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Abstract: The 2020 California wildfire season coincided with the peak of the COVID-19 pandemic
affecting many counties in California, with impacts on air quality. We quantitatively analyzed the
short-term effect of air pollution on COVID-19 transmission using county-level data collected during
the 2020 wildfire season. Using time-series methodology, we assessed the relationship between short-
term exposure to particulate matter (PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), and Air
Quality Index (AQI) on confirmed cases of COVID-19 across 20 counties impacted by wildfires. Our
findings indicate that PM2.5, CO, and AQI are positively associated with confirmed COVID-19 cases.
This suggests that increased air pollution could worsen the situation of a health crisis such as the
COVID-19 pandemic. Health policymakers should make tailored policies to cope with situations that
may increase the level of air pollution, especially during a wildfire season.

Keywords: air pollution; respiratory infections; COVID-19; environmental health; Generalized
additive models; Feasible Generalized Least Squares Model; California; wildfires

1. Introduction

The World Health Organization formally announced a global pandemic from a new
coronavirus in March 2020 [1]. The illness which is caused by the virus called SARS-CoV-2
produces respiratory symptoms that are fatal in some cases. Current evidence suggests that
the virus is spread through close contact with other humans, primarily through coughing
or sneezing [2]. The coronavirus disease (COVID-19) continues to spread, with emerging
variants of the virus. Millions of cases and deaths have been reported globally. In the United
States alone, millions of cases have been recorded, with thousands of deaths resulting from
complications related to the disease [3].

To alleviate the damages caused by the COVID-19 pandemic, numerous studies have
examined the possible factors contributing to the transmission of the disease. Pioneer stud-
ies focused on person-to-person transmission and analyzed how factors such as population
mobility play a significant role in virus transmission [4,5]. Other studies explored how
contaminated environmental surfaces aid the transmission of the virus from an infected to
an uninfected person [6,7]. Research on the impact of short-term exposure to pollutants
such as particulate matter (PM), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen
dioxide (NO2), and ozone (O3) on the transmission of COVID-19 is still emerging, and
comparatively scarce.

Before the COVID-19 pandemic, past studies have linked pollutants to adverse health
conditions [8,9]. Nitrogen dioxide (NO2), for example, has been linked to chronic obstruc-
tive pulmonary disease and asthma [10]. Other studies suggest that particulate matter
such as PM10 and PM2.5 could act as a platform for respiratory virus transmission [11–14].
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Air quality and environmental conditions have also been associated with lung infections
caused by viruses [15]. There are also indications that air pollution weakens the immune
system and may increase one’s chances of contracting respiratory viral infections such as
COVID-19 [16,17]. A recent study suggests that a 1 µg/m3 increase in PM2.5 is associated
with an 8% increase in the COVID-19 death rate [18].

Though air quality varies with weather conditions, some cities experience poor air
quality for extended periods due to environmental disasters such as volcanic eruptions
and wildfires. This paper examines the relationship between short-term exposures to
pollutants such as PM2.5, NO2, CO, and overall air quality (AQI) and confirmed cases
of COVID-19 during the 2020 wildfire season in California. We model the effect of these
pollutants using time series methods. We apply Generalized Additive Models (GAMs) for
estimating the relationship while controlling for meteorological factors, day-fixed effects,
and county fixed effects. In one of the sensitivity analyses, we use a Feasible Generalized
Least Squares Model (FGLS) model to check the robustness of our findings. The study
focuses on 20 counties impacted by the wildfires between February and December 2020.

1.1. The 2020 California Wildfires and COVID-19

The peak of the COVID-19 pandemic in the United States in 2020 coincided with the
most significant wildfire season recorded in modern California’s history [19,20]. The 2020
California wildfire season began in February and lasted for months with the major fire
outbreaks occurring in the months from August to December [21]. By the end of the fire
season in December, the fires had destroyed 4,257,863 acres of land [21,22]. Though particu-
late matter, oxides of nitrogen, and sulfur pollution declined sharply in many parts of the
world during the pandemic, wildfire days in California recorded higher amounts of PM2.5
pollution [23–25]. This highlights the need to investigate if higher daily concentrations
of pollutants are associated with increased COVID-19 cases in counties that experienced
wildfires in California.

Past research has linked wildfire smokes to adverse health outcomes [26–28]. The
Environmental Protection Agency describes wildfire smoke as a public health concern
comprising a mix of gaseous pollutants such as carbon monoxide (CO) and particulate
matter. Studies indicate that particulate matter, which contains solid and liquid suspension,
poses a significant risk to public health during a wildfire [29]. Furthermore, elevated CO
levels outdoors during a fire can be of particular concern for those with some preexisting
conditions such as heart disease. This paper analyzed data from 20 counties impacted
by the wildfires. We use 1 February 2020, to 31 December as our study period. This was
selected for two reasons; COVID-19 data is available from February 2020, and the 2020
California fire season lasted until December 2020.

1.2. Long-Term and Short-Term Air Pollution and COVID-19

Both long and short-term exposure to air pollutants may be a complex factor in
increasing SARS-CoV-2 transmission and lethality [30]. A study in 71 provinces across Italy
suggests that chronic air quality was highly correlated with COVID-19 cases suggesting
that chronic exposure to air pollution may predispose people to the disease [2]. Similarly,
another study found that long-term exposure to high amounts of PM2.5 is associated with
increased mortality from COVID-19 [18]. A study in Spain examined the spatial spread
of COVID-19 using a mixed longitudinal ecological design. Their results suggest that
chronic exposure to NO2 and PM10 are predictors of the spatial spread of the virus [31].
Another study employed an ecological analysis to examine the relationship between chronic
exposure to pollutants and reported cases of COVID-19 in Canada. They applied a negative
binomial regression model and found positive associations between long-term exposure to
PM2.5 and COVID-19 incidence [32].
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There is still relatively less research on the impact of short-term exposure to pollu-
tants on COVID-19 transmission. Recent studies report mixed findings and use different
methodologies. A study using Generalized additive models (GAM) found positive associa-
tions between moving average concentrations of pollutants such as NO2, PM2.5, O3, and
COVID-19 cases in China [33]. Another examined the spatial relationship between PM10
and PM2.5 and COVID-19 deaths. Their results suggest a positive relationship between
pollutants and COVID-19 deaths [34]. However, another research found negative relation-
ships between COVID-19 and these pollutants including NO2 and SO2 in California [35].
This study, however, employed fundamental techniques such as Spearman and Kendall
correlation for their statistical analysis.

Using data from Los Angeles and Ventura counties in the US, another study applied a
generalized linear model (GLM) to examine the same relationship [36]. They also found
negative relationships between daily SARS-CoV-2 cases and pollutants PM2.5 and PM10.
Though they applied a dynamic emission model to further strengthen their analysis, the
study focused only on two counties, and they did not control for the daily SARS-CoV-2 test
which is highly correlated to the number of confirmed cases recorded across counties. A
more recent study found positive associations between exposure to PM2.5 in the short-term
and COVID-19 cases and deaths using data collected during the 2020 wildfire season in
92 western U.S. counties [25]. However, this study did not examine other air pollutants like
CO and NO2. They also did not adjust for the confounding effects of SARS-CoV-2 tests in
their models.

Since the daily levels of pollutants are higher on wildfire days than on non-wild fire
days [25], the 2020 California wildfire season provides an opportunity to estimate the
relationship between short-term exposure to pollutants and confirmed cases of COVID-19.
This paper extends the current literature on the impacts of short-term pollution on health
by exploiting the wildfire season in California and applying different time series method-
ologies to further investigate this relationship. We first use Generalized additive models
in the main analyses to analyze the short-term impact of pollutants such as PM2.5, CO,
NO2, and overall air quality index (AQI) on confirmed COVID-19 cases. We then use a
Feasible Generalized Least Squares Model in one of the four sensitivity analyses to check
the robustness of our findings.

2. Materials and Methods
2.1. Study Area and Period

In 2020, California was one of the states most impacted by COVID-19 in the USA [35].
The number of COVID-19 cases and deaths resulting from COVID-19 in the state of Califor-
nia in 2020 was over 1.9 m and 26,000 respectively [37]. As of February 2022, California is
the state with the highest confirmed cases of the disease in the United States [38]. This study
includes 20 out of the 53 counties affected by the 2020 California wildfires (See Figure 1
and Table A1 in the Appendix A).

We focus on these counties due to the incompleteness of meteorological data on other
counties. Furthermore, only counties where fires burned more than 1000 acres and led to
significant structural damage or casualties were selected for this study. The study focused
on the period 1 February 2020, to 31 December for two reasons; COVID-19 data is available
from February 2020, and the 2020 California fire season which started with the first fire
outbreak in February, lasted until December 2020 (See Table A1 in Appendix A).
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2.2. Data Collection
2.2.1. COVID-19 Data

COVID-19 data in the state of California is made available to the public by the
California Department of public health [39]. This data includes total SARS-CoV-2 tests
and confirmed COVID-19 cases. This study uses data collated from 1 February 2020, to
31 December 2020, for each of the 20 counties.

2.2.2. Air Pollution Data

Data on air pollution during the study period was obtained from open-source data
available on the United States Environmental Protection Agency (EPA) website [40]. Data
on pollutants such as PM2.5, carbon monoxide (CO), and nitrogen dioxide (NO2) were
collected for the 20 counties included in the study. To estimate the impact of the overall air
quality on the number of COVID-19 cases, data on the air quality index (AQI) across the
twenty counties were also collated from the EPA website for statistical analysis. The EPA
uses a standard formula for its AQI computation. Reported data on AQI uses the highest
value calculated among the pollutants used for estimating the index [41]. This study uses
the reported values as a continuous variable in the statistical analysis.

2.2.3. Meteorological Data

Data on daily mean temperature, mean precipitation, and average wind speed during
the study period was obtained from the National Centers for Environmental Information,
an agency under the National Oceanic and Atmospheric Administration [42].
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2.3. Statistical Analyses

Time-series methods have been established as very useful tools for examining the im-
pact of air pollution and meteorological factors on health outcomes over time [25,33,43,44].
Previous studies demonstrate that the impact of air pollutants can linger for several
days [33,44] so a moving average approach was applied in all our analyses to capture
the lagged effect of each pollutant examined in the study [25,33,45]. Our choice for moving
averages (lag 0–7, lag 0–14, or lag 0–21) is based on the official COVID-19 incubation period
issued by the US Centers for Disease Control and Prevention [46]. We used multiples of
seven since research on the incubation period of the virus is still very dynamic and ranges
from 7 days to 21 [33,47].

2.3.1. Generalized Additive Models (GAMs)

A Generalized Additive Model with a gaussian distribution family, was used to
estimate the relationship between the moving average concentrations (lag 0–7, lag 0–14,
and lag 0–21) of all the pollutants and daily confirmed cases of COVID-19 [33,48]. To avoid
multicollinearity, we used separate models to analyze the effect of the air pollutants and air
quality (AQI) on COVID-19 cases across the twenty counties [49]. The model used for each
analysis is described below:

log(casesit) = a + Xig + s(tempit) + s(precit) + s(windit) + log(testsit) +
casesit-1 + countyi + dayt + εit

(1)

Here, a is the intercept. log(casesit) captures the number of COVID-19 cases on day
t in county i. 1 was added to each original count to ensure that the logarithm of 0 is not
captured [25,33,48]. Xig is the linear term of a specific moving average concentration (where
g = lag 0–7, lag 0–14, or lag 0–21) of air pollutants and AQI in county i [36,50]. Meteorological
factors: daily mean temperature (tempit), precipitation (precit), and wind speed (windit) on
day t in county i were included in the model to control for possible confounding effects from
meteorological factors. casesit-1 was introduced to control for potential autocorrelation from
previous cases of COVID-19. In addition, county fixed (countyi) effects and day fixed effects
(dayt) were included to account for the fixed effects specific to each county and daily effects
such as lockdowns affecting all counties respectively. s(.) captures the smooth function
(k = 9 with thin plate spline function with a maximum of 3 degrees of freedom) of each
nonlinear term in the model. Lastly, the log of the daily number of SARS-CoV-2 tests (testsit)
reported in every county was controlled for since the number of confirmed COVID-19 cases
is highly correlated with the number of SARS-CoV-2 tests in every county. 1 was added to
each original number of tests to ensure that the logarithm of 0 is not captured. All analyses
were done using the “mgcv” package in R statistical software (version 3.5.2).

2.3.2. Sensitivity Analysis

We carried out four sensitivity analyses to check the robustness of the results. The first
three sensitivity analyses were done using the GAM. First, Los Angeles (the most populated
county and the county with the highest number of confirmed cases) was excluded from the
data to check if the findings would remain robust afterward. Los Angeles county makes up
almost 38% of the confirmed COVID-19 cases in the data analyzed.

Secondly, we used moving average lagged terms for all the meteorological variables
in the model. Like pollutants, meteorological conditions can linger for days and may have
a lagged impact on health outcomes [51–53]. Past research recommends using lag 9 to
lag 13 for environmental analysis [52]. We used lag 9 in this sensitivity analysis. In the
third sensitivity analysis, the lagged term (casesit-1) for confirmed cases of COVID-19 was
excluded from each of the models since we were analyzing daily COVID cases and not
cumulative COVID-19 cases.

Finally, we used an FGLS model to account for intragroup heteroskedasticity and
serial correlation, The “pggls” function in the R allows the error covariance structure inside
every group of observations (the counties in this study) to be unrestricted and therefore
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robust against any type of intragroup heteroskedasticity and serial correlation [54]. Unlike
the GAM above, we did not include day-fixed effects in this analysis. We accounted for
only the residual spatial effect using countyi as shown in the model below. We used separate
models to analyze the effect of air pollutants and air quality (AQI) on COVID-19 cases
across the twenty counties. The model used for each analysis is described below:

log(casesit) = a + Xig + tempit + precit + windit + testsit + casesit-1 + countyi + εit (2)

The description of all variables in the above model remains the same as described
in equation 1 above. All the analyses were done using the “plm” package in R statistical
software (version 3.5.2).

3. Results
3.1. Descriptive Analysis

Table 1 shows the descriptive statistics for air pollution variables, meteorological
variables, and daily confirmed COVID-19 cases for the study period, February to December
2020 across the twenty counties. We split the data into the peak months when most of
the fires occurred (August to December) and the off-peak months (February to July). The
months when fires occurred in each of the 20 counties are shown in Table A1. Compared
to the off-peak months, the values on the measures of pollution during the peak months
were relatively higher. The average daily concentration of PM2.5, CO, NO2, and AQI was
21.33 µg/m3, 0.43 ppm, 10.14 ppb, and 59.78 respectively during peak months. During
the off-peak months, the average daily concentration of PM2.5, CO, NO2, and AQI was
7.48 µg/m3, 0.23 ppm, 5.52 ppb, and 29.83 respectively. The average daily number of
COVID-19 cases during the peak period and off-peak months was 553 and 142 respectively.
We also show the overall COVID-19 numbers for all the counties in the study in Figure A1.

Table 1. Descriptive statistics of measures of air pollution, meteorological variables, and daily
confirmed new cases across all counties during the peak and off-peak months of the 2020 California
wildfire season.

The Peak Months of Fire Outbreaks
(August–December 2020) Off-Peak Months (February–July)

Mean
(SD) Min Max Mean

(SD) Min Max

PM2.5 (µg/m3)
21.33

(13.00) 0.30 329 7.48 (5.49) 0 142

CO (ppm) 0.43 (0.24) 0.09 2.70 0.23 (0.12) 0 1.09

NO2 (ppb) 10.14
(7.08) 0.25 49.79 5.52 (4.79) 0 33.17

Mean temperature ◦F 64.71
(13.24) 31.00 110 61.01

(11.27) 30.86 89.78

Precipitation (mm) 0.02 (0.09) 0 1.46 0.04 (0.14) 0 1.6
Average Wind
speed (m/s) 5.31 (2.55) 0.67 21.03 7.09 (2.76) 0.67 26.62

Air Quality Index (AQI) 59.78
(38.40) 1 379 29.83

(17.18) 0 196

Daily confirmed cases 553 (1573) 0 22,264 142 (359) 0 3613

3.2. Time Series of Confirmed COVID-19 Cases and Pollutants in the 20 Counties in Our Analysis

Figure 2 shows the time series trends of the daily number of confirmed COVID-19
cases for the twenty counties during the study period. There appears to be an overall
increasing trend in the number of confirmed cases of COVID-19 across all the counties
during the study period. Similarly, Figure 3 shows the time series trend of the overall
air quality (AQI) for all the counties during the study period. There appears to be an
overall increasing trend in air pollution during the study period with sharp peaks occurring
between August and December across all the counties in the study.
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3.3. Relationship between Air Pollution and Confirmed Cases of COVID-19

Table 2 shows the results of the GAM models. Shown are the coefficients highlighting
the relationship between the explanatory variables (air pollutants and AQI) and confirmed
COVID-19 cases. All the coefficients show statistical significance at conventional levels.
We observed positively significant associations between PM2.5, CO, AQI, and confirmed
COVID-19 cases across all the lags. For a lag 0–7 moving average, a 1 µg/m3 increase in
PM2.5 is associated with a 0.4% increase in the daily counts of COVID-19. A 1 unit increase
in CO is associated with a 36% increase in the daily counts of COVID-19. A one-unit
increase in AQI is associated with a 0.3% increase in the daily counts of COVID-19. Lastly,
NO2 was negatively associated with confirmed COVID-19 cases; a 1 unit increase in NO2
was associated with a 0.7% decrease in the daily counts of COVID-19.

Table 2. Results of the GAM models.

Pollutants/Air
Quality

Lag (0–7) Days Lag (0–14) Days Lag (0–21) Days

Cases Cases Cases

PM2.5
0.004 *** 0.004 *** 0.004 ***
(0.001) (0.001) (0.001)

CO
0.363 *** 0..355 *** 0.347 ***
(0.075) (0.087) (0.093)

NO2
−0.007 ** −0.009 ** −0.008 **

(0.003) (0.003) (0.003)

AQI
0.003 *** 0.003 *** 0.002 ***
(0.0005) (0.0005) (0.0006)

Significance codes: ‘***’: 0.001, ‘**’: 0.01.

Sensitivity Analysis

Tables A2–A4 in the Appendix A show the results of the three sensitivity analyses done
using the GAM. Generally, the results indicate that the relationships between confirmed
COVID-19 cases and pollutants are robust across all three models. In Table A2 (after Los
Angeles was excluded from the data set used for the analysis), the statistical significance
and effects sizes are still very close to those in Table 2 above. Similarly, Tables A3 and A4
further confirm the robustness of our findings. Even after using a moving average of lag 9
on all the meteorological factors and excluding the lagged term (casesit-1), the statistical
significance and effects sizes remain almost identical. Table A5 in the Appendix A shows
the results of the sensitivity analysis with the FGLS model. Like the other models, the
statistical significance of the coefficients is very similar even though the effect sizes are
larger. The only important change is in the direction of effect for NO2 from a negative to a
positive effect. All other pollutants maintain their directions of effect.

4. Discussion

In this paper, we employed time series methods to explore the relationship between
air pollution and daily confirmed COVID-19 cases. We observed significant associations
for all the pollutants examined in this study. As demonstrated in previous studies, the
effect of air pollution can linger for several days after incidents [33,44]. Our choice for
moving averages (lag 0–7, lag 0–14, or lag 0–21) is based on previous studies and official
statements on the COVID-19 incubation period issued by the US Centers for Disease Control
and Prevention [46,47]. Our findings show that PM2.5, CO, and AQI are all significantly
and positively associated with confirmed COVID-19 cases in all the moving average lags.
However, the GAM results show a negative relationship between NO2 and COVID-19
cases. These results remained robust in all the sensitivity analyses with the GAM. In the
sensitivity analyses using the FGLS model, we find positive associations between all the
pollutants and confirmed COVID-19 cases. These findings suggest that air pollution could
play an important role in COVID-19 transmission.
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Many studies have shown that air pollution is correlated to respiratory infections
caused by microorganisms [55,56]. Air quality and environmental conditions have been
associated with lung infections caused by viruses [15]. Some studies suggest that particulate
matter such as PM10 and PM2.5 could act as a platform for virus transmission [11–14]. There
are also indications that air pollution weakens the immune system and may increase one’s
chances of contracting respiratory viral infections such as COVID-19 [16,17]. We made
comparisons between the findings in this study and previous studies to check for similarities
and differences. In one study [57], short-term exposure to higher PM2.5 was correlated
with higher confirmed cases of acute lower respiratory infection using an observational
cross-over design. Another study that combined a generalized Poisson regression model
and a distributed lag nonlinear model (DLNM) found significant associations between
atmospheric particulate matter (PM2.5 and PM10,) and hospitalizations for respiratory
diseases in China [58].

Other studies specific to COVID-19 have also found significant associations between
air pollution and the disease. Using distributed lag models, a study found that increased
exposure to PM2.5 was associated with increased COVID-19 cases and deaths across 92 coun-
ties in the US [25]. Another study using a GAM found significant relationships between
confirmed cases of COVID-19 and six air pollutants in China [33]. As in our study, these
two studies consistently found positive associations between pollutants (PM2.5, CO, and
NO2) and confirmed COVID-19 cases. Unlike our study, other studies done in the US
have found negative associations between confirmed cases of COVID-19 and the pollutants
analyzed in our study [35,36,51]. However, the methodologies employed in these studies
were very different from the ones used in our study.

Some studies suggest that exposure to certain concentrations of NO2 could reduce
susceptibility to respiratory viral infections [59,60]. This could be the reason for the negative
relationship observed in the results in the GAM models used in this study. Additional
research is needed to understand the biological mechanisms behind this phenomenon
observed not just in our study but in others [35,36,51].

This study has several limitations. For one, it focused on associations and not causal
effects of air pollution and indicators of air pollution on confirmed cases of COVID-19. For
example, more people could have stayed indoors during the wildfires which may have
increased their chances of contracting the virus. Studies indicate that close spaces with
poor air circulation and inhalation of aerosols from infected persons increase the spread of
respiratory viruses [61,62].

This study also focused on 20 out of the 53 counties impacted by the 2020 California
wildfires. While this was in part due to the incompleteness of data on some pollution and
meteorological indicators, a complete sample of the counties affected would have improved
the validity of our findings. We also did not account for economic or social factors that
could have increased COVID-19 risk. Many studies indicate that certain socioeconomic
groups have been disproportionately impacted by COVID-19 [63]. Lastly, this study did not
consider sub-group analysis in terms of demographics such as gender, occupation, or race.
Future studies should check for possible heterogeneity across socio-demographic groups.

5. Conclusions

This study suggests that there is a significant relationship between air pollution and
confirmed cases of COVID-19. Short-term exposure to increased concentrations of PM2.5,
CO, and higher values of AQI is associated with an increased risk of COVID-19. These
results remained robust in all the sensitivity analyses done in this study, Our findings also
suggest that short-term exposure to a higher concentration of NO2 is related to decreased
risk of COVID-19 infection. This finding calls for further research to understand this
phenomenon.
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This study has obvious importance for the management of COVID-19 transmission
or future pandemics of respiratory diseases. For a more nuanced public health advisory,
policymakers should pay close attention to regions with more predisposition to forest fires
and inadvertently, higher measures of air pollution. This is due to the fact that these regions
may be disproportionately impacted by respiratory diseases such as COVID-19.
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Appendix A

Table A1. Counties included in the study and the months with fire incidents in each (Source:
fire.ca.gov accessed on 24 January 2022 ).

County Date of First Fire
Incident in the County

Containment Date of
Last Fire Incident in

the County
Months of Fire

Alameda 4-July 1-October July, August,
September, October

Butte 8-May 22-October May, June, July,
August, October

Contra Costa 27-April 12-October April, May, June,
July, October

Fresno 12-June 9-November
June, July, August,

September,
October, November

Humboldt 15-February 24-October February, July, October
Kern 17-June 12-August June, July, August

Los Angeles 1-July 7-Novemebr July, August, September,
October, November

Marin 18-Aug 2-October August, September, October

Monterey 7-June 31-December June, August, September,
October, December

Napa 22-May 25-October May, September, October

Sacramento 12-June 4-October June, July, August,
September, October

Orange 26-October 10-December October,
November, December

Riverside 3-March 14-December
March, May, June, July,

August, September,
October, December

San Bernardino 3-July 16-November July, October, November

San Diego 9-June 3-December June, July, August,
September, December

San Joaquin 17-June 1-October June, July, August,
September, October

Santa Clara 4-June 1-October June, July, August,
September, October

Solano 3-June 9-July June, July

Stanislaus 8-June 1-October June, August,
September, October

Ventura 10-June 8-December June, August, December

fire.ca.gov
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Table A2. GAM models after excluding Los Angeles County.

Pollutants/Air Quality
Lag (0–7) Days Lag (0–14) Days Lag (0–21) Days

Cases Cases Cases

PM2.5
0.004 *** 0.004 *** 0.004 ***
(0.0019) (0.001) (0.001)

CO
0.367 *** 0.379 *** 0.393 ***
(0.073) (0.094) (0.095)

NO2
−0.008 *** −0.0076 * −0.005

(0.003) (0.003) (0.003)

AQI 0.003 *** 0.003 *** 0.002 ***
(0.0005) (0.0005) (0.0005)

Signif. codes: ‘***’: 0.001, ‘*’: 0.05.

Table A3. GAMs using a moving average of lag 9 on all the meteorological factors.

Pollutants/Air Quality
Lag (0–7) Days Lag (0–14) Days Lag (0–21) Days

Cases Cases Cases

PM2.5
0.005 *** 0.005 ** 0.004 ***
(0.001) (0.001) (0.001)

CO
0.499 *** 0.485 *** 0.450 ***
(0.076) (0.089) (0.094)

NO2
−0.005 † −0.006 * −0.006 †

(0.003) (0.003) (0.003)

AQI 0.003 *** 0.003 *** 0.003 ***
(0.0005) (0.0005) (0.0006)

Signif. codes: ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.05, ‘†’: 0.1.

Table A4. GAM after excluding (casesit-1) of previous cases of COVID-19 from the model.

Pollutants/Air Quality
Lag (0–7) Days Lag (0–14) Days Lag (0–21) Days

Cases Cases Cases

PM2.5
0.004 *** 0.005 ** 0.004 ***
(0.001) (0.001) (0.001)

CO
0.305 *** 0.283 ** 0.285 **
(0.074) (0.086) (0.091)

NO2
−0.008 ** −0.009 ** −0.009 **

(0.003) (0.003) (0.003)

AQI 0.002 *** 0.003 ** 0.003 *
(0.0005) (0.0005) (0.0005)

Signif. codes: ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.05.

Table A5. Result of the FGLS model.

Pollutants/Air Quality
Lag (0–7) Days Lag (0–14) Days Lag (0–21) Days

Cases Cases Cases

PM2.5
0.012 *** 0.017 *** 0.015 *
(0.001) (0.001) (0.006)

CO
1.585 *** 2.220 *** 3.244 ***
(0.125) (0.232) (0.492)

NO2
0.036 *** 0.064 *** 0.070 ***
(0.001) (0.0005) (0.011)

AQI 0.010 *** 0.011 *** 0.012 ***
(0.001) (0.001) (0.003)

Signif. codes: ‘***’: 0.001, ‘*’: 0.05.



Int. J. Environ. Res. Public Health 2022, 19, 5057 12 of 14Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure A1. Confirmed COVID-19 cases in the 20 counties during the study period. 

References 
1. WHO (World Health Organization). WHO Timeline COVID-19. 2020. Available online:https://www.who.int/news-

room/detail/27-04-2020-who-timeline—covid-19 (accessed on 23 March 2020). 
2. Lolli, S.; Chen, Y.-C.; Wang, S.-H.; Vivone, G. Impact of meteorological conditions and air pollution on COVID-19 

pandemic transmission in Italy. Sci. Rep. 2020, 10, 1–15. 
3. Cates, J.; Lucero-Obusan, C.; Dahl, R.M.; Schirmer, P.; Garg, S.; Oda, G.; Hall, A.J.; Langley, G.; Havers, F.P.; Ho-

lodniy, M.; et al. Risk for in-hospital complications associated with COVID-19 and influenza—Veterans Health 
Administration, United States, October 1, 2018–May 31, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1528. 

4. Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S.; et al. 
A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person 
transmission: A study of a family cluster. Lancet 2020, 395, 514–523. 

5. Kraemer, M.U.G.; Yang, C.-H.; Gutierrez, B.; Wu, C.-H.; Klein, B.; Pigott, D.M.; Open COVID-19 Data Working 
Group; du Plessis, L.; Faria, N.R.; Li, R.; Hanage, W.P. et al. The effect of human mobility and control measures on 
the COVID-19 epidemic in China. Science 2020, 368, 493–497. 

6. Chaudhuri, S.; Basu, S.; Kabi, P.; Unni, V.R.; Saha, A. Modeling ambient temperature and relative humidity sensi-
tivity of respiratory droplets and their role in Covid-19 outbreaks. Phys. Fluids 2020, 32, 063309. 

7. Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inac-
tivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. https://doi.org/10.1016/j.jhin.2020.01.022. 

8. Balakrishnan, K.; Dey, S.; Gupta, T.; Dhaliwal, R.S.; Brauer, M.; Cohen, A.J.; Stanaway, J.; Beig, G.; Joshi, T.K.; 
Aggarwal, A.N.; et al. The impact of air pollution on deaths, disease burden, and life expectancy across the states 
of India: The Global Burden of Disease Study 2017. Lancet Planet. Health 2018, 3, e26–e39. 
https://doi.org/10.1016/s2542-5196(18)30261-4. 

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000

Alameda
Butte

Contra Costa
Fresno

Humboldt
Kern

Los Angeles
Marin

Monterey
Napa

Orange
Riverside

Sacramento
San Bernardino

San Diego
San Joaquin
Santa Clara

Solano
Stanislaus

Ventura

COVID-19 Cases

Co
un

tie
s

Confirmed COVID-19 Cases in the 20 Counties During the Study 
Period

Figure A1. Confirmed COVID-19 cases in the 20 counties during the study period.

References
1. WHO (World Health Organization). WHO Timeline COVID-19. 2020. Available online: https://www.who.int/news-room/

detail/27-04-2020-who-timeline---covid-19 (accessed on 23 March 2020).
2. Lolli, S.; Chen, Y.-C.; Wang, S.-H.; Vivone, G. Impact of meteorological conditions and air pollution on COVID-19 pandemic

transmission in Italy. Sci. Rep. 2020, 10, 16213. [CrossRef] [PubMed]
3. Cates, J.; Lucero-Obusan, C.; Dahl, R.M.; Schirmer, P.; Garg, S.; Oda, G.; Hall, A.J.; Langley, G.; Havers, F.P.; Holodniy, M.; et al.

Risk for in-hospital complications associated with COVID-19 and influenza—Veterans Health Administration, United States, 1
October 2018–31 May 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1528. [CrossRef] [PubMed]

4. Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S.; et al. A familial
cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family
cluster. Lancet 2020, 395, 514–523. [CrossRef]

5. Kraemer, M.U.G.; Yang, C.-H.; Gutierrez, B.; Wu, C.-H.; Klein, B.; Pigott, D.M.; Open COVID-19 Data Working Group;
du Plessis, L.; Faria, N.R.; Li, R.; et al. The effect of human mobility and control measures on the COVID-19 epidemic in
China. Science 2020, 368, 493–497. [CrossRef] [PubMed]

6. Chaudhuri, S.; Basu, S.; Kabi, P.; Unni, V.R.; Saha, A. Modeling ambient temperature and relative humidity sensitivity of
respiratory droplets and their role in Covid-19 outbreaks. Phys. Fluids 2020, 32, 063309. [CrossRef]

7. Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with
biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [CrossRef]

8. Balakrishnan, K.; Dey, S.; Gupta, T.; Dhaliwal, R.S.; Brauer, M.; Cohen, A.J.; Stanaway, J.; Beig, G.; Joshi, T.K.; Aggarwal, A.N.; et al.
The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: The Global Burden of Disease
Study 2017. Lancet Planet. Health 2018, 3, e26–e39. [CrossRef]

9. Karuppasamy, M.B.; Seshachalam, S.; Natesan, U.; Ayyamperumal, R.; Karuppannan, S.; Gopalakrishnan, G.; Nazir, N. Air
pollution improvement and mortality rate during COVID-19 pandemic in India: Global intersectional study. Air Qual. Atmos.
Health 2020, 13, 1375–1384. [CrossRef]

10. Saki, H.; Goudarzi, G.; Jalali, S.; Barzegar, G.; Farhadi, M.; Parseh, I.; Geravandi, S.; Salmanzadeh, S.; Yousefi, F.; Mohammadi, M.J.
Study of relationship between nitrogen dioxide and chronic obstructive pulmonary disease in Bushehr, Iran. Clin. Epidemiol. Glob.
Health 2019, 8, 446–449. [CrossRef]

https://www.who.int/news-room/detail/27-04-2020-who-timeline---covid-19
https://www.who.int/news-room/detail/27-04-2020-who-timeline---covid-19
http://doi.org/10.1038/s41598-020-73197-8
http://www.ncbi.nlm.nih.gov/pubmed/33004925
http://doi.org/10.15585/mmwr.mm6942e3
http://www.ncbi.nlm.nih.gov/pubmed/33090987
http://doi.org/10.1016/S0140-6736(20)30154-9
http://doi.org/10.1126/science.abb4218
http://www.ncbi.nlm.nih.gov/pubmed/32213647
http://doi.org/10.1063/5.0015984
http://doi.org/10.1016/j.jhin.2020.01.022
http://doi.org/10.1016/S2542-5196(18)30261-4
http://doi.org/10.1007/s11869-020-00892-w
http://doi.org/10.1016/j.cegh.2019.10.006


Int. J. Environ. Res. Public Health 2022, 19, 5057 13 of 14

11. Manoj, M.G.; Satheesh Kumar, M.K.; Valsaraj, K.T.; Sivan, C.; Vijayan, S.K. Potential link between compromised air quality and
transmission of the novel corona virus (SARS-CoV-2) in affected areas. Environ. Res. 2020, 190, 110001. [CrossRef]

12. Mi, X.; Bromley, E.K.; Joshi, P.U.; Long, F.; Heldt, C.L. Virus isoelectric point determination using single-particle chemical force
microscopy. Langmuir 2019, 36, 370–378. [CrossRef] [PubMed]

13. Gerba, C.P. Applied and theoretical aspects of virus adsorption to surfaces. In Advances in Applied Microbiology; Laskin, A.I., Ed.;
Elsevier Inc.: Amsterdam, The Netherlands, 1984; Volume 30, pp. 133–168. [CrossRef]

14. Diffey, B.L. Solar ultraviolet radiation effects on biological systems. Phys. Med. Biol. 1991, 36, 299–328. [CrossRef] [PubMed]
15. Tseng, C.-C.; Li, C.-S. Inactivation of Viruses on Surfaces by Ultraviolet Germicidal Irradiation. J. Occup. Environ. Hyg. 2007, 4,

400–405. [CrossRef] [PubMed]
16. Glencross, D.A.; Ho, T.-R.; Camiña, N.; Hawrylowicz, C.M.; Pfeffer, P.E. Air pollution and its effects on the immune system. Free

Radic. Biol. Med. 2020, 151, 56–68. [CrossRef] [PubMed]
17. Domingo, J.L.; Marquès, M.; Rovira, J. Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review.

Environ. Res. 2020, 188, 109861. [CrossRef] [PubMed]
18. Wu, X.; Rachel, C.; Nethery, M.; Sabath, B.; Braun, D.; Dominici, F. Exposure to air pollution and COVID-19 mortality in the

United States: A nationwide cross-sectional study. medRxiv 2020, preprint. [CrossRef]
19. Keeley, J.E.; Syphard, A.D. Large California wildfires: 2020 fires in historical context. Fire Ecol. 2021, 17, 1–11. [CrossRef]
20. California Department of Forestry and Fire Protection. 2020. Available online: https://www.cnn.com/2020/09/05/us/california-

mammoth-pool-reservoir-camp-fire/index.html (accessed on 23 March 2020).
21. Geographic Area Coordination Center (Report). National Interagency Fire Center. 21 December 2020; Archived from the original

(PDF) on 29 December 2020. Retrieved 13 January 2021. Available online: https://gacc.nifc.gov/ (accessed on 24 January 2022).
22. Cal Fire. Incident Archive. 2020. Available online: https://www.fire.ca.gov/incidents/2020/ (accessed on 24 February 2022).
23. Chattopadhyay, A.; Shaw, S. Association Between Air Pollution and COVID-19 Pandemic: An Investigation in Mumbai, India.

GeoHealth 2021, 5, e2021GH000383. [CrossRef]
24. Liu, Q.; Harris, J.T.; Chiu, L.S.; Sun, D.; Houser, P.R.; Yu, M.; Duffy, D.Q.; Little, M.M.; Yang, C. Spatiotemporal impacts of

COVID-19 on air pollution in California, USA. Sci. Total Environ. 2020, 750, 141592. [CrossRef]
25. Zhou, X.; Josey, K.; Kamareddine, L.; Caine, M.C.; Liu, T.; Mickley, L.J.; Cooper, M.; Dominici, F. Excess of COVID-19 cases

and deaths due to fine particulate matter exposure during the 2020 wildfires in the United States. Sci. Adv. 2021, 7, eabi8789.
[CrossRef]

26. Burke, M.; Driscoll, A.; Heft-Neal, S.; Xue, J.; Burney, J.; Wara, M. The changing risk and burden of wildfire in the United States.
Proc. Natl. Acad. Sci. USA 2021, 118, e2011048118. [CrossRef] [PubMed]

27. Abdo, M.; Ward, I.; O’Dell, K.; Ford, B.; Pierce, J.R.; Fischer, E.V.; Crooks, J.L. Impact of Wildfire Smoke on Adverse Pregnancy
Outcomes in Colorado, 2007–2015. Int. J. Environ. Res. Public Health 2019, 16, 3720. [CrossRef] [PubMed]

28. Adetona, O.; Reinhardt, T.E.; Domitrovich, J.; Broyles, G.; Adetona, A.; Kleinman, M.T.; Ottmar, R.D.; Naeher, L.P. Review of the
health effects of wildland fire smoke on wildland firefighters and the public. Inhal. Toxicol. 2016, 28, 95–139. [CrossRef] [PubMed]

29. Reisen, F.; Duran, S.M.; Flannigan, M.; Elliott, C.; Rideout, K. Wildfire smoke and public health risk. Int. J. Wildland Fire 2015, 24,
1029–1044. [CrossRef]

30. Bourdrel, T.; Annesi-Maesano, I.; Alahmad, B.; Maesano, C.N.; Bind, M.-A. The impact of outdoor air pollution on COVID-19: A
review of evidence from in vitro, animal, and human studies. Eur. Respir. Rev. 2021, 30, 200242. [CrossRef] [PubMed]

31. Saez, M.; Tobias, A.; Barceló, M.A. Effects of l34ong-term exposure to air pollutants on the spatial spread of COVID-19 in
Catalonia, Spain. Environ. Res. 2020, 191, 110177. [CrossRef]

32. Stieb David, M.; Greg, J.; Evans Teresa, M.T.; Brook, J.R.; Burnett, R.T. An ecological analysis of long-term exposure to PM2. 5 and
incidence of COVID-19 in Canadian health regions. Environ. Res. 2020, 191, 110052. [CrossRef]

33. Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence
from China. Sci. Total Environ. 2020, 727, 138704. [CrossRef]

34. Yao, Y.; Pan, J.; Wang, W.; Liu, Z.; Kan, H.; Meng, X.; Wang, W. Spatial correlation of particulate matter pollution and death rate of
COVID-19. MedRxiv 2020. [CrossRef]

35. Bashir, M.F.; Jiang, B.; Komal, B.; Bashir, M.A.; Farooq, T.H.; Iqbal, N.; Bashir, M. Correlation between environmental pollution
indicators and COVID-19 pandemic: A brief study in Californian context. Environ. Res. 2020, 187, 109652. [CrossRef]

36. Gujral, H.; Sinha, A. Association between exposure to airborne pollutants and COVID-19 in Los Angeles, United States with
ensemble-based dynamic emission model. Environ. Res. 2021, 194, 110704. [CrossRef] [PubMed]

37. Worldometer. Available online: https://www.worldometers.info/coronavirus/usa/california/#graph-cases-daily (accessed on
23 March 2020).

38. John Hopkins University of Medicine Corona Virus Resource Centre. Available online: https://coronavirus.jhu.edu/region/
united-states (accessed on 23 March 2020).

39. California Department of Public Health Open Data. Available online: https://data.chhs.ca.gov/dataset/covid-19-time-series-
metrics-by-county-and-state (accessed on 23 March 2020).

40. United States Environmental Protection Agency. Available online: https://19january2017snapshot.epa.gov/criteria-air-
pollutants_.html (accessed on 23 March 2020).

http://doi.org/10.1016/j.envres.2020.110001
http://doi.org/10.1021/acs.langmuir.9b03070
http://www.ncbi.nlm.nih.gov/pubmed/31845814
http://doi.org/10.1016/S0065-2164(08)70054-6
http://doi.org/10.1088/0031-9155/36/3/001
http://www.ncbi.nlm.nih.gov/pubmed/1645473
http://doi.org/10.1080/15459620701329012
http://www.ncbi.nlm.nih.gov/pubmed/17474029
http://doi.org/10.1016/j.freeradbiomed.2020.01.179
http://www.ncbi.nlm.nih.gov/pubmed/32007522
http://doi.org/10.1016/j.envres.2020.109861
http://www.ncbi.nlm.nih.gov/pubmed/32718835
http://doi.org/10.1101/2020.04.05.20054502
http://doi.org/10.1186/s42408-021-00110-7
https://www.cnn.com/2020/09/05/us/california-mammoth-pool-reservoir-camp-fire/index.html
https://www.cnn.com/2020/09/05/us/california-mammoth-pool-reservoir-camp-fire/index.html
https://gacc.nifc.gov/
https://www.fire.ca.gov/incidents/2020/
http://doi.org/10.1029/2021GH000383
http://doi.org/10.1016/j.scitotenv.2020.141592
http://doi.org/10.1126/sciadv.abi8789
http://doi.org/10.1073/pnas.2011048118
http://www.ncbi.nlm.nih.gov/pubmed/33431571
http://doi.org/10.3390/ijerph16193720
http://www.ncbi.nlm.nih.gov/pubmed/31581673
http://doi.org/10.3109/08958378.2016.1145771
http://www.ncbi.nlm.nih.gov/pubmed/26915822
http://doi.org/10.1071/WF15034
http://doi.org/10.1183/16000617.0242-2020
http://www.ncbi.nlm.nih.gov/pubmed/33568525
http://doi.org/10.1016/j.envres.2020.110177
http://doi.org/10.1016/j.envres.2020.110052
http://doi.org/10.1016/j.scitotenv.2020.138704
http://doi.org/10.1101/2020.04.07.20052142
http://doi.org/10.1016/j.envres.2020.109652
http://doi.org/10.1016/j.envres.2020.110704
http://www.ncbi.nlm.nih.gov/pubmed/33417905
https://www.worldometers.info/coronavirus/usa/california/#graph-cases-daily
https://coronavirus.jhu.edu/region/united-states
https://coronavirus.jhu.edu/region/united-states
https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
https://19january2017snapshot.epa.gov/criteria-air-pollutants_.html
https://19january2017snapshot.epa.gov/criteria-air-pollutants_.html


Int. J. Environ. Res. Public Health 2022, 19, 5057 14 of 14

41. Technical Assistance Document for the Reporting of Daily Air Quality—The Air Quality Index (AQI). Available online:
https://www.airnow.gov/sites/default/files/2020-05/aqi-technical-assistance-document-sept2018.pdf (accessed on 23 March 2020).

42. National Centre for Environmental Information. Available online: https://www.ncei.noaa.gov/about (accessed on 23 March 2020).
43. Rahman, S.; Azad, A.K.; Hasanuzzaman, M.; Salam, R.; Islam, A.R.M.T.; Rahman, M.; Hoque, M.M.M. How air quality and

COVID-19 transmission change under different lockdown scenarios? A case from Dhaka city, Bangladesh. Sci. Total Environ. 2021,
762, 143161. [CrossRef] [PubMed]

44. Yang, Z.; Hao, J.; Huang, S.; Yang, W.; Zhu, Z.; Tian, L.; Lu, Y.; Xiang, H.; Liu, S. Acute effects of air pollution on the incidence of
hand, foot, and mouth disease in Wuhan, China. Atmos. Environ. 2020, 225, 117358. [CrossRef]

45. Duan, Y.; Liao, Y.; Li, H.; Yan, S.; Zhao, Z.; Yu, S.; Fu, Y.; Wang, Z.; Yin, P.; Cheng, J.; et al. Effect of changes in season and
temperature on cardiovascular mortality associated with nitrogen dioxide air pollution in Shenzhen, China. Sci. Total Environ.
2019, 697, 134051. [CrossRef] [PubMed]

46. Center for Disease Control and Prevention. 2 December 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/
science/science-briefs/scientific-brief-options-to-reduce-quarantine.html (accessed on 23 March 2020).

47. Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The Incubation Period
of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern.
Med. 2020, 172, 577–582. [CrossRef]

48. Xie, J.; Zhu, Y. Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci. Total Environ.
2020, 724, 138201. [CrossRef]

49. Phosri, A.; Ueda, K.; Phung, V.L.H.; Tawatsupa, B.; Honda, A.; Takano, H. Effects of ambient air pollution on daily hospital
admissions for respiratory and cardiovascular diseases in Bangkok, Thailand. Sci. Total Environ. 2018, 651, 1144–1153. [CrossRef]

50. Zhang, A.; Zhao, L.; Li, N.; Duan, H.; Liu, H.; Pu, F.; Zhang, G.; Zhou, E.-M.; Xiao, S. Carbon monoxide inhibits porcine
reproductive and respiratory syndrome virus replication by the cyclic GMP/protein kinase G and NF-κB signaling pathway. J.
Virol. 2017, 91, e01866-16. [CrossRef]

51. Adhikari, A.; Yin, J. Lag Effects of Ozone, PM2.5, and Meteorological Factors on COVID-19 New Cases at the Disease Epicenter in
Queens, New York. Atmosphere 2021, 12, 357. [CrossRef]

52. Wei, H.; Liu, S.; Liu, Y.; Liu, B.; Gong, X. The impact of meteorological factors on COVID -19 of California and its lag effect.
Meteorol. Appl. 2022, 29, e2045. [CrossRef]

53. Sarkodie, S.A.; Owusu, P.A. Impact of meteorological factors on COVID-19 pandemic: Evidence from top 20 countries with
confirmed cases. Environ. Res. 2020, 191, 110101. [CrossRef] [PubMed]

54. R Documentation. Pggls: General FGLS Estimators. Available online: https://www.rdocumentation.org/packages/plm/
versions/2.6-1/topics/pggls (accessed on 23 March 2020).

55. Ciencewicki, J.; Jaspers, I. Air Pollution and Respiratory Viral Infection. Inhal. Toxicol. 2007, 19, 1135–1146. [CrossRef] [PubMed]
56. Chauhan, A.J.; Johnston, S. Air pollution and infection in respiratory illness. Br. Med. Bull. 2003, 68, 95–112. [CrossRef] [PubMed]
57. Horne, B.D.; Joy, E.A.; Hofmann, M.G.; Gesteland, P.H.; Cannon, J.B.; Lefler, J.S.; Blagev, D.P.; Korgenski, E.K.; Torosyan, N.;

Hansen, G.I.; et al. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection. Am. J. Respir.
Crit. Care Med. 2018, 198, 759–766. [CrossRef]

58. Zhang, Z.; Hong, Y.; Liu, N. Association of ambient Particulate matter 2.5 with intensive care unit admission due to pneumonia:
A distributed lag non-linear model. Sci. Rep. 2017, 7, 1–7. [CrossRef] [PubMed]

59. Becker, S.; Soukup, J.M. Effect of Nitrogen Dioxide on Respiratory Viral Infection in Airway Epithelial Cells. Environ. Res. 1999,
81, 159–166. [CrossRef] [PubMed]

60. Akaberi, D.; Krambrich, J.; Ling, J.; Luni, C.; Hedenstierna, G.; Järhult, J.D.; Lennerstrand, J.; Lundkvist, Å. Mitigation of the
replication of SARS-CoV-2 by nitric oxide in vitro. Redox Biol. 2020, 37, 101734. [CrossRef]

61. Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.;
Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med.
2020, 382, 1564–1567. [CrossRef]

62. Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N.K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D.; et al. Aerodynamic analysis of
SARS-CoV-2 in two Wuhan hospitals. Nature 2020, 582, 557–560. [CrossRef]

63. Magesh, S.; John, D.; Li, W.T.; Li, Y.; Mattingly-App, A.; Jain, S.; Chang, E.Y.; Ongkeko, W.M. Disparities in COVID-19 outcomes by
race, ethnicity, and socioeconomic status: A systematic-review and meta-analysis. JAMA Netw. Open 2021, 4, e2134147. [CrossRef]
[PubMed]

https://www.airnow.gov/sites/default/files/2020-05/aqi-technical-assistance-document-sept2018.pdf
https://www.ncei.noaa.gov/about
http://doi.org/10.1016/j.scitotenv.2020.143161
http://www.ncbi.nlm.nih.gov/pubmed/33129520
http://doi.org/10.1016/j.atmosenv.2020.117358
http://doi.org/10.1016/j.scitotenv.2019.134051
http://www.ncbi.nlm.nih.gov/pubmed/31487586
https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/scientific-brief-options-to-reduce-quarantine.html
https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/scientific-brief-options-to-reduce-quarantine.html
http://doi.org/10.7326/M20-0504
http://doi.org/10.1016/j.scitotenv.2020.138201
http://doi.org/10.1016/j.scitotenv.2018.09.183
http://doi.org/10.1128/JVI.01866-16
http://doi.org/10.3390/atmos12030357
http://doi.org/10.1002/met.2045
http://doi.org/10.1016/j.envres.2020.110101
http://www.ncbi.nlm.nih.gov/pubmed/32835681
https://www.rdocumentation.org/packages/plm/versions/2.6-1/topics/pggls
https://www.rdocumentation.org/packages/plm/versions/2.6-1/topics/pggls
http://doi.org/10.1080/08958370701665434
http://www.ncbi.nlm.nih.gov/pubmed/17987465
http://doi.org/10.1093/bmb/ldg022
http://www.ncbi.nlm.nih.gov/pubmed/14757711
http://doi.org/10.1164/rccm.201709-1883OC
http://doi.org/10.1038/s41598-017-08984-x
http://www.ncbi.nlm.nih.gov/pubmed/28819316
http://doi.org/10.1006/enrs.1999.3963
http://www.ncbi.nlm.nih.gov/pubmed/10433848
http://doi.org/10.1016/j.redox.2020.101734
http://doi.org/10.1056/NEJMc2004973
http://doi.org/10.1038/s41586-020-2271-3
http://doi.org/10.1001/jamanetworkopen.2021.34147
http://www.ncbi.nlm.nih.gov/pubmed/34762110

	Introduction 
	The 2020 California Wildfires and COVID-19 
	Long-Term and Short-Term Air Pollution and COVID-19 

	Materials and Methods 
	Study Area and Period 
	Data Collection 
	COVID-19 Data 
	Air Pollution Data 
	Meteorological Data 

	Statistical Analyses 
	Generalized Additive Models (GAMs) 
	Sensitivity Analysis 


	Results 
	Descriptive Analysis 
	Time Series of Confirmed COVID-19 Cases and Pollutants in the 20 Counties in Our Analysis 
	Relationship between Air Pollution and Confirmed Cases of COVID-19 

	Discussion 
	Conclusions 
	Appendix A
	References

