Protein-protein interactors are colored in orange. Protein-protein

interactions are represented by orange edges. Nodes with an asterisk (*) are key or effector nodes in the significant paths/network.

Mapping of deregulated metabolites onto the terminal
metabolic enzymes resulted in 28 paths where four metabolites
were deregulated in cervical cancer. The deregulated metabolites
were L-lysine, oxoglutaric acid, pyruvic acid, and THDOC. L-
lysine was found to be linked with AR, ESR1, ZEB1, NCOA2,
HSF2, RBL1, ID4, E2F1, EGR1, MED1, TWIST1, KAT2B, ING1,
and PGR TFs via 19 different paths. Oxoglutaric acid was linked
with PGR, EGR1, and ESR1 via three paths. MED1 was found
to be regulating (probably) pyruvic acid whereas THDOC was
found to be linked with AR, TWIST1, and ING1 in four different
paths (Figure 4C).

miR to Metabolic Enzyme
Cross-Connecting Paths and Network in
Cervical Cancer
Similar to SMIN and TFMIN, all possible paths/links were
established considering miRNA as a source node and metabolic
enzymes as a destination by collating miRNA-TG interactions

and HPPIN. The resulted paths/links consisted of 577 direct
(miR-TG/M) paths, 1,145 via their TG (miR-TG/P-M), 26,330
via one PPI (miR-TG/P-P-M), 826,207 via two PPI (miR-
TG/P-P-P-M), and 33,934,931 via three PPI (miR-TG/P-P-P-
P-M) paths formed by 577, 1,128, 9,904, 44,271, and 111,730
miR-M pairs, respectively. The deregulated miRNA, genes, and
neutrally EG were mapped onto all possible miR-PPI-M paths to
filter the cervical cancer-specific miRNA to metabolic enzymes
interconnections. The filtered paths/links consisted of 13 miR-
TG/M, 1 miR-TG/P-M, 7 miR-TG/P-P-M, 95 miR-TG/P-P-P-M,
and 1,851 miR-TG/P-P-P-P-M paths formed between 13, 1, 7,
38 and 149 miR-M pairs, respectively. The resulted paths were
converted into a network to form a cervical cancer-specific miR-
metabolic enzyme interaction network (CC-miRMIN) which
consisted of 309 nodes and 952 interactions among them
(Table 4).

The nodes and edges in the CC-miRMIN were weighted
based on their biological properties, differential expression status,
and network topological properties in cervical cancer-specific
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FIGURE 4 | Significant Transcription factor-metabolic pathway interconnecting paths/network in cervical cancer. (A) represents a significant transcription factor

metabolic interaction network, (B) shows the transcription factor to metabolic pathways interconnectivity, and (C) shows the significant transcription factor to

metabolic paths regulating metabolites in cervical cancer. Terminal transcription factors and metabolic enzymes are colored green and blue. Protein-protein interactors

are colored in orange. Gene regulatory edges are represented as black arrows and protein-protein interactions are represented by orange edges. Nodes with an

asterisk (*) are key or effector nodes in the significant paths/network.

miR-TG-PPIN. After the incorporation of HMM Model 1, 22
significant (Z ≥ 1) miR-M pairs were identified. HMM, Model
2, resulted in the identification of a total of 27 miR-PPI-M paths,
where 22 significant miR-M pairs obtained after Model 1 were
connected via their TG and PPIs. The resulting miR-PPI-M paths
were converted into a network to form significant CC-miRMIN
that consisted of 59 nodes and 67 interactions among them
(Figure 5A).

Mapping metabolic pathway information to the terminal
metabolic enzymes in significant miR-PPI-M paths showed
that amino acid metabolism was highly regulated by miRNAs,
followed by nucleotide metabolism, xenobiotics biodegradation
and metabolism, energy metabolism, carbohydrate metabolism,
and lipid metabolism (Figure 5B).

After mapping deregulated metabolites to the terminal
metabolic enzymes, 13 miR-PPI-M paths were found to regulate
the metabolites. L-lysine was found to be linked/regulated by

miR-138-5p, miR-223-3p, miR-203a-3p, miR-593-5p, miR-15b-
5p, miR-16-5p, and miR-147a via 11 miR-PPI-M paths. THDOC
was found to be linked with miR-593-5p and miR-193b-3p via
two different miR-PPI-M paths (Figure 5C).

In-silico Perturbation of Nodes in the Final
Weighted Paths/Network
In-silico perturbation analysis was performed to identify
the paths that change significantly upon removal of a node
(protein/TF/miRNA). To identify the key nodes in the final
paths/networks of every module, each of the nodes present in
the paths/network having Z ≥ 1 was removed individually from
the HPPIN, and the path score was recalculated for the resulting
paths/network by using HMMModels 1 and 2. Accordingly, new
significant pairs and paths were identified based onModels 1 and
2, respectively. The difference of average path score (before vs.
after perturbation) for each perturbed node was converted into a
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TABLE 3 | Transcription factor to metabolic pathways interconnecting paths and pairs.

Connection types Pairs and paths

TF-Metabolic interaction

network (TFMIN)

Cervical cancer (CC) Breast cancer (BC) Ovarian cancer (OC)

Significant CC-TFMIN Significant BC-TFMIN Significant OC-TFMIN

Model 1

pair selection

Model 2

paths selection

Model 1

pair selection

Model 2

paths selection

Model 1

pair selection

Model 2

paths selection

Pairs Paths Z ≥ 1

Pairs

Z ≥ 1 or

score ≥ 80%

paths

Z ≥ 1

pairs

Z ≥ 1 or

score ≥ 80%

paths

Z ≥ 1

pairs

Z ≥ 1 or

score ≥ 80%

paths

TF-TG/M 930 930 6 14 2 2 2 3

TF-TG/P-M 2,299 4,276 5 6 3 4 5 12

TF-TG/P-P-M 9,121 114,844 10 9 11 18 4 17

TF-TG/P-P-P-M 33,676 9,384,069 53 66 46 87 116 155

TF-TG/P-P-P-P-M 90,477 188,563,171 159 141 251 200 562 482

Total 91,790 193,067,290 172 236 261 311 577 669

TF-TG/M, TFs connected to metabolic pathway proteins; TF-TG-M, TFs connected to TG and TG connected to metabolic proteins directly; TF-TG-P-M, TFs connected to TG and TG connected to metabolic proteins directly through

one PPI of TG; TF-TG-P-P-M, TFs connected to TG and TG connected to metabolic proteins directly two PPIs of TG; TF-TG-P-P-P-M, TFs connected to TG and TG connected to metabolic proteins directly three PPIs of TG.

TABLE 4 | microRNA to metabolic pathways interconnecting paths and pairs.

Connection types Pairs and paths

miRNA-Metabolic interaction

network (miRMIN)

Cervical cancer (CC) Breast cancer (BC) Ovarian cancer (OC)

Significant CC-miRMIN Significant BC-miRMIN Significant OC-miRMIN

Model 1

pair selection

Model 2

paths selection

Model 1

pair selection

Model 2

paths selection

Model 1

pair selection

Model 2

paths selection

Pairs Paths Z ≥ 1

pairs

Z ≥ 1 or

score ≥ 80%

paths

Z ≥ 1

pairs

Z ≥ 1 or

score ≥ 80%

paths

Z ≥ 1

pairs

Z ≥ 1 or

score ≥ 80%

paths

miR-TG/M 577 577 1 2 9 9 0 0

miR-TG/P-M 1,128 1,145 1 1 4 6 2 2

miR-TG/P-P-M 9,904 26,330 2 2 14 34 5 8

miR-TG/P-P-P-M 44,271 826,207 6 7 42 73 21 38

miR-TG/P-P-P-P-M 111,730 33,934,931 20 15 299 291 139 118

Total 112,745 34,789,190 22 27 325 413 150 166
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z-score and the nodes for which z-scores deviated from the mean
as−1≥ Z≥ 1 were selected as effective or key nodes in significant
paths/networks. Sixteen nodes/proteins (CDC5L, PAK2,
CHECK1, NDUFA9, MCM, POLA1, PIK3CA, PIK3R1,
PDGFRA, LUC7L3, SERPINE1, VTN, ZRANB2, TYMS, CD14,
and NDUFA11) in the signaling module (Figure 2A), 16
nodes/proteins (CDKN2A, POLA1, CDC45, CCND1, MCM5,
CDC7, RRM2, MCM3, DHFR, AKR1C3, AKR1C2, AKR1C1,
RRM1, TYMS, AR, and E2F1) in TF-based gene regulatory
module (Figure 4A), and nine nodes/miRNA/proteins (CDK2,
MCM3, mir-147a, AKR1C2, CDC5L, PLK1, mir-593-5p, TYMS,
and mir-196a-5p) in miRNA-based gene regulatory module
(Figure 5A) were identified as an effector or key nodes in the
significant paths/networks.

S, TF, and miR Cross-Talks in Cervical
Cancer
Comparing cervical cancer-specific significant S-PPI-M, TF-PPI-
M, and miR-PPI-M paths or links discussed above resulted in
the identification of 83 paths/links where six metabolic enzymes
(RRM2, AKR1C2, ENO2, TYMS, EZH2, and NDUFA11)
were probably regulated by signaling pathway proteins (BAD,
PPARD, GNB5, TF, PAK2, RBL1, CDK2NC, TRAF5, CFTR,
AKT3, MAP3K1, IL1R1, RICTOR, TNFRSF1B, CHEK1 BRCA1,
MAML3, SPP1, PLK1, ATP6V1C2, and SERPINE1), TFs (TGIF1,
FOSL1, E2F1, TWIST1, ING1, HSF2, ESR1, RBL1, ID4, EGR1,
NCOA2, ZEB1, AR, MED1, KAT2B, FOXM1, and KLF8), and
miRs (miR-593-5p, miR-15b-5p, miR-106b-5p, miR-147a, miR-
494-3p, miR-138-1-3p, miR-196a-5p, miR-138-5p, miR-16-5p,
and miR-223-3p) (Figure 6). Out of six metabolic enzymes,
AKR1C2 and EZH2 were mapped to the deregulated metabolites
THDOC and L-lysine, respectively (Figures 6B,D).

Survival Analysis of the Genes/miRNAs of
Identified Paths/Links in Cervical Cancer
Potential prognostic values of the genes and miRNAs of
the signaling, transcriptional and post-transcriptional cross-
connecting paths/links to metabolic enzymes in cervical cancer
patients were explored by evaluating the correlation and OS. A
total of 53 genes and 10 miRNAs were found to be significantly
associated with the OS in the log-rank test with a p < 0.05
(Supplementary Table 12). Mapping these genes and miRNAs
onto the corresponding cross-connecting paths/links yielded
16, 34, 20, and 9 paths/links to have 1–25, 26–50, 51–75,
and 76–100% of their component as a prognostic marker
in cervical cancer patients (Figure 7A). Almost all the final
selected paths/links (79 out of 83) possess at least one node
(gene/miRNA), whose expression is significantly associated with
cervical cancer patients’ survival. In total, 38% (30 out of 79)
of the selected paths/links have more than 50% nodes to be
significant (p < 0.05) prognosis marker (Figure 7A). Further,
we checked the status of these prognostic markers in different
types of paths/links. Most of the two-component (2C) paths were
found to have 100% of their component as a prognostic marker.
Three-component (3C) paths were found to have 51–75% of their
component nodes as a prognostic marker. Similarly, significantly

higher numbers of longer or higher component paths (e.g., 4, 5,
and 6C, respectively) also possess more than 25% of their nodes
as a prognostic marker (Figure 7B).

S, TF, and miR Cross-Talks in Breast and
Ovarian Cancers
To investigate whether the cross-pathway links are specific
to cervical cancer, we identified such paths from two other
female-specific cancers, such as breast and ovarian cancers. As
mentioned in the Methods, paths originating from S, TF, and
miR connecting metabolic enzymes (M) were identified in breast
and ovarian cancers using the cancer-specific transcriptomics
data mapping followed by implementation of HMM-based
mathematical models. A total of 2,79, 311 and 413 S-PPI-
M, TF-PPI-M, and miR-PPI-M paths were identified in breast
cancer connecting 232, 261 and 325 S-M, TF-M, and miR-
M pairs, respectively. Similarly, 250, 669 and 166 S-PPI-M,
TF-PPI-M, and miR-PPI-M paths were identified in ovarian
cancer connecting 218, 577 and 150 S-M, TF-M, and miR-
M pairs, respectively (Tables 1–3). Mapping of deregulated
metabolites resulted in 69 paths in breast cancer and 481 paths
in ovarian cancer.

The signaling (S-M), transcriptional (TF-M), and post-
transcriptional (miR-M) regulatory links identified from cervical,
breast, and ovarian cancer networks were compared to estimate
the common and specific regulators and regulatory links
(Figure 8). Interestingly, a very little overlap of regulatory
paths and pairs was observed among the three types of
cancers (Figures 8A–F). In total, 32% of terminal signaling
proteins and 43% of terminal metabolic enzymes forming
CC-specific S-M enzymes paths were found to be common
with that extracted from breast and ovarian cancer networks
(Figures 8G,J). Similarly, 46% of terminal TFs and 30% of
terminal metabolic enzymes forming CC-specific TF-metabolic
enzyme paths were found to be common with those extracted
from breast and ovarian cancer networks (Figures 8H,K). Three
metabolic enzymes (EZH2, ENO2, and RRM2) were found to be
commonly regulated by S-M, TF-M, and miR in all three cancers
(Figure 8).

The metabolic enzymes EZH2 and MIF connected to
deregulated metabolites L-lysine and citric acid were commonly
regulated in breast cancer. However, 17 metabolic enzymes
(EZH2, MTHFD1, ALDH3B2, ATP6V1B1, TCIRG1, AGMAT,
SETDB1, PFKL, TKT, INPPL1, MTHFD2, CPS1, MARS, PFKP,
AASDHPPT, ATP6V0D2, and PLOD3) connected to nine
deregulated metabolites (L-lysine, adenosine monophosphate,
fructose 6-phosphate, homovanillic acid, methylimidazole acetic
acid, N-acetylglutamic acid, phenylacetic acid, phosphate, and
Urea) were found to be commonly regulated in ovarian cancer.

The metabolic enzyme EZH2 was connected to deregulated
metabolites L-lysine in cervical, breast, and ovarian cancer
(Figure 6B, Supplementary Figure 6). Twenty-five out of the
27 paths/links connected to metabolic enzyme EZH2 in the
breast cancer network (Supplementary Figure 6A) possesses
at least one gene, whose expression is significantly associated
with drug/chemotherapy response. Seventeen out of the
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FIGURE 5 | Significant miR-metabolic pathway interconnecting paths/network in cervical cancer. (A) represents a significant miRNA metabolic interaction network,

(B) shows the miRNA to metabolic pathway interconnectivity, and (C) shows the significant miRNA to metabolic paths regulating metabolites in cervical cancer.

Terminal miRNAs and metabolic enzymes are colored in red and blue. Protein-protein interactors are colored in orange. Gene regulatory edges are represented as

black arrows and protein-protein interactions are represented by orange edges. Nodes with an asterisk (*) are key or effector nodes in the significant paths/network.

37 genes associated with these paths were predicted as
cancer biomarkers with potential clinical utility (AUC ≥ 0.6;
Supplementary Table 13).

DISCUSSION

Understanding the molecular mechanisms for cancer
progression and subsequent development of potential
therapeutics to inhibit this complex disease are difficult
from the independent knowledge of ongoing signaling, gene
regulatory, and metabolic alterations. Therefore, understanding
the intricate coordination of signaling and gene regulatory-
induced proliferation of tumor cells/growth and metabolic
processes is very much required. An integrated view of the
probable interconnections between oncogenic signaling-
gene regulatory pathways and the metabolic shift could
be one of the better ways to find out possible potential
therapeutic targets. Our approach toward the establishment of a

cross-pathway metabolic interconnection network is an attempt
in that direction.

It is well-established that genetic modifications, altered
transcriptional, and post-transcriptional regulations are
responsible for mediating the changes in biological processes,
which ultimately shape complex pathophysiological situations
like cancer. The interconnectivity and regulations are perhaps
maintained through the systemic-coordinated interaction of
proteins as a complex system, acting as a perfect molecular
machine (62–64). Therefore, the identification of such a
precise protein-interaction network responsible for the disease
progression is of utmost importance for understanding the
disease and potential therapeutic development.

In this study, we have developed a biology framework of
a cervical cancer-specific system where signaling (S) pathway
proteins, miRNA, and TF-based gene-regulatory modules are
connected to metabolic (M) pathway proteins through PPIs.
Publicly available transcriptomic data derived from cervical
cancer patients were incorporated into a mathematical modeling
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FIGURE 6 | Signaling pathway proteins, transcription factor, and miR cross-connecting paths/links to metabolic enzymes in cervical cancer. Six metabolic enzymes

(A–F) are commonly linked to signaling proteins, transcription factors, and miR. Two metabolic enzymes, EZH2 and AKR1C2 (B,D), are connected to deregulated

metabolites in cervical cancer. Terminal signaling pathway proteins, transcription factors, and miRNAs, metabolic enzymes are colored in purple, green, red, and blue.

Protein-protein interactors are colored in orange. Gene regulatory edges are represented as black arrows and protein-protein interactions are represented by orange

edges. Nodes with an asterisk (*) are key or effector nodes in the significant paths/network.

FIGURE 7 | Prognostic markers in identified cross-connecting paths. (A) shows the fraction of components as a prognostic marker of cervical cancer in the identified

paths/links. (B) shows the fraction of components as a prognostic marker in different types (2, 3, 4, 5, and 6C) of identified cross-connecting paths/links.
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FIGURE 8 | Comparison of regulatory molecules and links in female-specific cancer. (A–C) show the overlap of significant signaling proteins (S), transcription factor

(TF), and miR to metabolic enzyme connecting paths, respectively, identified from cervical cancer (CC), breast cancer (BC), and ovarian cancer (OC) specific networks.

(D–F) show the overlap of S-M, TF-M, and miR-M pairs, respectively. (G–I) represent the overlap of terminal signaling protein in S–M paths, a transcription factor in

TF–M paths, and miR–M paths, respectively. (J–L) represent an overlap of terminal metabolic enzymes. S-M, signaling-metabolic; TF-M, TF-metabolic; miR-M,

microRNA-metabolic.

set-up to weigh and rank the interconnecting link/paths in
addition to biological and network topological properties to
extract out high confidence inter-pathway connections that
are perhaps responsible for facilitating metabolic adaptation in
cervical cancer.

In our previous study, we implemented the underlined
mathematical model-based approach for the development,
test, and validation of S-M interconnecting links using
glioblastoma multiform (GBM) cell line-derived transcriptomics
and proteomics data (37). Further, in-vitro perturbation of
genes/proteins involved in forming a high-score interconnection
between S-M pathway proteins showed a significant change in
the expression of proteins involved in the metabolic pathway.
This validated our model for discovering hitherto unknown
connections/involvement between signaling and metabolic
genes/proteins. As a natural follow-up study, here we have
significantly upgraded the previous model with two entirely
new types of connectivity paths linking TF and miRNA-based
regulatory mechanisms to altered states of metabolic enzymes.
We have used large-scale patient-derived cervical cancer data

and implemented additional network topology-based weights
to signify the identified cross-pathway links. Further, we have
utilized differential metabolite data to extract out paths that
correlate with the altered status of the metabolic enzymes that
were proposed to be regulated via signaling and regulatory
factors. Comparison of the significant paths originated with S,
TFs, and miRNAs yielded 88 commonly linked paths connecting
six common metabolic enzymes (e.g., RRM2, AKR1C2, ENO2,
TYMS, EZH2, and NDUFA11).

The ribonucleotide reductase subunit M2 (RRM2) was found
to be significantly upregulated in cervical cancer tissue and is
linked to promoting the progression of cervical cancer (65).
RRM2 is likely to become a novel potential diagnostic and
prognostic biomarker of cervical cancer.

Aldo-keto reductase subfamily 1C2, which plays a major
role in regulating the activity of androgens, estrogens,
progesterone, and prostaglandins metabolisms, is also
implicated with cervical, endometrial, and bladder cancers
(66, 67). Overexpression of AKR1C2 is found to be a mildly
favorable prognostic marker (Supplementary Table 12) but
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lower expression of NADH:ubiquinone oxidoreductase
subunit A11 (NDUFA11) is prognostically unfavorable
in cervical cancer (Supplementary Table 12). Enolase 2
(ENO2) and thymidylate synthetase (TYMS) are found to
be upregulated in cervical cancer transcription datasets
(68, 69). Overexpression of enhancer zeste homolog 2
(EZH2) has been linked with proliferation, progression,
and prognosis of cervical cancer (70). However, our survival
analysis using data of cervical cancer patients from TCGA
suggested much lower survival with lower expression of EZH2
(Supplementary Table 12).

Several miRNAs have been identified whose roles have been
implicated in cervical cancer progression. Most of the miRNAs
except one (miR-593-5p) forming the metabolic pathway PPI
links were previously reported to be dysregulated in cervical
cancers (71–75). However, the diverse mechanisms by which
these miRNAs could regulate cervical cancer progression were
not well-known especially their roles in regulating the metabolic
adaptation in cervical cancer cells. Our study provides novel
avenues to study the impact of these important miRNAs in
the regulation of metabolic reprogramming in cervical cancer.
miR-593 plays important role in the regulation of lung, breast,
and gastric cancer proliferation (76–79). Higher expression of
miR-593 is found to be unfavorable for the survival of cervical
cancer patients (Supplementary Table 12). Hence, its role in
cervical cancer especially in its metabolic adaptation is worth
investigating further.

Transcription factors are key regulators of cancer proliferation
and metastasis. Roles of several transcription factors, such as
SOX2, E2F4, E2F1, POU5F1, SMAD3, SMAD2, VDR, ERG,
TP53, EWS, c-fos, fra-1, OCT4, KLF4, C-MYC, and NANOG,
were established in cervical cancer (80, 81). Our study highlights
the probable roles of important transcription factors in regulating
the metabolic status of cervical cancer cells via modulating the
metabolic enzymes. Thirty-one TFs were found to be connected
to 30 metabolic enzymes via the TG and their respective
PPIs. Fifteen TFs were found to be linked with six metabolic
enzymes for which altered metabolite status could be associated
(Figure 4).

Ras, cell cycle, MAPK, EGFR, and p53 are among the
top five most connected signaling pathways to the metabolic
enzymes via PPI interconnectivity (Figure 3). Among the 27
terminal signaling proteins that form significant connections
with metabolic enzymes, 9 (CHEK1, MAP3K1, CDKN2C, PAK2,
EGFR, FGFR2, PDGFRA, and PTK2) are found to be kinases.
TFs and miRNAs are generally regarded as “undruggable,” hence,
these regulatory kinases could be ideal candidates for targets of
small molecules inhibitors/drugs to check their roles in altering
the functional activities of the connected enzymes.

All cervical cancer-based cross-pathway links are provided
in Supplementary Tables 8–11. Similarly, an online platform is
also created as a separately published work (82) where cervical
cancer dataset-specific S-M, TF-metabolic, miRNA-metabolic,
and combined paths are made available at http://www.hpppi.iicb.
res.in/APODHIN/home.html.

Cervical cancer-based PPI links to metabolic enzymes
originated from signaling (S), TF, and miR regulatory molecules
were also compared to the same identified from breast and
ovarian cancer networks. Comparison of the regulators and
regulatory links yielded little overlap among the three cancers
(Figure 8) indicating the existence of cancer-specific regulatory
mechanisms for probable metabolic alterations. However, some
signaling proteins were found to be common regulatory
molecules among the three cancers whereas terminal enzymes,
such as EZH2, ENO2, RRM2, and TYMS, were found to
be commonly regulated in all the cancers by three different
regulatory mechanisms (Figure 8).

We understand that our approach is computation heavy and
our findings require further in vitro and in vivo experimental
validations. Similarly, for effective stratification of the patients,
multiple omics data (e.g., transcriptomics, proteomics, and
metabolomics) need to be generated from an individual patient.
Nevertheless, we believe that our systems biology-based approach
of identifying multi-factor signature links connected to the
regulation of status and functionalities of metabolic enzymes
paves the way for future studies which could be aimed
toward identifying novel regulators of metabolic alterations in
cervical cancer.
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