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SUMMARY

Single-cell transcriptome profiling of heterogeneous tissues can provide high-resolution windows 

into developmental dynamics and environmental responses, but its application to plants has been 

limited. Here, we used the high-throughput Drop-seq approach to profile >12,000 cells from 

Arabidopsis roots. This identified numerous distinct cell types, covering all major root tissues and 

developmental stages, and illuminated specific marker genes for these populations. In addition, we 

demonstrate the utility of this approach to study the impact of environmental conditions on 

developmental processes. Analysis of roots grown with or without sucrose supplementation 

uncovers changes in the relative frequencies of cell types in response to sucrose. Finally, we 

characterize the transcriptome changes that occur across endodermis development and identify 

nearly 800 genes with dynamic expression as this tissue differentiates. Collectively, we 

demonstrate that single-cell RNA-seq can be used to profile developmental processes in plants and 

show how they can be altered by external stimuli.
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In Brief

The application of single-cell transcriptome profiling to plants has been limited. Shulse et al. 

performed Drop-seq on Arabidopsis roots, generating a transcriptional resource for >12,000 cells 

across major populations. This revealed marker genes for distinct cell types, cell frequency 

changes resulting from sucrose addition, and genes dynamically regulated during development.

INTRODUCTION

Single-cell transcriptomic technologies are revolutionizing molecular studies of 

heterogeneous tissues and organs, enabling the elucidation of new cell type populations and 

revealing the cellular underpinnings of key developmental processes (Efroni et al., 2016; 

Patel et al., 2014; Villani et al., 2017). Recently developed high-throughput single-cell RNA 

sequencing (scRNA-seq) techniques, such as Drop-seq (Macosko et al., 2015), use a 

microfluidic device to encapsulate cells in emulsified droplets, allowing for the profiling of 

hundreds or even thousands of cells in a single experiment. Despite this remarkable advance, 

the large and non-uniform size of plant cells, as well as the presence of cell walls, has 

hindered the application of this technology to plant tissues. Applying high-throughput 

scRNA-seq methods to plants would negate the need for specialized reporter lines that are 

widely used for the capture of specific cell type populations. Single-cell technologies have 

the potential to provide a detailed spatiotemporal characterization of distinct cell types 
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present in plants, their developmental trajectories, and their transcriptional regulatory 

pathways (Efroni and Birnbaum, 2016).

In the present study, we report gene expression profiles for >12,000 single cells isolated 

from the Arabidopsis root. This compendium includes all common cell types and allowed 

the identification of highly specific marker genes for each population profiled. We compared 

cellular profiles of roots grown with or without sucrose, which illuminated differences in 

cell type frequency and tissue-specific gene expression resulting from this external stimulus. 

Finally, we used pseudotime analysis to characterize gene expression changes during 

endodermis development, which highlighted genes that likely direct the differentiation of 

this tissue. Collectively, these results show Arabidopsis root development at high resolution.

RESULTS

We performed high-throughput, microfluidic-enabled scRNA-seq of plant tissue, following 

the Drop-seq method and using protoplasts isolated from 5- and 7-day-old Arabidopsis 
thaliana whole roots (Figure 1; Table S1). We generated 10 libraries: 3 libraries for cells 

from plants grown with 1% sucrose supplementation and 7 libraries for cells from plants 

grown without sucrose. Across all replicates, we obtained transcriptomes for 12,198 

individual root cells, each with a minimum of 1,000 unique molecular identifier (UMI)-

tagged transcripts (Figure S1A; STAR Methods). Protoplasts are delicate and prone to 

bursting, releasing free-floating mRNA into suspension. To assess the quality of the 

protoplasts, we spiked cultured human or mouse cells into the plant cell preparations before 

each run. Plotting the number of control (human or mouse) UMIs versus Arabidopsis UMIs 

for each cell allowed us to confirm that the cell preparations were of high quality (Figure 

S1B). In addition, because the process of protoplasting plant roots can lead to changes in 

gene expression, we confirmed that Drop-seq captured a representative population of cells 

present in the root, as well as their native gene expression, by combining the transcriptomes 

of all captured cells into a pseudobulk profile and comparing this profile to a conventional 

mRNA-seq profile of non-protoplasted 5-day-old Arabidopsis root tissue (Figure S1C). The 

pseudobulk transcriptome showed high correlation with the bulk root mRNA sequencing 

(mRNA-seq) profile (Spearman’s rho: 0.79 for all genes, 0.80 when known protoplast 

response genes [Birnbaum et al., 2003] were excluded) and much lower correlation with 

previously reported (Zhang et al., 2018) bulk whole-flower mRNA expression (Spearman’s 

rho: 0.44–0.46) (Figure S1D).

To identify distinct cell type populations and to directly compare cell type identity in the 

presence and absence of sucrose, we performed unsupervised clustering analysis of all 

12,198 single cells with the canonical correlation analysis function of Seurat (Butler et al., 

2018; Satija et al., 2015) (Figure 1B; Figure S1E). All 17 cell type clusters identified 

contained cells from each replicate, and replicates within the same growth conditions had 

similar proportions of each cell type (Figures S1F and S1G). This supports the high 

reproducibility of the approach and an absence of substantial batch effects. To assign 

individual clusters to known major root cell types, we (1) examined the expression of 

commonly used marker genes (Brady et al., 2007), (2) compared our single-cell profiles to 

reported whole-transcriptome profiles of root cell types isolated from reporter lines (Brady 
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et al., 2007; Li et al., 2016), and (3) computed an index of cell identity (ICI) score (Efroni et 

al., 2015) for each cell (Figures 1B and 1C; Figures S2 and S3; see also STAR Methods). 

Cell clusters were primarily assigned an overall cell type identity based on a majority of 

statistically significant ICI calls (p < 0.05) (Figures S3B and S3C). Nearly all major cell or 

tissue types present in the root were captured by at least one cluster, including stele (four 

clusters), endodermis (two clusters), cortex (two clusters), hair cells (one cluster), non-hair 

cells (four clusters), and columella (two clusters). In addition, we identified two clusters in 

which the cells have an apparently mixed identity, with transcriptomes similar to both cortex 

and hair cells (Figures 1B and 1C; Figures S2A, S2B and S3C). We could not assign a 

distinct cell cluster to quiescent center (QC) cells, likely due to their rarity (Cartwright et al., 

2009), but cells with a suggestive quiescent center identity (by ICI score) are found in 

clusters 2, 4, and 5 (non-hair cell epidermis) (Figure S3A). Consistent with this, clusters 2, 

4, and 5 have a less mature (i.e., meristematic) developmental identity, and their expression 

profiles correlate well with cells expressing WOL and SCR (Figure S2). We also could not 

assign a specific cluster to lateral root cap cells, which are not included in the ICI model and 

are not well defined by known marker genes. To better locate lateral root cap (LRC) cells 

within our captured cell populations, we examined the expression of suggested LRC-

associated genes, including PASPA3, BFN1, SMB, and RCP1 (Fendrych et al., 2014; 

Olvera-Carrillo et al., 2015; Tsugeki and Fedoroff, 1999). These genes were found to be 

predominantly expressed by cells within the non-hair cell and columella clusters (Figure 

S4). Furthermore, cells isolated from the LRC enhancer trap reporter line (Birnbaum et al., 

2003) show strong transcriptional similarity to several non-hair cell clusters identified by 

Drop-seq (Figure S2A). Collectively, these observations suggest that LRC cells are 

clustering with other epidermal cell types rather than forming a distinct cluster.

We next compared the proportions of each cell type captured by Drop-seq to published 

microscopy-based surveys of root cell types (Cartwright et al., 2009), which highlighted a 

relative depletion of stele cells in our data (Figure S3D). This is at least partially explained 

by the higher proportion of mature tissue in our samples (whole roots) versus the 

microscopy-based study (root tips only to the first lateral root primordia), because mature 

xylem cells undergo programmed cell death (Fukuda, 1996) and phloem cells undergo 

nuclear degradation (Furuta et al., 2014). Despite this possible depletion, we captured 

several known subpopulations of stele cells, including protoxylem (cluster 13), phloem-like 

(cluster 14), meristematic xylem (cluster 15), and pericycle (cluster 16) (Figure 2). Aside 

from the stele tissue, other cell types were well captured by Drop-seq, including epidermal, 

cortical, and endodermal cells. Overall, these results demonstrate that Drop-seq accurately 

captures the complexity of cell types present in the plant root and illuminates subpopulations 

for many tissues.

Expression analysis of marker genes commonly used to label specific cell populations 

revealed that many exhibit limited specificity or very low expression levels (Figure 3A). 

Therefore, we used the scRNA-seq data to identify a new set of robust marker genes, 

quantitatively optimized for specificity (see STAR Methods). The top candidate marker gene 

for each cluster is shown in Figure 3B, with the top 50 candidate marker genes for each 

cluster listed in Table S2. This unbiased approach identified genes with previously 

established roles in the biology of some cell populations. For example, all five genes 
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encoding components of the Casparian strip (CASP1 through CASP5) are among the top 20 

marker genes for one of the endodermis clusters (cluster 12), and the root hair-specific gene 

ADF8 (Ruzicka et al., 2007) is a top candidate marker gene for hair cells (cluster 17). 

However, genes with well-established roles in root development represent a relatively small 

subset of the highly specific marker genes we identified, and many candidate marker genes 

have little to no functional annotation data available. As evidence of this, 58% of the top 50 

marker genes, including 7 of the 17 top (rank 1) marker genes across all clusters, have no 

gene symbol beyond an Arabidopsis Genome Initiative (AGI) gene identifier (Figure 3B; 

Table S2). We expect that these marker genes may have important and previously 

unrecognized roles in the development of these cells types and are thus candidates for 

investigation through traditional reverse genetic studies. While most new marker genes are 

specific to the cluster from which they derive, a large proportion of markers identified for 

meristematic clusters are shared (Table S2, clusters 2, 4, 5, and 15). This observation may 

explain the lack of a quiescent center-specific cluster identified from our data, because the 

transcriptional profiles from quiescent center cells may be similar to other meristematic cell 

types. Altogether, these marker genes provide several avenues to explore the transcriptional 

processes that underlie root cell type specification and function.

Sucrose Results in Altered Cell-Type Frequencies and Gene Expression

Next, we assessed differences in cell type populations and gene expression between plants 

grown with or without sucrose. Sucrose is known to result in changes to cell signaling 

(Tognetti et al., 2013), and its presence or absence is a common distinction between 

experimental growth protocols. While several reports have documented the impact of 

sucrose on root system architecture (Macgregor et al., 2008), hormone signaling (León and 

Sheen, 2003; Tanimoto et al., 1995), and response to abiotic stress (Jain et al., 2007), its 

direct role on root cell type differentiation has not been well studied (Tognetti et al., 2013). 

Half of the 12,198 cells profiled were from each growth condition (6,102 sucrose+, 6,096 

sucrose−). All 17 cell type clusters included cells from both sucrose+ and sucrose− plants 

(Figure 4A), which suggests that sucrose does not result in fundamentally different cell type 

identities. However, there are notable differences between sucrose+ and sucrose− in the 

proportion of cells from each cell type cluster (Figure 4B; Figure S1F). For example, cells 

grown with sucrose were strongly enriched among hair cells (cluster 17), consistent with 

previous morphological observations (Jain et al., 2007). Cells grown without sucrose were 

found to be enriched in the four meristematic cell clusters (clusters 2, 4, 5, and 15). These 

results suggest that availability of sucrose results in overall higher proportions of 

developmentally mature cells.

We next assessed gene expression differences between sucrose+ and sucrose− conditions. In 

total, 1,838 genes were differentially expressed between conditions, with 974 genes 

upregulated in sucrose+, 838 genes upregulated in sucrose−, and 26 genes upregulated in 

both but in different cell or tissue types (Figures 4C–4E; Table S3). Gene expression 

differences were largely tissue or cell type specific, with 49% of the differentially expressed 

genes altered in a single tissue or cell type and only 1% altered throughout the root (Figure 

4C). These results indicate that the addition of sucrose as a carbon source results in altered 
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proportions of cell populations, along with gene expression changes that are often highly 

specific to distinct tissues or cell populations.

Gene Expression Changes across Endodermis Development

Finally, a particular strength of the application of scRNA-seq to developing tissues is the 

ability to infer developmental trajectories of individual cell populations through pseudotime 

analysis (Trapnell et al., 2014). Individual root cell types form an apical-basal anatomical 

gradient of temporal differentiation states, with undifferentiated (i.e., meristematic) cells 

near the root tip and the most mature cells located nearer the root-shoot junction. Therefore, 

we hypothesized that the various subpopulations identified for some cell types may reflect 

these trajectories. We carried out a pseudotime analysis using Monocle (Trapnell et al., 

2014) and focusing on endodermal cells, which have a known trajectory from 

undifferentiated, to state I (defined by the formation the Casparian strip), to state II (defined 

by the formation of a secondary cell wall made of suberin) (Andersen et al., 2015) (Figure 

5A). Pseudotime analysis performed separately on endodermis cells from sucrose+ or 

sucrose− growth conditions showed similar trajectories, so all 1,660 endodermis cells were 

combined for a single analysis (Figure 5B). To properly orient the pseudotime axis relative 

to known endodermis differentiation, we examined the profiles of genes known to be 

dynamically expressed during endodermal development (Figure 5C). This resulted in a 

bifurcating developmental trajectory, with an immature population splitting into two 

developmentally mature branches that had significant but overall subtle gene expression 

differences between them (Figure S5A; Table S4). While it is unlikely that protoplasting 

yields endodermis cells that are heavily suberized, due to the recalcitrance of these cells’ 

walls to digestion, we speculate that the differences in expression levels between the two 

mature branches may represent the patchy nature of initial suberization at these early stages 

of differentiation. We examined the expression of genes implicated in suberization or co-

expressed with GPAT5, considered the rate-limiting step in endodermal suberization 

(Beisson et al., 2007). GPAT5 expression was not robustly captured in any cell, possibly due 

to it being expressed later in the endodermis developmental trajectory or at a level that is 

below the sensitivity of Drop-seq (Figure S5B). However, we identified numerous cells 

expressing GPAT7 and/or ABCG16, both implicated in suberization (Yadav et al., 2014; 

Yang et al., 2012), and these cells are co-localized predominantly along the major 

developmental axis (Figure S5B).

Once we established the correctly oriented pseudotime trajectory, we used it to ascertain 

additional genes that are dynamically regulated during endodermis development, focusing 

on the primary developmental trajectory that included most endodermis cells (red arrow in 

Figure 5B; see also STAR Methods). This identified 798 total dynamically expressed genes, 

which fell into three patterns: early, middle, and late expression (Figure 5D; Table S5). The 

early expression gene group includes MYB36, which is known to regulate the initial stages 

of endodermis differentiation (Liberman et al., 2015), and this group is enriched for gene 

ontology (GO) terms associated with water or fluid transport (Figure 5D; Table S5). Genes 

whose expression peaks in the middle of the pseudotime axis are enriched for GO terms 

associated with response to desiccation and toxin metabolism. Genes whose expression 

peaks late include canonical Casparian strip genes (e.g., CASP1), and this category is 
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enriched in GO terms associated with cell junction assembly and lignin metabolism. From 

these expression groups, we identified promoter-driven GFP transgene lines for two of the 

genes with distinct expression patterns over endodermis pseudotime, AT4CL1 and MSL4 
(Figure S5C). These reporter lines confirmed the strong expression pattern of AT4CL1 in 

late endodermis (Figure 5E) and the endodermis-specific expression of MSL4 (Figure S5D). 

The specific transcriptional pathways that directly regulate state II differentiation are not 

well defined (Andersen et al., 2015). Thus, late-expressing genes are candidates for the 

cellular components that direct mature endodermis differentiation. Transcription factor genes 

found in this late-expressing group include B70, HAT22, BZIP65, and TLP11 (Table S5). 

Collectively, these results highlight the power of scRNA-seq for generating hypotheses that 

may lead to a deeper understanding of cellular development in plant tissues.

DISCUSSION

This study demonstrates that Drop-seq is a powerful method to quickly profile the diverse 

cell types that comprise heterogenous plant tissue. We profiled >12,000 single cells and 

captured subpopulations of many major cell types. By comparing cells from roots grown on 

sucrose+ or sucrose− media, we discovered that sucrose does not substantially alter cell type 

identity but does lead to changes in the relative proportions of cell types and tissue-specific 

gene expression. Overall, sucrose has a surprisingly subtle effect on root cell populations 

given its relationship to abscisic acid (ABA) and ethylene signaling (León and Sheen, 2003), 

its known influence on root system architecture (Macgregor et al., 2008), and its effect on 

responses to abiotic stress (Jain et al., 2007). Going forward, we anticipate Drop-seq will be 

broadly used to characterize the effects of many environmental conditions, such as drought, 

microbial infection, marginal soils, salt, and pH levels.

Overall, our results suggest that Drop-seq will be applicable to any tissue or plant species for 

which protoplasts can be obtained. Efficient protoplasting techniques and scRNA-seq 

optimization will be essential for isolating all cell types uniformly. The rare quiescent center 

population has proven particularly challenging to capture using microfluidic-based scRNA-

seq methods (Ryu et al., 2019), and more robust characterization of these cells may require 

the profiling of larger numbers of cells or specialized enrichment strategies. Despite this, 

current methods can be used to study many aspects of plant development and environmental 

responses (this study; Ryu et al., 2019; Denyer et al., 2019). We anticipate that the dataset 

described herein will be a valuable resource to other investigators for the study of root cell 

type differentiation and that Drop-seq will open exciting inroads of exploration into the 

identities and functions of plant cell types.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Diane E. Dickel (dedickel@lbl.gov).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant material and growth conditions—Arabidopsis (Arabidopsis thaliana) ecotype 

Columbia (Col-0) seeds were surface sterilized in 70% ethanol for 2 minutes, followed by 

50% bleach and 0.1% Triton X-100 for 5 - 10 minutes. Sterilized seeds were washed 4 - 6 

times with sterile water and imbibed in the dark for 3 days at 4°C. Seeds were sown at a 

density of approximately 125 seeds per row on sterile nylon mesh filters placed on top of 

plant growth media consisting of 1X Murashige and Skoog Basal Medium (MilliporeSigma, 

St. Louis, MO) supplemented with 1% agar (MilliporeSigma) and 2.6 mM 2-(N-

Morpholino)ethanesulfonic acid (MES; MilliporeSigma), and adjusted to pH 5.7. Medium 

for plants grown in the presence of sucrose was supplemented with 1% sucrose 

(MilliporeSigma). Petri dishes were positioned vertically in an incubator (Percival Scientific, 

Perry, IA) under a long-day photoperiod (16 h of light) at 22°C.

METHOD DETAILS

Drop-seq of Arabidopsis root protoplasts—Protoplast suspensions were prepared 

from 5- and 7-day-old Arabidopsis seedlings using previously described methods (Birnbaum 

et al., 2005). Briefly, whole Arabidopsis roots were finely chopped with a Feather 

Disposable Scalpel #10 (Andwin Scientific, Schaumburg, IL) and distributed among 70-μm 

cell strainers (each containing 1,250-1,500 roots). Blades were changed every 5 to 6 plates 

to prevent dulling of the blade and consequent bruising of the tissue. Each strainer was then 

immersed in a solution of cellulysin (MilliporeSigma) and pectolyase (MilliporeSigma) for 

60 minutes with agitation at 85 rpm on an orbital shaker at room temperature. After cell wall 

digestion, each strainer, containing remnants of roots that were not protoplasted, was 

removed and discarded. Protoplasts were then pelleted, resuspended, and filtered through a 

40-μm cell strainer to eliminate any clumped cells. The cells were then kept either at their 

starting concentration or diluted in Solution A (Birnbaum et al., 2005) (10 mM KCl, 2 mM 

MgCl2, 2 mM CaCl2, 0.1% bovine serum albumin, 2 mM MES, 600 mM mannitol). 

Cultured human cells (HEK293T/17 from ATCC) or E14Tg2a.4 mouse embryonic stem 

cells (Skarnes, 2000) were spiked in at a concentration of 2.5% or 10% to estimate capture 

purity. Drop-seq was performed as described previously (Macosko et al., 2015) and in Drop-

seq Laboratory Protocol version 3.1 (http://mccarrolllab.org/dropseq/). Drop-seq beads 

(ChemGenes) used were from lots 011416B and 072817. The libraries were prepared and 

uniquely indexed using the Nextera XT DNA Library Preparation Kit (Illumina) and 

sequenced on a HiSeq 4000, HiSeq 2500, or NextSeq (Illumina). See Table S1 for the details 

of each library, including plant age, growth conditions, cell concentrations, and replicate 

relationships.

Read alignment and generation of digital gene expression data—A digital 

expression matrix of Single-cell Transcriptomes Attached to MicroParticles (STAMPs) was 

created from the raw sequencing data as described in the Drop-seq Core Computational 

Protocol version 1.0.1 (http://mccarrolllab.org/dropseq/). Sequence data were aligned to a 

combined Arabidopsis-human (Libraries A-C) or Arabidopsis-mouse (Libraries D-J) mega-

reference using STAR v2.5.2b (Dobin et al., 2013) with the default settings. The following 

genome versions were used to generate the mega-references: TAIR 10 (Arabidopsis 
thaliana), GRCh38/hg38 (human, full dataset), mm10 (mouse, full dataset). Uniquely 
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mapped reads were grouped by cell barcode. To identify true STAMPs, we discarded any 

cell barcodes with fewer than 1,000 unique transcripts (i.e., UMIs) and expression of fewer 

than 200 genes. A STAMP was then considered as derived from Arabidopsis (rather than 

human, mouse, or mixed) if 98% or more of the mapped reads mapped to Arabidopsis. For 

constructing barnyard plots, we mapped the Drop-seq data to reduced mega-reference 

genomes, excluding alternative or unknown chromosome sequences from the human and 

mouse genomes.

Data alignment and clustering analysis—Data from the ten independent Drop-seq 

runs were combined to create two individual single cell datasets with the Seurat R package 

(version 2.3.4) (Butler et al., 2018) after removing genes known to be induced during 

protoplasting (Birnbaum et al., 2003). The first dataset contained 6,102 single cell 

transcriptomes isolated from roots grown on media containing sucrose, and the second 

contained 6,096 single cell transcriptomes isolated from roots grown on media without 

sucrose. Seurat was then used to 1) normalize and scale these two datasets (regressing out 

variance due to the number of UMI counts per cell, as well as the percent of mitochondria- 

or chloroplast-derived transcripts using the ScaleData function), and 2) identify highly 

variable genes (1,058 and 1,021 genes for the sucrose-minus and -plus datasets, respectively) 

among the single cell expression profiles. Seurat was then used to combine the two media-

specific datasets into a single dataset using Canonical Correlation Analysis (Butler et al., 

2018) with the RunCCA function and the intersection of the two variable gene sets (1549 

genes). The top 35 canonical components were used to align the two datasets with the 

AlignSubspace function. The canonical correlation vectors and the RunTSNE function in 

Seurat were then used to compute a t-SNE (van der Maaten and Hinton, 2008) dimensional 

reduction and to group cells into distinct clusters. Clustering was performed with the 

FindClusters function in the Seurat package, using a resolution of 0.6 and default 

parameters.

Assignment of clusters to known cell types—To align cell population clusters from 

the unsupervised scRNA-seq to known cell types, we assessed 1) expression of known cell 

type-specific marker genes identified from the literature, 2) expression profiles of cell 

populations isolated from reporter lines (Brady et al., 2007; Li et al., 2016), and 3) Index of 

Cell Identity (ICI) scores (Efroni et al., 2015). For marker gene expression-guided 

assignments, a set of known or inferred marker genes was identified from the literature (e.g., 

Brady et al., 2007). The average normalized expression for these genes for each cell was 

computed and used to guide assignments of cell clusters to putative cell types. Additionally, 

for each cluster, the average expression for all genes was computed and compared to data 

from two previous studies: Brady et al. (2007) and Li et al. (2016). For comparison to the 

Brady et al. study, a Spearman’s correlation coefficient was calculated by comparing the 

average gene expression values for each cluster to the expression values of the 7,769 genes 

representing the top 50% most variable genes across each reporter line. For comparison to 

the Li et al. study, isoform FPKM values were summed for each gene to determine gene-

level expression values for each of the datasets described. Variance was calculated for each 

gene across all Li et al. datasets, and genes with mean expression less than 1 FPKM or a 

variance of zero were filtered out. The top 50% of these genes (9,513 by decreasing 
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variance) were used to calculate a Spearman’s correlation coefficient with the average 

normalized gene expression values for each cluster. Finally, we used the ICI algorithm, 

which assesses the expression of hundreds of genes to calculate a probability that a single 

cell belongs to a specific Arabidopsis root cell type and returns the best cell type match. 

Probabilities associated with the cell type assignments were estimated using a bootstrapped 

permutation method (1000 iterations) and adjusted using the Benjamini-Hochberg method 

(Benjamini and Hochberg, 1995). Entire clusters of cells within the t-SNE graph were 

assigned an overall cell type based on the preponderance of statistically significant ICI calls 

(p < 0.05, Figures S3B and S3C), taking mixed cell type identities into account (i.e., if a 

STAMP had a significant ICI score for more than one cell type). Once assignments were 

made for each cluster, the numerical cluster identity from Seurat (i.e., 0 through 16) was re-

ordered (to 1 through 17) alphabetically based on the cell type assignment.

Marker gene identification—For each cluster, the FindAllMarkers function in Seurat 

was used to identify marker genes. Following this analysis, the marker gene table was 

filtered for genes having a significant adjusted p value (< 0.01), an average natural log-fold 

change greater than 0.5, and then further filtered for genes expressed in more than 75% of 

the cells within that cluster. This list of genes is provided as Table S2. For identification of 

genes differentially expressed between sucrose growth conditions, clusters were first 

combined into broader tissue or cell type categories based on shared type assignment (e.g., 

grouping together cells within clusters 1-4, all of which have a non-hair cell identity). Gene 

expression was then compared within each cell type category for cells from the two growth 

conditions, using the FindMarkers function in Seurat. The resulting gene set was filtered for 

genes with a significant adjusted p value (< 0.01), and an average natural log-fold change 

greater than 0.5.

Pseudotime analysis of endodermis clusters—The branched developmental 

trajectory (pseudotime) for the two endodermal cell clusters was computed using the 

Monocle 2 R package (version 2.8.0) (Trapnell et al., 2014). As with analyses described 

above, known protoplast-response genes were removed. Briefly, raw single cell 

transcriptomes from cells belonging to clusters 11 or 12 were used to construct a 

CellDataSet object within Monocle, which was then normalized using the BiocGenerics 

(Huber et al., 2015) (version 0.26.0) functions, estimateSizeFactors and 

estimateGeneDispersions. Genes to be used for dimension reduction and ordering of these 

cells were then determined using the differentialGeneTest function in Monocle, assaying for 

genes that differ between clusters 11 and 12 from the Seurat analysis. These genes were then 

filtered for the top 1000 genes that are expressed in at least 10% of cells, with a q-value < 

0.01, and then sorted by q-value. The normalized cells and ordering gene set was then used 

to compute a pseudotime graph using the reduceDimension function (using the DDRTree 

method), followed by the orderCells function. The root state for the resulting pseudotime 

graph was assigned as the state with the lowest mean expression of CASP1, a known marker 

gene of mature endodermis. The main branch point was, therefore, the first branch point 

from the root state. The major branch was defined as the branch following from the first 

branch point with the highest number of cells, including any sub-branches. The minor 

branch was defined as the branch with the fewest number of cells following from the main 
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branch point, including any sub-branches. For all genes, mean normalized expression was 

calculated for a set of 20 equally spaced (in pseudotime) bins (binned expression in 

pseudotime) independently for the major and minor branches. Genes that are differentially 

expressed between branches were determined using the FindMarkers function in Seurat, 

comparing gene expression from cells belonging only to the main branch to those cells 

belonging only to the minor branch, and restricting the resulting gene list to genes having an 

average absolute natural log-fold change greater than 0.5 and an adjusted p value below 

0.01. Genes that significantly vary along the main branch were determined using the 

differentialGeneTest function in Monocle using pseudotime as a predictor, on a subset of the 

cellDataSet object containing only genes expressed in > 10% of cells, and cells along the 

main branch. The genes that vary along the main branch were further filtered to include only 

those genes with a significant Monocle-defined q-value (< 0.01 for whether expression is 

variable along pseudotime), and those genes whose variance of binned expression in 

pseudotime was greater than 0.125. The 1000 genes that vary between branches, and the 798 

genes identified as variable along the main pseudotime branch, were separately clustered 

using the plot_genes_ heatmap_branched, and plot_pseudotime_heatmap functions 

(respectively) in Monocle, using the “complete” hierarchical clustering method. Three main 

clades of genes with differential expression over the main endodermis developmental 

trajectory were identified using the cutree method in R. These three clades were reordered 

by gene expression timing (i.e., early, middle, late) for better visualization in Figure 5D.

Analysis of enriched GO terms and co-expression analysis—Gene Ontology 

(GO) analysis was performed using a PANTHER overrepresentation test (Mi et al., 2013) 

against the Arabidopsis thaliana genome (GO Onotology database, released 2018-10-08). 

Genes co-expressed with GPAT5 were identified using ATTED-II (Obayashi et al., 2018), 

with the top 17 candidates (by Arabidopsis co-expression score) used for analysis of 

pseudotime-based expression.

Bulk root tissue mRNA-seq and pseudo-bulk analysis—To compare Drop-seq 

expression data to standard mRNA-seq data, we isolated total RNA from flash frozen 5-day-

old Arabidopsis root material using the QIAGEN RNeasy kit (Carlsbad, CA). The RNA was 

used in the TruSeq Stranded mRNA Library Prep Kit (Illumina, RS-122-2101) according to 

the manufacturer’s Low Sample (LS) Protocol. The library was uniquely indexed and then 

sequenced on a single lane of a HiSeq 4000. Transcript counts for each gene were then 

tabulated. In parallel, a pseudo-bulk dataset was generated from the Digital Gene Expression 

matrix from scRNA-seq of the root protoplasts. A separate transcript count profile from 

Arabidopsis floral bud tissue was also downloaded from the NCBI GEO database 

(GSM2616967). These three expression profiles (filtered to contain only genes with FPKM 

> 1) were then normalized together using the DESeq2 package (Love et al., 2014). The 

Spearman correlation coefficients between the pseudo-bulk and whole-root and whole-

flower datasets were computed in R before or after filtering out known protoplast-inducible 

genes.

Confocal imaging of gene reporter lines—The At4CL1p:GFP (Taylor-Teeples et al., 

2015) and MSL4p:GFP-GUS (gift of Elizabeth Haswell) lines were grown as described 
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above using 1% sucrose. Plants were harvested after 5 days and imaged using a Zeiss LSM 

700 Confocal. Images were captured at 20X magnification. In order to capture the length of 

the whole root at this magnification, multiple images were obtained at exactly the same gain 

settings and stitched together in Affinity Design into a single image. In order to improve 

visibility of GFP reporter abundance, brightness was adjusted for the entire stitched images.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise indicated, statistical analysis and plot generation were performed using R 

(https://www.r-project.org/). Technical and biological replicate Drop-seq experiments were 

performed. Sets A and B represent technical replicates from the same protoplast preparation. 

Sets F and G represent biological replicates, independently sampled from the same (larger) 

cohort of seedlings. Sets I and J are also biological replicates from the same (larger) cohort 

of seedlings. All other sets represent experimental replicates, with seedlings and protoplasts 

derived from independent experimental workflows (see Method Details section Drop-seq of 

Arabidopsis root protoplasts and Table S1).

To identify and quantify high-quality individual cell transcriptomes within the data for each 

replicate set, we used the Drop-seq Core Computational Protocol version 1.0.1, using default 

parameters (http://mccarrolllab.org/dropseq/). The 12,198 cell gene expression profiles with 

greater than 1000 UMIs, with more than 98% of UMIs mapping to the Arabidopsis TAIR10 

genome, were retained for further analysis (see Method Details section Data alignment and 

clustering analysis). A detailed breakdown of the number of cells from each replicate set is 

provided in Table S1. An ICI score was determined for each cell for all 15 possible cell 

identities, with empirical, adjusted p values generated from 1,000 random permutations of 

the specificity score matrix (see Method Details section Assignment of clusters to known 

cell types). Dimensional reduction and clustering were performed using the Seurat (version 

2.3.4) R package (see Method Details section Data alignment and clustering analysis). 

Canonical coordinates for dimension reduction and clustering were selected using the 

MetageneBicorPlot function in Seurat, with 35 CCs selected as a number where the shared 

correlation strength stops strongly decreasing. Marker genes for each cluster and genes 

differentially regulated by sucrose were identified using the FindMarkers function within the 

Seurat R package (see Method Details section Marker gene identification; exact p values for 

this analysis are reported in Tables S2 and S3, respectively). Lastly, Monocle 2 was used to 

generate a pseudotime trajectory and identify developmentally variable genes for 

endodermis cells (clusters 11 and 12, n = 1,660 cells), using cluster information previously 

identified using Seurat (see Method Details section Pseudotime analysis of endodermis 

clusters). Exact p values for genes showing differential expression between the major and 

minor endodermis branches are reported in Table S4. Exact p values for ontology terms 

enriched among genes expressed in early, middle, or late endodermis development are 

reported in Table S5.

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA-seq data reported in this paper is GEO: GSE122687. No 

software was generated for this project.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• RNA expression profiling of >12,000 single Arabidopsis root cells by Drop-

seq

• Recovered major tissue types and cell stages and identified specific marker 

genes

• Sucrose alters cell type proportions but does not profoundly change cell 

identities

• Identified ~800 genes dynamically expressed across endodermis development
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Figure 1. Single-Cell RNA-Seq of 12,198 Arabidopsis Root Cells Captures Diverse Cell Types
(A) Cartoon representing the cell types that comprise the Arabidopsis root.

(B) t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensional reduction of 12,198 

single Arabidopsis root cells that were profiled using Drop-seq. Cells were clustered into 17 

populations using Seurat (Butler et al., 2018). Points indicate individual cells and are colored 

by assigned cell type and cluster according to the legend.

(C) Same as (B), except colored according to the top index of cell identity (ICI) 

classification for each cell regardless of statistical significance. ICI assignments passing 

statistical significance are shown in Figures S3B and S3C.

See also Figures S1–S4 and Table S1.
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Figure 2. Stele Cell Subpopulations
Left: t-SNE representation, as in Figure 1B, of all captured single cells, showing the stele 

clusters (13–16) colored in shades of green. Right: t-SNE showing just these stele clusters, 

with each cell colored by the stele subpopulation identity assigned by ICI. Gray cells had no 

stele cell type identity that reached statistical significance (p < 0.05).
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Figure 3. Identification of Highly Specific Cell Type Marker Genes
(A) Violin plots showing the expression of 10 commonly used cell type marker genes across 

all clusters. Labels to the left of the gene names indicate the cell population each gene is 

used to designate.

(B) Violin plots showing the cluster-specific expression of the top-ranking novel candidate 

marker gene for each cell population identified by this study, color-coded as in Figure 1B.

See also Table S2.
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Figure 4. Sucrose Alters Root Cell Type Proportions and Tissue-Specific Gene Expression
(A) t-SNE representation as in Figure 1, colored by growth condition (sucrose±).

(B) Proportion of cells in each of the 17 clusters by growth condition (sucrose±), colored as 

in (A). Across all experiments, 50% of cells profiled were from each growth condition (red 

line). Clusters with significant differences (p < 0.05 by χ2 test) between the percentages of 

sucrose+ and sucrose− cells are denoted by red asterisks above the column.

(C) Bar plot characterizing genes that are differentially expressed between sucrose+ and 

sucrose− growth conditions. Genes were classified by the condition in which they had higher 
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expression (sucrose−, no shading; sucrose+, gray shading) and how many tissue or cell types 

exhibited differential expression of that gene. Nearly half of all differentially expressed 

genes have altered expression in only one tissue or cell type.

(D and E) Examples of genes with tissue-specific (D) or universal (E) differential expression 

between sucrose+ conditions (filled violins) or sucrose− conditions (open violins). Violin 

plots show normalized gene expression by cell or tissue type and growth condition. Red 

asterisks indicate statistically significant differences (see Table S3 for exact p values).

Shulse et al. Page 21

Cell Rep. Author manuscript; available in PMC 2019 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Transcriptional Dynamics of Endodermis Development
(A) Left: schematic representation of the trajectory of endodermis development. Right: t-

SNE representation, as in Figure 1B, with only the endodermis cells colored blue.

(B) Pseudotime trajectory of all 1,660 endodermis cells, generated using Monocle (Trapnell 

et al., 2014) (see STAR Methods). Each point indicates a unique cell, color coded by the 

original endodermis cluster as in (A). “Major trajectory” indicates the pseudotime trajectory 

with most cells.

(C) Expression profiles along pseudotime for genes known to have dynamic expression 

during endodermal development. Each point indicates the log-normalized expression of the 

indicated gene in a single cell.

(D) Right: heatmap showing the scaled and centered gene expression (Z scores) of 798 

genes that show dynamic expression over the major endodermis developmental trajectory by 
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scRNA-seq (see STAR Methods). For this plot, all endodermis cells were divided into 20 

bins, distributed uniformly across pseudotime. Canonical endodermal development genes are 

noted in black along the left axis, with red indicating genes whose expression was validated 

in this study. Genes were grouped by expression pattern, from top to bottom: early, middle, 

and late expression. Left: top 5 gene ontology (GO) terms in each group by fold enrichment 

(all significantly enriched; see Table S5). Numbers in parentheses indicate the number of 

genes in each category.

(E) AT4CL1 promoter-driven GFP is highest in mature endodermis, consistent with the 

AT4CL1 expression pattern predicted from the pseudotime analysis in (D). Scale bar: 200 

μm.

See also Figure S5 and Tables S4 and S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Cellulysin MilliporeSigma 219466

Pectolyase MilliporeSigma P3026

Mannitol MilliporeSigma M4125; CAS 69-65-8

MES hydrate MilliporeSigma M2933; CAS 1266615-59-1

Murashige and Skoog Basal Medium MilliporeSigma M5519

Critical Commercial Assays

Nextera XT DNA Library Preparation Kit Illumina FC-131-1024

RNeasy Mini Kit QIAGEN 74104

TruSeq Stranded mRNA Library Prep Kit Illumina 20020594

Barcoded dT Beads for Drop-Seq Macosko et al., 2015; ChemGenes Lot# 011416B and 072817

Deposited Data

Raw and analyzed Drop-seq and bulk tissue RNA-seq data 
from Arabidopsis root

This paper GEO: GSE122687

Cell type-specific microarray data of Arabidopsis root Brady et al., 2007 N/A (Table S12 of referenced paper)

Cell type-specific RNA-seq data of Arabidopsis root - raw 
sequence reads

Li et al., 2016 SRA: BioProject PRJNA323955

RNA-seq data of Arabidopsis unopened floral bud tissue Zhang et al., 2018 GEO: GSM2616967

Experimental Models: Cell Lines

Human HEK293T/17 cells ATCC CRL-11268

Mouse embryonic stem cells Skarnes, 2000 E14Tg2a.4

Experimental Models: Organisms/Strains

Arabidopsis: Col-0 ABRC CS70000

Arabidopsis: At4CL1p:GFP Taylor-Teeples et al., 2015 N/A

Arabidopsis: MSL4p:GFP-GUS Elizabeth Haswell N/A

Software and Algorithms

Drop-seq_tools v1.12 Macosko et al., 2015 https://github.com/broadinstitute/Drop-seq/
releases

Seurat R package (version 2.3.4) Butler et al., 2018 https://satijalab.org/seurat

Monocle 2 R package (version 2.8.0) Trapnell et al., 2014 https://bioconductor.org/packages/release/
bioc/html/monocle.html

STAR Aligner v2.5.2b Dobin et al., 2013 https://github.com/alexdobin/STAR

Index of Cell Identity (ICI) algorithm Efroni et al., 2015 N/A

Other

Resource website and protocol for Drop-seq Macosko et al., 2015 http://mccarrolllab.org/dropseq
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