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In Brief

Zhou et al. determine 12 structures of the

SARS-CoV-2 spike, bound by ACE2

receptor and ligand free, that reveal a pH-

dependent switch to mediate positioning

of spike receptor-binding domains

(RBDs). At lowpH, the spike adopts an all-

RBD-down conformation, which provides

a potential means of immune evasion

from RBD-up-recognizing antibody.
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SUMMARY
The SARS-CoV-2 spike employsmobile receptor-binding domains (RBDs) to engage the human ACE2 recep-
tor and to facilitate virus entry, which can occur through low-pH-endosomal pathways. To understand how
ACE2 binding and lowpH affect spike conformation, we determined cryo-electronmicroscopy structures—at
serological and endosomal pH—delineating spike recognition of up to three ACE2 molecules. RBDs freely
adopted ‘‘up’’ conformations required for ACE2 interaction, primarily through RBD movement combined
with smaller alterations in neighboring domains. In the absence of ACE2, single-RBD-up conformations
dominated at pH 5.5, resolving into a solitary all-down conformation at lower pH. Notably, a pH-dependent
refolding region (residues 824–858) at the spike-interdomain interface displayed dramatic structural rear-
rangements and mediated RBD positioning through coordinated movements of the entire trimer apex. These
structures provide a foundation for understanding prefusion-spike mechanics governing endosomal entry;
we suggest that the low pH all-down conformation potentially facilitates immune evasion from RBD-up bind-
ing antibody.
INTRODUCTION

Like other beta-coronaviruses, entry by SARS-CoV-2 involves its

trimeric spike glycoprotein, a type 1 fusion machine that un-

dergoes large-scale conformational changes between prefusion

and postfusion conformations to facilitate fusion of viral and host

cell membranes. The exact entry process for SARS-CoV-2 is still

being defined but is known to involve spike interaction with the

ACE2 receptor (Lan et al., 2020; Shang et al., 2020b; Wang

et al., 2020; Zhou et al., 2020a). Entry can occur endosomally

as well as at the cell surface, with inhibition of both the endoso-

mal cathepsin L and the cell-surface TMPRSS2 required to

inhibit fully SARS-CoV-2 entry (Hoffmann et al., 2020; Ou et al.,

2020); cleavage of the spike by furin between S1 and S2 subunits

can also occur, but furin cleavage does not appear to be

essential for entry and occurs distal from the fusion peptide.
Cell Host & Micro
Cryo-electron microscopy (cryo-EM) structures reveal two prev-

alent prefusion conformations for uncleaved and furin-cleaved

SARS-CoV-2 spikes (Walls et al., 2020; Wrapp et al., 2020; Wro-

bel et al., 2020): a single-up conformation and an all-down

conformation, related to the positioning of the receptor-binding

domains (RBDs) in the S1 subunit. The ‘‘up’’ positioning of

RBD is needed for interaction with ACE2 receptor and is also

related to the epitope availability of RBD-directed antibodies. A

postfusion structure (Cai et al., 2020), furthermore, confirms

extensive structural rearrangements between prefusion and

postfusion conformations. However, even within the prefusion

state, the precise mechanism governing RBD positioning and

the effect of ACE2 binding are still being delineated.

In addition to entry, accumulating data indicate the SARS-

CoV-2 spike to be involved in evasion from the humoral immune

response. Antibodies such as CR3022, with sub-nanomolar
be 28, 867–879, December 9, 2020 Published by Elsevier Inc. 867
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apparent affinity for a cryptic epitope on RBDs, fail to neutralize

(Yuan et al., 2020); even among neutralizing antibodies, affinity to

spike correlates only weakly with neutralization (Liu et al., 2020);

moreover, neutralizing antibodies often show little somatic hy-

permutation, suggesting impaired maturation (Brouwer et al.,

2020; Liu et al., 2020; Robbiani et al., 2020; Rogers et al.,

2020; Seydoux et al., 2020). Although the high glycan density

of the spike (Watanabe et al., 2020) might provide partial expla-

nation for reduced immunogenicity, it is not clear why antibodies

with high affinity for spike fail to neutralize.

To provide insight into receptor interactions and RBD posi-

tioning along the endosomal entry pathway, we determined 12

cryo-EM structures of the spike, alone or in complex with the

ACE2 receptor, at serological and endosomal pHs. We used

these structures to quantify domain movements and to delineate

the interprotomer mechanism that mediates endosomal posi-

tioning of RBDs. We supplemented these structural studies

with biochemical analyses that suggest a potential spike-based

means of immune evasion. Overall, our findings provide struc-

tural definition for the binding of up to three ACE2 molecules

per SARS-CoV-2 spike trimer and define a key structural

transition between pH 5.5 and 4.5, highlighting the crucial role

of a refolding region with multiple aspartic acid residues—a

pH-dependent switch—that mediates positioning of RBDs, by

twisting the relative orientation of disulfide-linked helices and

coordinating the interprotomer movement of domains.

RESULTS

Cryo-EM Structures of SARS-CoV-2 Spike with ACE2 at
Serological and Endosomal pH
To provide structural insight into the recognition between ACE2

and prefusion spike trimer, we chose to focus on prefusion-sta-

bilized spikes and analyzed the ‘‘2P’’-prefusion stabilized soluble

trimeric ectodomain (spike), which includes GSAS and PP muta-

tions along with the T4 phage fibritin trimerization domain

(Wrapp et al., 2020). We mixed soluble monomeric ACE2 with

spike trimer at a 6:1 molar ratio at pH 7.4 and collected single-

particle cryo-EM data on a Titan Krios. We obtained structures

at 3.6–3.9 Å resolution and observed spike to bind ACE2 at stoi-

chiometries of 1:1, 1:2, and 1:3, with prevalences of 16%, 44%,

and 40%, respectively (Figures 1A and S1; Table S1). ACE2 bind-

ing introduced trimer asymmetry. First, comparison of single-

RBD-up conformations of the spike, for ACE2-bound and

ligand-free structures, revealed recognition of ACE2 to induce

a small movement of RBD (Figure S2). Second, although the

membrane-proximal region of the spike in these complexes re-

mained 3-fold symmetric, the ACE2-binding regions showed

asymmetry with, for example, superposition of the double-

ACE2-bound complex onto itself on the basis of membrane-

proximal regions leading to displacement of ACE2 molecules

by almost 11 Å (Figure 1B). The full complement of trimer super-

positions (Figure S3A) revealed preferential ways to align trimers

moving from single- to double- to triple-ACE2-bound conforma-

tions. Analysis of domain movements indicated the large move-

ment of RBD (from ‘‘down’’ to ‘‘up’’ conformation) required to

accommodate ACE2 binding to be accompanied by more subtle

movements of neighboring domains (Figure 2A), and we delin-

eated the coordinated interprotomer domain movements that
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were involved in raising RBD (Figures 2B, 2C, and S3). However,

the largest movement in S2 between single- and triple-ACE2-

bound spikes occurred at the flexible C terminus of S2, with an

overall root-mean square deviation (rmsd) for the S2 subunit

of < 1 Å between single-, double-, and triple-ACE2-bound tri-

mers (Figures S3A and S3B). Thus, ACE2-receptor engagement

required RBD to be in the up position, but we could see no clear

evidence for the binding of ACE2 priming S2 for substantial

structural rearrangement, beyond the raising of RBD and a

reduction of RBD interactions with S2.

To provide insight into the effect of endosomal pH, we again

mixed soluble monomeric ACE2 with spike trimer at a 6:1 molar

ratio, but this time at pH 5.5, and determined the structure of the

complex by using cryo-EM. Similar to serological pH, we ob-

tained structures at 3.7–3.9 Å resolution and observed spike to

bind ACE2 at stoichiometries of 1:1, 1:2, and 1:3 with preva-

lences of 31%, 37%, and 32%, respectively (Figures 1C and

S1; Table S1). We superposed triple-ACE2-bound complexes

determined at pH 7.4 and pH 5.5 and observed the mem-

brane-proximal regions of the spike to align closely, whereas

ACE2 molecules showed displacements of 3.1, 6.0, and 10.8 Å

(Figure 1D). Overall, structures of the spike with ACE2 showed

substantial populations of single-, double-, and triple-ACE2-

bound spikes at both serological and endosomal pH. The

observed distribution of spike bound to single-, double- and tri-

ple-ACE2s suggests—in the context of 2P-stabilization with S1-

S2-cleavage site removed and in the presence of excess

ACE2—the lack of a substantial energy barrier between different

ACE2-spike stoichiometries.

Ligand-Free Cryo-EM Structures of SARS-CoV-2 Spike
at Low pH
In light of the similarity of ACE2 complexes at pH 7.4 and 5.5 (Fig-

ure 1), we decided to analyze the structure of the ligand-free

spike at pH 5.5 by single-particle cryo-EM. We determined a

consensus structure from 1,083,554 particles at a resolution of

2.7 Å, in which most of the spike was well resolved, except for

a lone RBD for which reconstruction density was poor (Figures

3A and S4; Table S2). Analysis of structural heterogeneity in

this region (Videos S1, S2, S3, and S4; Figure S4CA) produced

6 3D classes ranging in prevalence from 7% to 26% and

describing 3 principal conformations, and the RBD was in the

up or down position or without a defined position (Figure S4CB).

Interestingly, unlike for ACE2-bound complexes, no double- or

triple-RBD-up conformations were observed. Two classes with

prevalences of 23% (Conformation 1, 2.9 Å resolution) and

26% (Conformation 2, 2.9 Å resolution) corresponded to two

different single-RBD-up conformations. A third prevalent class

representing 10% of the particles had all RBDs down. For all

three of these prevalent classes, unlike the consensus structure,

density for all RBD domains was well resolved (Figure S4CC),

indicating multiple orientations of RBD in the spike at pH 5.5.

In the remaining classes, the RBD did not assume a defined po-

sition, suggesting RBD mobility at pH 5.5.

To determine how even lower pH affected spike conforma-

tional heterogeneity, we sought to obtain a cryo-EM structure

of the ligand-free spike at even lower pH. We collected cryo-

EM datasets at both pH 4.5 and 4.0. Single-particle analysis of

the pH 4.5 dataset comprising 603,476 particles resolved into
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(48,008 – 44%)
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(42,947 - 40%)
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S2 subunit
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of S2 subunit
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Triple ACE2 bound 
pH 7.4 and pH 5.5 superimposed
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pH 7.4

ACE2
pH 5.5 after 
alignment of 
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Figure 1. Cryo-EM Structures of SARS-CoV-2 Spike with ACE2 Show Similar Stoichiometries at Serological and Endosomal pH

(A) Cryo-EM structures of spike with single-, double-, or triple-bound ACE2 at serological pH.

(B) Structural comparison of the two ACE2-RBD in the double-ACE2-bound structure reveals different tilt angles resulting in asmuch as a 10.8 Å displacement as

indicated.

(C) Cryo-EM structure of spike and ACE2 at endosomal pH.

(D) Comparison of triple-ACE2-bound spikes at serological and endosomal pH. Structures were aligned by S2-subunit superposition and are displayed with the

trimer perpendicular to the page and with spike colored blue and green according to pH, and ACE2 colored red and gray for pH 7.4 and 5.5, respectively.

Monomeric ACE2 was used as a ligand in these samples.

See also Figure S1 and Table S1.
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an all-RBD-down conformation, and we refined this map to 2.5 Å

resolution (Figures 3B and S4; Table S3); single-particle analysis

of the pH 4.0 dataset comprising 911,839 particles resolved into

a virtually identical all-RBD-down conformation (rmsd between

the two structures of 0.9 Å) (Figures 3C and S4; Table S3). The

similarity of the pH 4.5 and pH 4.0 structures indicated spike

conformational heterogeneity to be reduced between pH 5.5

and 4.5, and then to remain unchanged as pH was reduced

further. The pH 4.0 map was especially well-defined at 2.4 Å res-

olution (Table S3), enabling individual water molecules to be

observed (Figure 3D), and we chose the pH 4.0 structure for

comparative analysis.

Refolding at Spike Domain Interfaces Underlies
Conformational Rearrangement
To identify critical components responsible for the reduction of

conformational heterogeneity between pH 5.5 and lower pH and

to shed light on the spike mechanism controlling the positioning
of RBDs, we analyzed rmsds between the pH 5.5 structures and

the all-down pH 4.0 conformation with an 11-residue sliding win-

dow to identify regions that refolded (Figures 4A, top, and S5).

Given that each protomer in the trimer displayed a different

conformation in each of the pH 5.5 structures, we defined proto-

mer B as the one with RBD in the up position in each of the single

RBD-up conformations, and protomers A–C as appearing

counter-clockwise when viewed along the trimer 3-fold axis to-

ward the membrane. We observed significant rmsd peaks for

short stretches around residue 320 in protomer A only and around

residue 525 in protomer B only, and more substantially in a region

comprising residues 824–858 (Figure S5B). This region, which for

reasons described belowwe named the ‘‘switch’’ region, was fully

defined in protomer B and partially resolved in protomer A (resi-

dues 824–828 and 848–858) and protomer C (residues 824–841

and 851–858). Notably, this region was almost entirely unresolved

in our structureswithACE2and inmost published spike structures

(Figure 4A, bottom), suggestive of substantial mobility.
Cell Host & Microbe 28, 867–879, December 9, 2020 869



Trimer superposition reveal asymmetry in protomer movement 
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* ACE2 bound
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Figure 2. Coordinated Inter-Protomer Domain Movements Assist in Raising RBD to Bind ACE2

(A) Domain movements between single-, double- and triple-bound ACE2.

(B and C) ACE2-induced conformational change. Protomers in the double-ACE2 bound spike are colored in shades of blue whereas those in the triple-ACE2-

bound spike are colored in shades of red. Domains that move over 2 Å are colored orange and cyan for the double- and triple-ACE2-bound spikes, respectively.

See also Figures S2 and S3.
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The asymmetry in distribution of refolding regions in the trimer

between single-up and all-down structures (Figure 4B) suggested

the up RBD to depend on concerted adjustments throughout the

trimer. To delineate these, we determined angles and rigid-body

translations between each of the subdomains (Table S4) for pH

5.5 single-RBD-up and 4.0 all-RBD-down structures. For clarity,

we specify by subscript the protomer of each subunit or residue.
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Startingwith the subdomain1ofprotomerA (SD1A) at theentrance

loop of protomer A, and moving laterally around the trimer (Fig-

ure 4C, Video S5), we observed slight refolding in the 313–325A
stretch, allowing a 17� rotation of SD1A to accommodate the

switch region on the neighboring B protomer (switch B). At pH

5.5, switch B interacted with subdomain 2 of protomer A (SD2A)

(buried surface area of �300 Å2), and this key inter-protomer
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A pH 5.5

= + + +

pH 4.5
All RBDs down 

(100%)
603,476 particles

2.5 Å

viral membrane

viral membrane

Central helices density 
(residues 1000-1020 of 

chains A and B)

H2O

H2O

Consensus structure
(100%)
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viral membrane
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Figure 3. Cryo-EM Analyses Reveal Lower

pH to Reduce Spike-Conformational Hetero-

geneity Culminating in an All RBD-Down

Conformation at pH 4.0

(A) Structures at pH 5.5 with particle prevalence and

resolution of determined structures.

(B) Structure of spike at pH 4.5.

(C) Structure of spike at pH 4.0.

(D) Example of reconstruction density. A region at

the central helices of the pH 4.0 structure is shown

with well-defined water molecules. The contour

level is 0.015 (5.7 s).

See also Figure S4, Tables S2 and S3, and Videos

S1, S2, S3, and S4.
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contact coupled with SD1A rotation and 2.8 Å translation resulted

in the 8.8 Å lateral displacement of N-terminal domain of protomer

B (NTDB) toward the next RBD-switch (RBDB and switch C). The

displacedNTDB induced consecutive shifts of SD2B andSD1Bdo-

mains, which culminated in the 22.8 Å up translation (64.9� rota-
tion) of RBDB versus its down equivalent.

The up positioning of RBDB was accommodated in part by a

5.1 Å mostly downward displacement of NTDC toward the viral

membrane, which—continuing to the next RBD-switch (RBDC

and switch A)—induced minor shifts of SD2C and SD1C domains

and yielded RBDC and switch A in conformations that closely

resembled those of the all-down pH 4.0 structure.

At pH 4.0, each of the RBD-switches closely resembled each

other. The most dramatic refolding in relation to the switches at

pH 5.5 occurred in switch B, where the guanidinium of residue

Arg847B swivels over 25 Å from interacting in an inter-protomer

manner with SD2A to interacting in an intra-protomer manner

with NTDB of the same protomer. This swiveling breaks the coor-

dinated displacements of domains across the protomer-proto-

mer interface, reducing the SD2A interaction with switch B by

half (buried surface area of �160 Å2).

Notably, refolding regions were observed to reside at critical

inter-protomer contacts or at key joints between domains, espe-

cially the SD2 to SD1 joint, which cradles the switch of the neigh-

boring protomer, and the SD1B joint with up-RBDB made up of

refolding residues 523–530B.

A pH-Dependent Switch Domain Locks Spike in Down
Position
The switch domain, which included aspartic acid residues at 830,

839, 843, and 848 and a disulfide linkage between Cys840 and
Cell Host & M
Cys851, was located at the nexus of SD1

and SD2 from one protomer, and HR1 (in

the S2 subunit) and NTD from the neigh-

boring protomer. This region showed dra-

matic conformational changes (Figure 5A).

Pairwise rmsd comparisons (Figure 5B)

indicated the cryo-EM-determined switch

structures to segregate into two conforma-

tions: ‘‘unprotonated-switches’’ and ‘‘pro-

tonated-switches.’’

Unprotonated-switches were exempli-

fied by switches B and C at pH 5.5 and

perhaps best by switch B in the pH 5.5 sin-
gle-RBD-up structure (Figures 5A and 5C, left; Video S5).

Continuing from fusion peptide (FPB), the N terminus of switch

B formed several helical turns (833–842), extending laterally

from HR1B to SD2A. A turn (843–848) provided extensive con-

tacts with SD2A, before returning in helical turns (849–855)

back to HR1B. Unprotonated-switches were stabilized by a hy-

drophobic core comprising the disulfide and residues Phe833,

Tyr837, Ala846, Leu849, and Phe855 (Figure 5C, left). Notably,

all four of the unprotonated-switch aspartic acids faced solvent

and appeared to be negatively charged.

Protonated-switches were exemplified by switch A at pH

5.5 and by all switches at pH 4.0 (Figures 5A and 5C, right;

Video S5). These switches reoriented their N-terminal helical

turns to point toward SD1, swiveling the Ca-position of

Arg847 over 15 Å to interact with NTD (Figure 5C and Table

S5) before finishing the rest of the domain with a few helical

turns (848–855). Protonated switches were stabilized by a hy-

drophobic core comprising Tyr837, Ile850, and aliphatic por-

tions of the side chain from Lys854 on one side of the disulfide

and Ala846 and Phe855 on the other. Notably, two of the

switch domain Asp residues that appeared most likely to be

protonated based on hydrogen-bonding patterns in the pH

4.0 structure (D830 and D843) also had higher calculated

pKas than the unprotonated switch conformation, consistent

with their observed hydrogen bonds and their apparent pro-

tonation at pH 5.5 (Figure 6). Additionally, three Asp residues

from the neighboring protomer (D574, D586, and D614) had

higher pKas in protonated-switch conformations than in un-

protonated-switch conformations. In general, our pKa calcula-

tions and structural analyses both indicated increased Asp

residue protonation in the protonated-switch conformation,
icrobe 28, 867–879, December 9, 2020 871
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(legend continued on next page)
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and reflected the expected trend of increasing numbers of

protonated Asp or Glu residues at lower pH.

Analysis of switch domain conformations and RBD positions

(Figure 7A) indicated a concordance between switches interact-

ing with NTD (breaking coordinated interprotomer interactions)

and the locking of RBDs in the down position. Thus, at pH 5.5,

the unprotonated-switches in protomers B and C interacted

with the SD2 domain of the neighboring protomer to transmit

lateral displacements of domains. At lower pH, the protonated-

switches interrupt this interprotomer interaction, resulting in

the locking of RBDs in the down position.

Binding of ACE2 Receptor and CR3022 Antibody at
Serological and Endosomal pH
We investigated the influence of these pH-dependent conforma-

tional changes on binding of antibody. For variation in pH over

the course of virus entry to affect the binding of antibody, the

antibody would need to allow spike recognition of the ACE2 re-

ceptor, thereby enabling the virus to initiate endosomal entry.We

chose to focus on antibody CR3022, an antibody originally iden-

tified to neutralize SARS (ter Meulen et al., 2006), given that this

antibody was shown to bind SARS-CoV-2 spike with sub-pico-

molar affinity (Yuan et al., 2020) and to induce spike disassembly

(Huo et al., 2020), yet did not neutralize SARS-CoV-2 (Yuan

et al., 2020).

CR3022 has been shown to not inhibit RBD binding to ACE2

(Yuan et al., 2020), but this had not been shown with spike. We

used isothermal titration calorimetry (ITC) to determine whether

binding of CR3022 to spike was compatible with ACE2 interac-

tion at serological pH. We chose to use a monomeric version

of ACE2 to test more sensitively the effect of antibody inhibition.

First, we titrated ACE2 into soluble spike, and observed 1.9

ACE2 molecules to bind per spike trimer, with an affinity of

94 nM (Figure 7B, left). Next, we titrated soluble spike with the

antigen-binding fragment (Fab) of CR3022 until saturation (Fig-

ure S6A) and further titrated ACE2 into the spike-CR3022 com-

plex formed to observe 2.3 ACE2 molecules to bind each

spike-CR3022 complex, with an affinity of 130 nM (Figure 7B,

right). Thus, at serological pH, the SARS-CoV-2 spike appeared

capable of recognizing ACE2 even in the presence of antibody

CR3022, indicating that CR3022-bound spikes could initiate en-

dosomal-based ACE2-dependent entry.

To gain insight into the effect of endosomal pH on ACE2 and

CR3022 interactions with spike, we characterized their binding

to both spike and RBD, expressed as a separate molecule. For

these experiments, we chose to use dimeric ACE2 to more

closely mimic native interactions with spike. Endosomes vary

in pH from pH�6 (early endosomes) to pH�5 (late endosomes),

with lysosomal pH as low as �4 (Benjaminsen et al., 2011; Turk

and Turk, 2009). For endosomal pH, we chose tomeasure pH 5.5

and 4.5. At endosomal pH, surface plasmon resonance (SPR)-

determined apparent ACE2 binding affinities to both spike and

RBD were somewhat reduced from 0.82 nM at serological pH

to 8.4 and 7.0 nM at pH 5.5 and 4.5, respectively, for spike,

and from 1.0 nM at serological pH to 2.2 and 15 nM at pH 5.5
(C) Domain movements between pH 5.5 and 4.0. Three views are shown to depic

direction of rotation and displacement are indicated for each domain with vector

See also Figure S5, Tables S4 and S5, and Video S5.
and 4.5, respectively, for RBD (Figure S6B). With CR3022 IgG,

apparent affinities to spike and RBD were sub-nanomolar at

serological pH, though with a 10-fold difference (0.49 and

0.052 nM to spike and RBD, respectively) (Figure 7C). At pH

5.5, this 10-fold difference was retained (1.7 and 0.23 nM,

respectively). However, at pH 4.5, CR3022 still bound to RBD

(1.1 nM), but its apparent affinity to spike was dramatically

reduced with a KD > 1,000 nM—an apparent affinity difference

we estimated to be >1,000-fold (Figures 7C and S6C). Because

CR3022 still bound strongly to the isolated RBD, we attributed

the dramatically reduced apparent affinity of CR3022 for spike

at low pH to conformational constraints of the spike (Figure 7D).

Overall, the pH-induced retraction of RBDs through the spike

adopting an all-down conformation can be described as a

‘‘conformational masking’’ energy barrier, which increased

CR3022 affinity should be able to overcome. Relevant to this, a

recent study has revealed a single mutation between SARS

and SARS-CoV-2 spike in the CR3022 epitope that leads to

increased CR3022 binding and neutralization for SARS, indi-

cating the SARS-CoV-2 spike evasion from CR3022 neutraliza-

tion to depend on the reduced affinity of CR3022 (Wu

et al., 2020).

DISCUSSION

Viral spikes are prime targets for neutralizing antibodies, and

many have evolved mechanisms for immune evasion, some of

which resemble aspects of the endosomal pH-dependent

conformational masking described here. Receptor binding-site

masking through endosomal cleavage, for example, occurs

with the Ebola virus glycoprotein trimer (Kaletsky et al., 2007),

and conformational masking has been previously described for

the HIV-1 envelope trimer (Kwong et al., 2002), which is labile

and elicits antibodies of little neutralization capacity. With the

SARS-CoV-2 spike, we anticipate endosomal affinity reduction

observed here for CR3022 to apply generally to RBD-up-recog-

nizing antibodies, although this remains to be demonstrated

explicitly; we note that the emerging D614G variant of SARS-

CoV-2 (Korber et al., 2020; Plante et al., 2020) alters switch inter-

actions, such that RBDs are not fully retracted (Yurkovetskiy

et al., 2020); this variant appears to be more sensitive to neutral-

ization by patient sera (Li et al., 2020) providing an estimate of the

impact of this low-pH conformational masking on neutralization.

In general, antibodies can neutralize SARS-CoV-2 through

diverse mechanisms, including by competition for ACE2 binding

or by stabilizing spike in the all-RBD-down state, and there are

multiple ways these antibodies interact with spike (Barnes

et al., 2020).

The functional purpose of the up-down positioning of RBD

domains in coronaviruses has been a point of debate, given

that structures with RBD-up and RBD-down have been deter-

mined (Beniac et al., 2006; Gui et al., 2017; Kirchdoerfer

et al., 2016; Pallesen et al., 2017; Shang et al., 2020a; Shang

et al., 2018; Song et al., 2018; Walls et al., 2016; Yuan et al.,

2017). Do the waving RBDs of other coronavirus spikes elicit
t the movements at the interfaces of protomers A-B, B-C, and C-A. Extent and

s and colored dots. Refolding regions are labeled and colored as in (B).
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Conformation of the switches in protomer B of the pH 5.5 and pH 4 structuresC
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Figure 5. The pH-Switch Domain

(A) Switches in the pH 5.5 and pH 4.0 structures. The protomers and switches were colored as in Figure 4B. Disordered regions of the switches are shown as gray

dashed lines and marked by flanking residue numbers.

(B) Pairwise rmsd between switch regions (residues 824–858) from different protomers. Of the 12 protomers determined in this study, only 9 had at least 25

ordered residues and were included in this pairwise-rmsd analysis; rmsds of less than 3.5 Å shaded gray. Switch regions for SARS-CoV-2 spike at higher pHwere

recently described (Cai et al., 2020; Wrobel et al., 2020), and these and switch regions from other coronaviruses are analyzed in Figure S7.

(C) Comparison of the unprotonated and protonated switches. Key residues are shown in stick representation, and Asp and Cys residues are colored red and

yellow, respectively. Interactive surface areas with surrounding domains indicated. Pairwise Ca-distances between switch residues is shown in the middle.

See also Figures S5 and S7 and Tables S4 and S5.
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antibodies that are then shed through an endosomal mecha-

nism along the lines that we outline for SARS-CoV-2? We

note that the switch domains from bat RaTG13 and SARS-

CoV-1 are virtually identical in sequence to that of SARS-

CoV-2, and the aspartic acid residues of the switch domain
874 Cell Host & Microbe 28, 867–879, December 9, 2020
are mostly conserved in MERS (Figure S7), potentially indi-

cating the switch-based all-RBD-down locking strategy of im-

mune evasion described here to enable other coronaviruses

that utilize endosomal entry to avoid neutralization by RBD-

up-recognizing antibodies.
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Figure 6. pKa Calculations for the pH-Switch Domain
(A) PROPKA-calculated pKas for pH-dependent switch domain residues in the pH 4.0 and 5.5 unliganded spike structures. pKas are plotted for titratable residues

within and interacting with the 824–858 pH-dependent switch domain for in each structure, disordered regions excluded. Typical pH values for serum (7.4), early

endosome (6.0), and late endosome (4.5) are indicated by dashed lines.

(B) Close-up views of Asp/Glu residues in (A) from the pH 4.0 and pH 5.5 structures depict changes in chemical environment for each residue between con-

formations. View angles with respect to superposed structures are the same within each residue column. Switch domain and surrounding protomers are colored

as indicated at left. Highlighted residues are shown as thick sticks with labels colored based on pKa-based dominant protonation state at the structure pH:

charged Asp/Glu in red, and neutral (protonated) Asp/Glu in blue. Residues within 4 Å are shown as thin sticks. Dashed lines indicate hydrogen bonds (yellow) or

salt bridge interactions (violet), and hydrogen bonds requiring carboxylic acid group protonation are shown in blue. The pKa shifts between unprotonated- and

protonated-switch conformations define a pH-dependent stability gradient that favors the protonated-switch form at lower pHs (Yang and Honig, 1993).

However, other factors such as global conformational constraints might also play a role in favoring one conformation over another.
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Recent cryo-EM analyses of ACE2-bound structures (Benton

et al., 2020), cryo-ET analysis of membrane-bound spikes (Ke

et al., 2020; Turo�nová et al., 2020), and smFRET analyses (Lu

et al., 2020) provide additional contexts by which to interpret

the structural results described here. Benton and colleagues
suggest three-ACE2 to destabilize the prefusion spike, but in

the context of ACE2-bound to 2P-stabilized spikes, no substan-

tial changes in S2 conformation were induced by ACE2 binding.

Meanwhile, the fascinating motions described by Ke and col-

leagues and by Turo�nová and colleagues involve regions of spike
Cell Host & Microbe 28, 867–879, December 9, 2020 875
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Figure 7. SARS-CoV-2 Spike at Serological pH Binds ACE2 and CR3022 and at Lower pH Still Binds ACE2 but Not CR3022

(A) Schematic of the pH-switch locking of RBD in the down position.

(B) Isothermal titration calorimetry at pH 7.4 of ACE2 recognizing spike (left) or spike previously titrated with Fab CR3022 (right). Measurements were performed in

duplicate; uncertainties are the average standard errors obtained by fitting to the two independent datasets.

(C) Apparent affinities of spike (top) and real affinities of RBD (bottom) to CR3022 IgG as a function of pH as measured by SPR.

(D) Schematic showing ACE2-dependent endosomal entry of SARS-CoV-2 and the pH-dependent shedding of antibodies like CR3022.

See also Figure S6.
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that are below the ordered regions of S2 that we described here.

Lastly, smFRET analysis suggests an on-path intermediate as

the basis for the observed ACE2-induced trimer asymmetry; it

will be fascinating to see whether smFRET analysis of soluble tri-

mers and at endosomal pH can provide insight into the pH-

induced alterations in spike conformation that we observe here.

We note that the critical switch region (residues 824–858) dis-

plays remarkable structural diversity within coronaviruses,

segregating into three structural clusters (Figure S7). Each of

the structures within these clusters generally comprises two he-

lices, linked by a disulfide, in distinct orientations in relation to

each other and to the surrounding domains. Overall, the struc-

tural diversity of the switch region, defined here for SARS-

CoV-2 along its endosomal entry pathway and recently at higher

pH (Cai et al., 2020; Wrobel et al., 2020), provides a further

example of how type 1 fusion machines can use structural rear-

rangement not only to merge membranes (e.g., transitioning

from prefusion to intermediate to postfusion states) but to evade

potential neutralizing antibodies that recognize the prefu-

sion state.
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complex with double ACE2 at pH 7.4

This study EMDB: EMD-22932

PDB: 7KMZ

Cryo-EM structure of SARS-CoV-2 spike in

complex with triple ACE2 at pH 7.4

This study EMDB: EMD-22927

PDB: 7KMS

Cryo-EM structure of Focused ACE2-RBD

at pH 7.4, after C3 Symmetry Expansion

This study EMDB: EMD-22922

PDB: 7KMB

Cryo-EM structure of SARS-CoV-2 spike in

complex with single ACE2 at pH 5.5

This study EMDB: EMD-22943

PDB: 7KNE

Cryo-EM structure of SARS-CoV-2 spike in

complex with double ACE2 at pH 5.5

This study EMDB: EMD-22949

PDB: 7KNH

Cryo-EM structure of SARS-CoV-2 spike in

complex with triple ACE2 at pH 5.5

This study EMDB: EMD-22950

PDB 7KNI

Cryo-EM structure of SARS-CoV-2 spike at

pH 5.5, consensus map

This study EMDB: EMD-22253

PDB: 6XM0

Cryo-EM structure of SARS-CoV-2 spike at

pH 5.5, single RBD up, conformation 1

This study EMDB: EMD-22254

PDB: 6XM3

Cryo-EM structure of SARS-CoV-2 spike at

pH 5.5, single RBD up, conformation 2

This study EMDB: EMD-22255

PDB: 6XM4

Cryo-EM structure of SARS-CoV-2 spike at

pH 5.5, all RBD down

This study EMDB: EMD-22256

PDB: 6XM5

Cryo-EM structure of SARS-CoV-2 spike at

pH 4.5

This study EMDB: EMD-22515

PDB: 7JWY

Cryo-EM structure of SARS-CoV-2 spike at

pH 4.0

This study EMDB: EMD-22251

PDB: 6XLU
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Experimental Models: Cell Lines

Expi293F cells ThermoFisher Scientific Inc Cat#A14527

FreeStyle 293-F cells ThermoFisher Scientific Inc Cat#R79007

Recombinant DNA

pVRC8400 vector https://www.addgene.org Cat#63160

pVRC8400-CR3022 Yuan et al., 2020 N/A

paH-SARS-CoV-2-S-2P Wrapp et al., 2020 N/A

Software and Algorithms

Coot Emsley and Cowtan, 2004 https://sbgrid.org/software/

CTFFind4 Rohou and Grigorieff, 2015 http://grigoriefflab.janelia.org/ctffind4

crYOLO Wagner et al., 2019 https://sphire.mpg.de/wiki/doku.php?

id=pipeline:window:cryolo

cryoSPARC Punjani et al., 2017 https://cryosparc.com

GraphPad Prism Software GraphPad Prism Software, Inc. N/A

Leginon Suloway et al., 2005 https://sbgrid.org/software/titles/leginon

Phenix Adams et al., 2010 https://sbgrid.org/software/

The PyMOL Molecular Graphics System Schrödinger, LLC https://pymol.org/2/

RELION Scheres, 2012 https://www3.mrc-lmb.cam.ac.uk/relion/

index.php/Main_Page

Scrubber 2.0 BioLogic Software http://www.biologic.com.au/scrubber.html
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Peter D.

Kwong (pdkwong@nih.gov).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Cryo-EMstructurecoordinatesandelectrondensitymaps for theSARS-CoV-2spike ligand freeandACE2complexeshavebeendepos-

ited with the Protein Data Bank and ElectronMicroscopyData Bank (individual spike at pH 5.5, consensus structure: PDB 6XM0, EMD-

22253; individual spike at pH 5.5 with single RBD in the up position (conformation up-1): PDB 6XM3, EMD-22254; individual spike at pH

5.5 with single RBD in the up position (conformation up-2): PDB 6XM4, EMD-22255; individual spike at pH 5.5 with all RBDs down: PDB

6XM5, EMD-22256; individual spike at pH 4.5: PDB 7JWY, EMD-22515; individual spike at pH 4.0: PDB 6XLU, EMD-22251; spike with

singleACE2atpH7.4:PDB7KNB,EMD-22941; spikewithdoubleACE2at pH7.4:PDB7KMZ,EMD-22932; spikewith tripleACE2atpH

7.4: PDB 7KMS, EMD-22927; Focused ACE2-RBDat pH7.4, after C3Symmetry Expansion: PDB 7KMB, EMD-22922; spike with single

ACE2 at pH 5.5: PDB 7KNE, EMD-22943; spike with double ACE2 at pH 5.5: PDB 7KNH, EMD-22949; spike with triple ACE2 at pH 5.5:

PDB 7KNI, EMD-22950). Additional supplemental items are available fromMendeley Data at https://doi.org/10.17632/y2j4k2mkd6.2.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
FreeStyle 293-F (cat# R79007) and Expi293F cells (cat# A14528; RRID: CVCL_D615) were purchased from ThermoFisher Scientific Inc.

FreeStyle 293-F cells were maintained in FreeStyle 293 Expression Medium, while Expi293F cells were maintained in Expi Expression

Medium. The above cell lines were used directly from the commercial sources and cultured according to manufacturer suggestions.

METHOD DETAILS

Production of Spike, ACE2 and Antibodies
SARS-CoV-2 spike (Wrapp et al., 2020) was expressed by transient transfection in 293 Freestyle cells. Briefly, 1 mg of DNA was

transfected into 1L of cells using Turbo293 transfection reagent, and the cells were allowed to grow at 37�C for 6 days. Following
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expression, the supernatant was cleared by centrifugation and filtration, and then incubated with cOmplete His-Tag Purification

resin. The resin was washed with PBS containing increasing concentrations of imidazole, and the protein eluted in 20 mM Tris

pH8.0, 200 mM NaCl, 300 mM Imidazole. HRV3C protease was added at a 1:20 mass ratio and incubated overnight at 4�C to cleave

the purification tags. The protein was then applied to a Superdex 200 column in PBS, after which the spike containing fractions were

pooled and concentrated to 1 mg/mL. Single chain Fc tagged RBD and NTD domains were expressed in the same manner, and pu-

rified using capture by Protein A resin, followed by cleavage of the tag using HRV3C (Zhou et al., 2020b) and gel filtration.

Human ACE2 proteins were prepared in monomeric form (residues 1-620) and in dimeric form (residues 1-740). The expression

plasmids were constructed and the protein purified as described previously (Zhou et al., 2020b). Briefly, DNA sequence encoding

monomeric or dimeric ACE2 was synthesized and cloned into a plasmid with an HRV3C cleavage site, monomeric Fc tag and 8xHis-

Tag at the 30 end. The proteins were expressed by transient transfection of 293F cells and purified from a Protein A column. The tag

was removed by overnight HRV3C digestion at 4�C. The proteins were further purified with a Superdex 200 16/60 column in 5 mM

HEPES, pH7.5 and 150 mM NaCl.

For antibody preparation, DNA sequences of antibody CR3022 (Yuan et al., 2020) heavy and light chains were cloned into the

pVRC8400 vector, as described previously (Wu et al., 2011), expressed and purified as described (Zhou et al., 2020b). The Fab frag-

ments were generated by overnight digestion with Endoproteinase LysC (New England Biolabs) at 37�C and purified by protein A

column to remove uncut IgG and Fc fragments.

Isothermal Titration Calorimetry
Calorimetric titration experiments were performed at 25�C using a VP-ITC microcalorimeter from MicroCal⁄Malvern Instruments

(Northampton, MA, USA). The spike protein, ACE2 and Fab of CR3022 were prepared and exhaustively dialyzed against PBS, pH

7.4, prior to the experiments. Any dilution steps prior to the experiments were made using the dialysate to avoid any unnecessary

heats of dilution associated with the injections. All reagents were thoroughly degassed prior to the experiments. For the direct deter-

mination of the binding to the spike protein, the solution containing either ACE2 or CR3022 (Fab) was added stepwise in 10 mL ali-

quots to the stirred calorimetric cell (�1.4 ml) containing spike protein at 0.4 – 0.5 mM (expressed per trimer). The concentration of

titrant in the syringe was 12 – 14 mM for both ACE2 and CR3022 (Fab). The effect of CR3022 on ACE2 binding to spike protein was

studied by first titrating the spike protein with CR3022 until complete saturation was reached, and then performing a complete titra-

tion of the complex with ACE2. Despite the thorough dialysis, the heat of dilution/injection associated with the injection of ACE2 into

the complex was considerable during the course of the titration and needed to be accounted for in the analysis. The heat evolved

upon each injection was obtained from the integral of the calorimetric signal and the heat associated with binding was obtained after

subtraction of the heat of dilution. The enthalpy change,DH, the association constant,Ka, and the stoichiometry,N, were obtained by

nonlinear regression of the data to a single-site binding model using Origin with a fitting function made inhouse. Gibbs energy, DG,

was calculated from the binding affinity usingDG = -RTlnKa, (R = 1.987 cal/(K3mol)) and T is the absolute temperature in kelvin). The

entropy contribution to Gibbs energy, -TDS, was calculated from the relation DG = DH -TDS.

SPR Binding Experiments
SPR binding experiments were performed using a Biacore T200 biosensor, equipped with a Series S SA chip. The running buffer

varied depending on the pH of the binding reaction; experiments at pH 7.4 were performed in a running buffer of 10 mM HEPES

pH 7.4, 150 mM NaCl, 0.2 mg/mL BSA and 0.01% (v/v) Tween-20; at pH 5.5 experiments were performed in 10 mM sodium acetate

pH 5.5, 150 mM NaCl, 0.2 mg/mL BSA and 0.01% (v/v) Tween-20; and at pH 4.5 in 10 mM sodium acetate pH 4.5, 150 mM NaCl,

0.2 mg/mL BSA and 0.01% (v/v) Tween-20. All measurements were performed at 25�C.
Biotinylated spike and RBD were captured over independent flow cells at 700-1000 RU and 150 RU respectively for both the

CR3022 IgG and the dimeric ACE2 binding experiments. To avoid the difficulty in surface regeneration that arises with slow disso-

ciation, we used single-cycle kinetics binding experiments. CR3022 IgGwas tested at analyte concentrations 36-1.33 nMprepared in

running buffer at each pH, using a three-fold dilution series. In addition, CR3022 IgG was tested over the spike at higher analyte con-

centrations ranging 108-4 nM, 360-13.33 nM and 1000-37.04 nM at pH 4.5, only to confirm the absence of binding to the spike at pH

4.5. Dimeric ACE2 was tested at 90-3.33 nM prepared in running buffer at each pH, using a three-fold dilution series. Binding over the

spike or RBD surface as well as over a streptavidin reference surface was monitored for 120 s, followed by a dissociation phase of

120-900 s depending on the interaction at 50 ml/min. Four blank buffer single cycles were performed by injecting running buffer

instead of Fab to remove systematic noise from the binding signal. The data were processed and fit to 1:1 single cycle model using

Scrubber 2.0 (BioLogic Software).

Cryo-EM Structures of ACE2-Spike Complexes
SARS-CoV-2 spikewas incubatedwith 3-foldmolar excess ofmonomeric ACE2 receptor with a final trimer concentration of 1mg/mL

in either PBS, pH 7.4, or 10mM sodium acetate, pH 5.5, with 150mMNaCl. The samples (2 ml) were vitrified using a Leica EMGP and

Vitrobot Mark IV plunge freezers on glow-discharged carbon-coated copper grid (protochip, CF 1.2/1.3). Data were collected on a

300 kV Titan Krios equipped with a Gatan K3-BioQuantum direct detection device using Leginon software (Suloway et al., 2005). The

total dose was fractionated for 2 s over 40 raw frames. Motion correction, contrast transfer function (CTF) estimation, particle picking

with topaz (Bepler et al., 2019) and extraction, 2D classification, ab initiomodel generation, 3D refinements and local resolution esti-

mation were carried out in cryoSPARC 2.14 (Punjani et al., 2017). We note that some classes of unbound spike were also observed in
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both datasets; however, particle picking was optimized for complexes so the fraction was low. The 3D reconstructions were per-

formed using C1 symmetry for all complexes as the ACE2-RBD region showed flexibility that prohibited typical symmetry operations

in the triple-bound complexes. However, the RBD-ACE2 region was assessed in greater detail through focused refinement following

particle expansion with C3 symmetry applied to the pH 7.4 triple bound reconstruction. This RBD-ACE2 model was then used as a

reference structure for refinement of all other ACE2-bound models.

The coordinates of SARS CoV-2 spike ectodomain structures, PDB entries 6VXX and 6M0J (Walls et al., 2020), were employed as

initial models for fitting the sharpened cryo-EMmap of the ACE2-bound structures (Table S1). Manual and automatedmodel building

were iteratively performed using Coot (Emsley and Cowtan, 2004) and real space refinement in Phenix (Adams et al., 2010) to accu-

rately fit the coordinates to the electron density map. Molprobity (Davis et al., 2004) was used to validate geometry and check struc-

ture quality. UCSF ChimeraX (Goddard et al., 2018) was used for map-fitting cross correlation calculation (Fit-in-Map tool) and for

figure preparation.

Cryo-EM Structures of Ligand-Free Spikes
A sample of SARS-CoV-2 S in PBSwith a protein concentration of 1mg/mLwas diluted to 0.5mg/mL using 0.2M sodium acetate, pH

4.0, pH 4.5, or pH 5.5 (final sodium acetate concentration: 0.1M). Separatemeasurements with a pHmeter confirmed that combining

equal volumes of PBS and 0.2 M sodium acetate, pH 4.0, pH 4.5, or pH 5.5, produces solutions with pH 4.0, pH 4.5, and pH 5.5,

respectively. Quantifoil R 2/2 gold grids were used for specimen preparation. The grids were glow-discharged using a PELCO eas-

iGlow device (air pressure: 0.39 mBar, current: 20 mA, duration: 30 s) immediately before vitrification. Cryo-EM grids were prepared

by plunge-freezing in liquid ethane using an FEI Vitrobot Mark IV plunger with the following settings: chamber temperature of 4�C,
chamber humidity of 95%, blotting force of�5, blotting time of 5 s, and drop volume of 2.7 ml. Datasets were collected at the National

CryoEM Facility (NCEF), National Cancer Institute, on a Thermo Scientific Titan Krios G3 electron microscope equipped with a Gatan

QuantumGIF energy filter (slit width: 20 eV) and aGatan K3 direct electron detector. Fourmovies per hole were recorded in the count-

ing mode using Latitude software. The dose rate was 13.4 e�/s/pixel.
Each dataset was divided into subsets which were initially processed independently in parallel using Frederick Research

Computing Environment (FRCE) computing cluster and later combined for the final refinement. Movie-frame alignment was per-

formed using MotionCorr2 (Zheng et al., 2017). Ctffind4 was used to determine the parameters of CTF (Rohou and Grigorieff,

2015). The remaining processing steps were performed using Relion 3.0 (Scheres, 2012) unless otherwise stated. For spike at pH

4.0, a small particle set was selected manually and used to obtain 2D classes which were utilized as templates to select a larger

set of particles. An initial 3D model was obtained using EMAN 2.1 (Tang et al., 2007) from the 2D classes generated from this

extended particle set. This 3D model was then subjected to 3D auto-refinement, and the resulting map was used to generate

low-pass filtered picking templates for the entire dataset. For spike at pH 5.5 and pH 4.5, particle picking was performedwith cryOLO

1.5 (Wagner et al., 2019) using a general network model, and an initial 3D model was obtained with EMAN 2.1 from a subset of re-

sulting 2D classes. The following steps included rounds of 3D classification, 3D auto-refinement, CTF refinement, and particle polish-

ing. Map resolutions were calculated using the gold-standard approach (Henderson et al., 2012) at the FSC curve threshold of 0.143.

ResMap 1.1.4 was used to asses local resolution (Kucukelbir et al., 2014). Map sharpening B factors are listed in Tables S2 and S3.

Local map sharpening was performed using phenix.auto_sharpen (Terwilliger et al., 2018). SPIDER 22.1 was used for map conver-

sion and re-sizing (Frank et al., 1996). Correlations between cryo-EMmaps and atomic models were assessed using phenix.mtriage

(Afonine et al., 2018). UCSF Chimera was used for docking and visualization (Pettersen et al., 2004). Despite the fact that C3 sym-

metry was imposed during the reconstruction of spike for the pH 4.0 dataset, the resulting map displayed some asymmetrical fea-

tures in some regions, such as that around residue 830. Therefore, the three chains of the atomic model were built and refined indi-

vidually. The coordinates of SARS CoV-2 spike ectodomain structures, PDB entries 6VXX and 6VYB, were used as initial models for

fitting the cryo-EMmap of the spike structures at pH 4.0 and pH 5.5 structures. The coordinates of SARS CoV-2 spike at pH 4.0 were

used as initial model for the spike structure at pH 4.5. Iterative model building and real space refinement were carried out using Coot

(Emsley and Cowtan, 2004) and Phenix to accurately fit the coordinates to the electron density map. Molprobity (Davis et al., 2004)

was used to validate geometry and check structure quality.

3D Variability and RBD Conformation Analysis
For 3D variability analysis, a subset of 100,000 particles randomly selected from the final particle set at pH 5.5 was exported into

cryoSPARC 2.15 (Punjani et al., 2017), and a homogeneous refinement was performedwithout imposing symmetry. The 3D variability

analysis was set up to use three eigenvectors of the 3D covariance, and 20 frames were used for visualization of results. The eigen-

vectors describing movements of the RBD were identified via examining the resulting volume series and corresponding variability

videos (Videos S1, S2, S3, and S4).

The structural heterogeneity of the consensus pH 5.5 map in the RBD region was analyzed using local 3D classification. To obtain

an accurate mask encompassing the conformational space of the dynamic RBD, the four 3D variability volumes corresponding to the

beginning and the end of the trajectories defined by eigenvectors 0 and 2 were first aligned to the consensus cryo-EMmap. For each

of the four volumes, the density corresponding to the dynamic RBD was isolated by performing volume segmentation in UCSF

Chimera (Pettersen et al., 2004). These RBD sub-volumes were added together, and a soft mask was created from the resulting com-

posite volume by low-pass filtering the density to 15 Å, extending the resulting volume by 2 pixels, and adding a soft edge of 5 pixels
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using relion_mask_create. Local 3D classification of the consensus dataset within this mask was performed without particle align-

ment in Relion 3 (Scheres, 2012), followed by global 3D refinement of each of the resulting six maps.

Identification of Spike Refolding Regions
We used a sliding window of 11 amino acids and 21 amino acids respectively to align and calculate backbone (C, Ca, O, N) rmsd

values between the pH 4 structure (protomer B) and pH 5.5 single-RBD-up or pH 5.5 all-RBD-down structures, respectively, using

PyMOL (Version 2.3.4). Calculation was omitted if the specified residue range had less than 22 backbone atoms. The average rmsd

values of pH 5.5 single-RBD-up conformation 1 and conformation 2 were reported for pH 5.5 single-RBD-up analysis. The refolding

regions were defined as residues with greater than 2-Å rmsd. Refolding regions with more than one consecutive residue were further

considered, and single residue gaps were ignored when determining the residue ranges. Manual inspection revealed 11 amino acid-

window to correspond better with domain movements. Therefore, the results from only 11 amino acid-window analysis were

reported.

Clustering of Switch Region Structures
The coronavirus spike structures were obtained from PDB using sequence similarity search against SARS-CoV-2 spike protein with

the default parameters. After manual examinations, structures that were not coronavirus spike trimers were excluded. For the rest of

the structures, the sequences were aligned using ClustalW (Larkin et al., 2007) and chains with at least 70% of the residues deter-

mined of the switch region (residues 824-858, SARS-CoV-2 numbering) were further considered. The structures were clustered using

the hclust function implemented in statistical package R based on the pairwise backbone rmsd distances calculated with the rms_cur

function in PyMOL after the switch regions were aligned.

pKa Calculations
Individual residue pKas were calculated for the pH 4.0 all-down, pH 5.5 all-down, and pH 5.5 single-up (conformations 1 and 2) struc-

tures using PROPKA (Olsson et al., 2011; Søndergaard et al., 2011). For residues in the chain B 830-855 switch domains and titratable

residues within 5Å of the switch domain, pKa data were analyzed and plotted using R (https://www.R-project.org/) in RStudio (http://

www.rstudio.com/) with the ggplot2 library (Wickham, 2016) and structural figures were made using PyMOL.

QUANTIFICATION AND STATISTICAL ANALYSIS

SPR data were processed and fit using Scrubber 2.0 (BioLogic Software). Cryo-EM data were processed and analyzed using Cry-

oSparc and Relion. Cryo-EM structural statistics were analyzed with Phenix and Molprobity. Statistical details of experiments are

described in Method Details or figure legends, such as for isothermal titration calorimetry, where we state in the legend to Figure 7B

that measurements were performed in duplicate, with uncertainties being the average standard errors obtained by fitting to the two

independent datasets.

Other than standard approaches described in Method Details or figure legends such as splitting of cryo-EM data to allow for sta-

tistical analysis, no additional methods were used to determine whether the data met assumptions of the statistical approach.
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