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Abstract: Retinal development is dependent on an accurately functioning network of 

transcriptional and translational regulators. Among the diverse classes of molecules 

involved, non-coding RNAs (ncRNAs) play a significant role. Members of this family are 

present in the cell as transcripts, but are not translated into proteins. MicroRNAs (miRNAs) 

are small ncRNAs that act as post-transcriptional regulators. During the last decade, they 

have been implicated in a variety of biological processes, including the development of the 

nervous system. On the other hand, long-ncRNAs (lncRNAs) represent a different class of 

ncRNAs that act mainly through processes involving chromatin remodeling and epigenetic 

mechanisms. The visual system is a prominent model to investigate the molecular 

mechanisms underlying neurogenesis or circuit formation and function, including the 

differentiation of retinal progenitor cells to generate the seven principal cell classes in the 

retina, pathfinding decisions of retinal ganglion cell axons in order to establish the correct 

connectivity from the eye to the brain proper, and activity-dependent mechanisms for the 

functionality of visual circuits. Recent findings have associated ncRNAs in several of these 

processes and uncovered a new level of complexity for the existing regulatory mechanisms. 

This review summarizes and highlights the impact of ncRNAs during the development of 

the vertebrate visual system, with a specific focus on the role of miRNAs and a synopsis 

regarding recent findings on lncRNAs in the retina. 
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1. Introduction 

During the development of the nervous system, a sophisticated interplay between different 

molecules in an organism takes place to generate the correct cell types at the correct time, allow them 

to migrate to the appropriate places and finally connect to each other in a proper way to ensure normal 

functionality. One of the major challenges has been the characterization of the regulatory network 

underlying these fundamental steps. The visual system, apart from the interest as a sensory system  

per se, has been one of the prominent models to help characterizing general molecular mechanisms in 

neural development. The eye develops from an initial lateral evagination of the diencephalon and a 

subsequent formation of the optic cup [1]. Retinal cells differentiate in a clear chronological order 

from a population of multipotent retinal progenitors to generate the seven principal cell types [2,3]. 

The correct establishment of axial polarity of the retina ensures that retinal ganglion cells (RGCs),  

the only projection neurons of the eye, form synaptic connections with different brain targets in an 

appropriate retinotopic manner [4]. And finally, individual classes of retinal cells can be further 

divided into sub-types that connect to each other within function-specific circuits [5]. To date, many 

protein-encoding genes have been identified, which ensure the correct development of the eye and the 

establishment of connectivity within the retina and with other targets in the nervous system. In addition 

to protein-coding mRNAs however, and different from the well-characterized RNA molecules which 

perform infrastructural and housekeeping roles (such as rRNAs, tRNAs, and snRNAs), a large number  

of so-called non-coding RNAs (ncRNAs) were found to be expressed in the developing central 

nervous system [6–8]. Emerging data suggest that the enormous number of ncRNAs, which have little 

or no protein-coding potential, contains most of the information that control the expanded regulatory 

framework in eukaryotes, increasing the complexity of such organisms [9]. Intensive studies in the last 

decade led to a distinct classification of ncRNAs, mainly according to aspect of origins, structure and 

biological functions. Selected from these different categories, we will discuss here microRNAs 

(miRNAs) and long ncRNAs (lncRNAs). MiRNAs represent a large family of endogenous 21–23 

nucleotide-long RNAs, which regulate gene expression mainly through post-transcriptional 

regulation [10]. The generation of miRNAs in a cell has long been viewed as linear and universal to all 

mammalian miRNAs, following therefore a ―canonical‖ pathway (Figure 1). However, recent studies 

have identified additional features that do not obey this simple miRNA maturation pathway. 

Furthermore, it has been shown that the metabolism and function of miRNAs is in turn subject to a 

sophisticated control ([11] and Figure 1). This multistep control and the complexity of the different 

pathways have to be carefully taken into account in order to appropriately interpret results from 

experimental perturbations of the system. 

MiRNAs interact with their mRNA targets through direct Watson-Crick base-pairing of the  

5′ region of the mature miRNA—known as the seed sequence—and the 3′UTR of partially 

complementary mRNAs. This enables the presence of combinatorial effects with other miRNAs and 

RNA-binding proteins that associate with the same target mRNAs. Considering that miRNAs can 

regulate large numbers of targets [12,13] they represent a fundamental feature during the global control 

of spatial-temporal changes in a given cell or organ [14,15]. In addition to identifying the function of 

individual miRNAs, an approach that has been widely used is the removal of the ribonuclease Dicer, 

one of the critical enzymes for miRNA maturation and thus representing a bottleneck in the biogenesis 
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pathway [16]. Early studies using this approach showed that miRNAs have a critical role during brain 

development, including eye formation [16]. The subsequent generation of a conditional allele for Dicer 

in mice allowed the removal of this protein, and thus the majority of miRNAs, in a specific  

spatial-temporal fashion using the Cre-Lox technology [17]. Although this method faces some 

limitations, the different conditional Dicer-deletions that have been generated in the retina resulted in 

important contributions to the field.  

Figure 1. MicroRNA biogenesis pathway. 

 

In eukaryotic cells most of the miRNAs are generated through the ―classical‖ canonical pathway 

(Figure 1, middle section, black arrows). However, studies carried out in the last few years highlighted 

several exceptions due to the presence of modulators of this canonical pathway, including inhibitors or 
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activators (Figure 1, red and green squares) or alternative pathways (left and right sections, purple 

arrows). In the canonical pathway (Figure 1, middle): MiRNA genes are transcribed by RNA 

polymerase II to give rise to long primary transcripts (pri-miRNAs), which form hairpin structures. 

This step is subject to regulation by transcriptional activators or inhibitors (not shown). In the nucleus 

pri-miRNAs are then processed by a protein complex containing the RNase III Drosha, resulting in a 

60–70-nucleotide stem/loop structure with a 3′ overhang (pre-miRNAs). This step can be modulated by 

activators (green box) and inhibitors (red box) that act on the RNA stem/loop structure or on the Drosha 

activity. Furthermore, in some cases, pre-miRNA sequences can be subject to base modifications by an 

editing process. The pre-miRNAs are then exported to the cytosol with the help of Exportin-5, through 

a GTP-dependent process. There, the pre-miRNAs are further processed by the Dicer-TRBP complex 

to yield a 21–24 nucleotide long miRNA/miRNA* duplex molecule. Also this step is subject to 

regulation through inhibitors and activators, acting on the complex and the stem/loop structure. Finally, 

mature miRNAs are loaded into an RNA-induced silencing complex (RISC) that includes Argonaute 

(Ago2). An exception has been reported for pre-miR-451, which can follow a Dicer-independent 

pathway and is directly loaded into the RISC-Ago2 complex after processing by Drosha. The miRNA 

then binds to the 3′ UTRs of specific mRNA targets and depending on its seed sequence, leads either to 

translational repression or to the cleavage and degradation of the target. In the mirtron pathway (Figure 

1, left): Pre-miRNAs can be also generated through an alternative, Drosha-independent pathway. Here, 

miRNA sequences are located in introns of primary transcripts generated by RNA polymerase II. Their 

expression pattern is therefore exactly following the mirtron-harboring gene. The miRNA sequence is 

subsequently spliced out from the primary transcript by the spliceosome and enters then the sequence 

of the canonical pathway. Other RNAs (Figure 1, right): Exceptions to the canonical pathway have 

been also found for transcripts generated by RNA polymerase III. They are first processed in the 

nucleus in a Drosha-independent manner and then transported to the cytosol where they may be subject 

to a Dicer/Ago-dependent pathway. 

Long ncRNAs represent a class of RNA molecules that is fundamentally different from miRNAs  

in their function and in the way the act. In contrast to the short sequences of miRNAs, the transcripts 

for long ncRNAs are usually longer than 200 nt and can even reach more than 100 kilobases, as  

shown for macro ncRNAs [18]. They are one of the most abundant classes of ncRNAs transcribed in  

the genome, being highly expressed in neural tissues [19,20]. Similar to protein-coding genes, the 

transcription of lncRNAs can be dynamically regulated showing specific temporal and cell-type 

specific expression [21,22]. Furthermore, the primary transcript can also be post-transcriptionally 

modified, including 5′ capping, 3′ polyadenylation and splicing, as known for conventional  

mRNAs [9,23]. As a consequence of their increased length and sequence, the transcripts of lncRNAs 

are able to form specific secondary structures with clear functional features [24,25]. They have been 

shown to control the cellular gene expression program at multiple levels [26]. However, in contrast to 

miRNAs, only a small number of functional lncRNAs has been described to date. One of the major 

functions appears to be the regulation, both in cis and in trans, of the epigenetic status of proximal and 

distal protein—coding genes through the recruitment of chromatin-remodeling complexes [27,28]. 

However an individual lncRNA can act, in turn, at several levels of gene expression making it difficult 

to attempt a simple classification [26]. In the developing retina the expression of several lncRNAs  



Int. J. Mol. Sci. 2012, 13             

 

 

562 

has been described, even though the characterization of clear functions remain largely to be  

elucidated [6,29,30]. 

Here, we provide an overview of recent advances in understanding the role of ncRNAs during 

visual system development and function. In the first part we focus on the family of miRNAs, 

summarizing the studies that have been carried out to profile their expression pattern in the vertebrate 

retina and the experiments aimed at their functional characterization during normal retinal 

development. Finally, we also discuss the emerging roles of lncRNAs in the retina.  

2. Identification of miRNAs in the Retina 

Many large-scale efforts applying different strategies, such as small RNA isolation followed by 

cloning or deep sequencing and small RNA library sequencing, have been undertaken to discover 

miRNAs in a variety of species, including in mammalian genomes [31,32]. The number of individual 

miRNAs identified has therefore been steadily increasing and ranges in the thousands today [33–36]. 

In particular, there are currently more than 1500 human miRNA and over 800 mouse miRNA 

sequences deposited in the miRbase database [37,38]. One of the first studies that included the mouse 

eye as a source tissue identified 8 specific miRNAs [39], whereas a systematic study in zebrafish 

identified at least 15 miRNAs in the eye [40]. These early studies showed that a considerable number 

of miRNAs are expressed in a tissue-specific or even cell-type specific manner. It is therefore not 

surprising that several laboratories have consequently analyzed the miRNA transcriptome in the retina. 

Some of these studies used qPCR or cloning approaches and therefore reported simple miRNA 

expression profiles, without analyzing the expression patterns in more detail [41–43]. However, with 

the development of more applicable hybridization techniques for small RNA probes, some reports 

started to include also retinal expression patterns [44–47] in addition to studies using different retinal 

laminae isolated by laser capture microdissection as a source [48]. Interestingly, comparing data from 

different expression profiling reports, it became clear that a particular miRNA cluster (miR-183/96/182) 

was specifically expressed not only in the retina [43], but also in the inner ear [49] and the dorsal root 

ganglion [50], suggesting a ―sensory-organ specific miRNA cluster‖ [43]. Further investigation 

showed that this cluster is indeed also expressed in the olfactory and tongue epithelia and that the 

genes for these three miRNAs are located within a 4 kb genomic region on mouse chromosome 6qA3 

and are transcribed as a single polycistronic pri-miRNA, an arrangement conserved from C. elegans to 

human [43,51]. It was found that the members of this cluster miR-183/96/182 are all expressed in rods, 

cones and bipolar cells, whereas other miRNAs follow different, lamina-specific expression patterns, 

for example miR-181a in RGCs and amacrine cells [45,46,52] or let-7d in bipolar and amacrine 

cells [52].  

Based on the early miRNA expression profiling reports from mouse, human [39] and zebrafish [40], 

the Banfi laboratory described initially a set of 7 eye-specific miRNAs, including their spatial 

expression pattern in the retina [45]. A particular advance compared to other studies was the inclusion 

of different developmental stages revealing changes in cell and lamina-specific expression of certain 

retinal miRNAs over time. The same group increased their efforts using a large-scale approach that 

resulted in the generation of a miRNA expression atlas of the mouse eye, named miRNeye [53]. This 

fully searchable atlas contains high-resolution images of in situ hybridizations from over 200 miRNAs 
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at 4 different stages (E16.5, P0, P8 and P60). It is therefore a valuable resource in order to study 

possible functions of miRNAs in the eye from development to adult.  

3. Function of MicroRNAs in the Visual System 

MicroRNAs have been identified to play important roles in almost all biological processes, from 

early neural developmental events, including neurogenesis or cellular differentiation up to later aspects 

such as synapse maturation or function [54,55]. One of the main challenges however still in the field  

is to attribute clear roles to individual miRNAs. An obvious complication is the high number of 

candidate target genes that can be found for each miRNA using different bioinformatics software, such 

as TargetScan, miRanda or PicTar [56–58]. In addition, these algorithms produce only predictions of 

possible targets and the actual binding of a miRNA to a 3′UTR of a candidate target mRNA has still  

to be confirmed empirically. A second difficulty is that miRNAs generally rather ―fine-tune‖ the 

protein output of a cell and therefore a loss of function phenotype for a single miRNA may be very 

subtle [12,13]. Finally, the highly specific regulation of the miRNA maturation pathway and the 

variation of the degradation rate for each miRNA increase the variability and the complexity of 

targeted gain and loss of function studies [11]. Many laboratories therefore tried to overcome these 

difficulties through a complete (or at least substantial) deletion of miRNAs, in order to study the 

general role for these molecules in a particular system or pathway. 

3.1. Dicer Deletions 

Several studies to date have used this approach to delete Dicer in a spatial-temporal fashion the 

visual system. As discussed above, Dicer is a ribonuclease III and one of the essential enzymes for the 

maturation of most miRNAs (Figure 1). Therefore, the deletion of Dicer leads to a lack of such 

miRNAs and enables the analysis of a system in the absence of most miRNAs. However, it is 

important to note that there are Dicer-independent pathways to generate functional miRNAs ([11] and 

Figure 1) and that studies using Dicer deletions do not show a 100% loss of all miRNAs. The straight 

deletion of Dicer in mice leads to an embryonic lethal phenotype at E7.5 mostly due to a depletion of 

stem cells in the embryo [59]. The generation of a conditional Dicer allele in mice made it possible to 

circumvent these problems and delete Dicer by crossing with lines that express the Cre-recombinase 

under the control of specific promoters [17].  

The first report analyzing a conditional Dicer deletion in the retina used the Chx10-cre line [60]. 

This BAC-transgenic mouse line harbors a Cre-GFP cassette under the control of the Chx10 

promoter [61] and leads to a mosaic expression of the Cre-recombinase in the retina. As a consequence, 

retinal cells (although not all of them) lack functional Dicer protein [60]. The authors reported that 

retinae from these mutant mice showed normal lamination and no alteration in the generation of the 

different retinal cell types during embryonic and early postnatal development. However, at later stages, 

the mutant mice generated photoreceptor rosettes that had been described previously in pathological 

retinal conditions, associated with degeneration and/or abnormal proliferation of retinal cells [62]. 

Further analysis showed no increase in proliferation and that the phenotype was attributed to a 

degenerative phenotype. After postnatal day (P) 16, the mutant retinae became increasingly affected by 

degeneration, showing a higher number of rosettes and disorganization of the retinal laminae. In 
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parallel, the mutant mice showed abnormalities in their ERG responses probably as a result of the 

retinal degeneration [60]. The relatively late onset of apoptosis after Dicer deletion was surprising, 

since studies carried out in several other systems before and since then have shown an almost 

immediate cell death phenotype upon loss of Dicer [17,63–65]. 

A different study in the same year reported the downregulation of Dicer in the Xenopus retina  

by using morpholinos that were electroporated into retinal progenitor cells [66]. Here, the Dicer  

knock-down led to photoreceptor rosettes and increased retinal cell death similar to the phenotypes 

seen in the Chx10-cre; Dicer
fl/fl

 mice. In addition however, the eyes appeared to be overall smaller in 

some morphants with strong defect in retinal lamination. Furthermore translation of some of the genes 

involved in controlling retinal cell fate, such as Xotx5 and Xotx2, was delayed, prompting the authors 

to suggest that miRNAs are controlling the cell clock machinery for timing the retinal neurogenesis [66].  

A more detailed analysis on the generation of different retinal cells upon Dicer deletion came from 

the Reh laboratory [67]. Here, the floxed Dicer allele was used in combination with a Pax6-α-cre line, 

that expresses the Cre-recombinase in the nasal and temporal distal portions of the retina starting at 

around E10.5 [68]. In contrast to the earlier study in mouse [60], the authors detected aberrancies 

already starting at E16. Using a number of retinal cell-type specific markers it was shown that the 

deletion of Dicer leads to a overproduction of early generated retinal cell populations, such as RGCs 

and horizontal cells, and on the other hand, a downregulation of late progenitor cells [67]. Probably as 

a consequence of the latter, the Dicer-deleted areas of the retina show a decrease of the late generated 

cell types (amacrine cells and rod photoreceptors). These results suggest that Dicer (and therefore 

probably miRNAs) has an important function in the regulation of progenitor competence. In addition, a 

general increase in apoptosis was detected from early developmental stages onwards, which extends 

postnatally so that by P8 all the Dicer—negative cells have disappeared [67]. Finally, the authors 

found that the retinal progenitor cells in Dicer mutant mice failed to express the transcription factor 

Asc1, a major regulator of Notch signalling components, suggesting that this pathway may be—at least 

in part—responsible for the detected phenotypes. This hypothesis was subsequently confirmed by a 

recent study from the same authors showing that Dicer mutant retinae exhibit a decrease in Notch 

signalling [69]. Indeed, by crossing the conditional Dicer mice into a mouse line that constitutively 

expresses the Notch intracellular domain—therefore generally increasing Notch signaling—they 

observed a restoration of normal horizontal cell numbers. However, other major phenotypes, such as 

the increased generation of RGCs or the competence of retinal progenitor cells were not rescued, 

suggesting that the loss of Notch signalling in Dicer mutants has only consequences for specific retinal 

cell types [69]. Changes in the Notch signalling components (and Hedgehog components) upon Dicer 

deletion were previously reported in a parallel study using the same Pax6-α-cre driver in combination 

with the floxed Dicer allele [70] to generate a retina-specific loss of function. Here, the authors 

investigated the role of Dicer in the formation of anterior structures of the optic cup and specifically 

the generation of neural and non-neural tissues during eye development. In addition to the α-cre line, 

the authors used two other Cre-lines, the Tyrp2-cre and Pou4f3-cre to delete Dicer in pigmented retinal 

cells and in postnatal non-pigmented ciliary body plus the iris pigmented epithelium, respectively. This 

resulted in a general increase of apoptotic cells in Dicer-deficient regions, consistent with the findings 

from earlier studies. Further investigation of the mutant mice showed an aberrant patterning of the 

distal portions of the optic cup, where usually neural and non-neural progenitor cells reside to create 
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the two different compartments, the neural retina and the ciliary body. The mispatterning in the Dicer 

mutants resulted in a loss of a clear border between these compartments and furthermore, defects in iris 

and ciliary body formation were detected upon loss of Dicer [70].  

A different aspect of visual system development was analyzed in a study by Pinter and  

Hindges [64], which focused on RGC axon outgrowth. The visual system has for a long time been one 

of the major systems to investigate neural circuit formation, including axon pathfinding decisions at 

the midline, topographic map formation, axon branching and synaptogenesis [4,71,72]. Here, the authors 

used a mouse line that expresses the Cre-recombinase under the control of the Rx promoter [73]. The 

retinal homeobox (Rx) gene is an eye field transcription factor that is essential for eye formation [74] 

and its expression starts at around E7.5 in the anterior neural plate. As a consequence, conditional 

alleles are deleted in all cells that lead to the development of the retina from the start of eye field 

specification. The study showed that mutant mice exhibited severe micropthalmia, detectable from the 

time of eyecup closure onwards, combined with a wave of apoptotic cells peaking at E13.5. 

Interestingly however, the overall structure of the eye, including the formation of the cup and the 

closure of the optic fissure was normal, suggesting that miRNAs and Dicer are not involved in these 

early morphogenic processes [64]. RGCs were found to send out axons correctly through the optic disc 

to form the optic nerve. However, in the optic fiber layer inside the retina, as well as in the optic tract 

at the ventral hypothalamus, it was apparent that the RGC axons are defasciculated. The detection of a 

general lack of adhesion upon Dicer deletion is consistent with other findings showing that Dicer is 

essential for the adhesion of epithelial cells in the eye or lung and in kidney cell types [70,75,76], 

suggesting a general role for miRNAs for this function. The main phenotype concerning axon 

pathfinding however, was seen at the optic chiasm, with a aberrant segregation between ipsi- and 

contralateral projections, combined with a high number of axons turning at the midline and growing 

into the contralateral eye, as well as some axons extending abnormally into the diencephalon [64]. 

These phenotypes were not the result of a mispatterning of the eye (or the chiasm), suggesting that 

miRNAs have direct functions in intracellular processes needed for axon growth and pathfinding. 

However, Dicer-negative RGC axons are able to initially innervate correctly their major targets, the 

superior colliculus and the lateral geniculate nucleus (Maiorano and Hindges, unpubl. obs.) and further 

experiments are ongoing to investigate the role of Dicer in retinotopic map formation.  

A similar early conditional deletion of Dicer was described recently, where the authors use a mouse 

line in which the coding region of Foxg1, a transcription factor expressed from E8.5 onwards in the 

mouse telencephalon and optic vesicle, has been replaced by the Cre-recombinase [77]. Again, a high 

rate of cell death was reported in the developing retina, in addition to micropthalamia associated with 

depigmentation and the absence of the lens. However, here the phenotype is more complicated to 

dissect and to contribute uniquely to the action of miRNAs (or Dicer), since the Cre-positive cells in 

the lens and the nasal portion of the eye also loose at least one functional copy of Foxg1 [78]. 

The most recent report using the conditional Dicer allele in combination with a mouse line  

that expresses Cre in retinal progenitors from around E10.5 onwards (Dkk3-cre) showed again a 

microphthalmia phenotype, coupled with an increase in apoptosis and abnormal differentiation of 

several cell types, in line with previous reports. In vitro re-aggregation experiments demonstrated that 

these effects are cell-autonomous [79].  
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Table 1. Conditional Dicer deletion studies in the mouse visual system. 

Cre-line 

Onset  

of Cre-

expression 

Location of  

Cre-expression  

(visual system) 

Survival 

(homozygotes) 
Reported phenotypes Reference 

Chx10-cre 

[61] 

E10.5 Retinal progenitors, 

mosaic 

Normal Photoreceptor rosettes, 

apoptosis, abnormal ERG 

responses 

Damiani et al., 2008, 

[60] 

Rx-cre  

[73] 

E7.5 Eye-forming tissues, 

anterior neural plate 

Die at P0 Micropthalmia, apoptosis, 

axon guidance defects 

Pinter & Hindges 

2010, [64] 

Pax6--cre 

[68] 

E10.5 Nasal and temporal 

distal regions of the 

retina 

Normal Micropthalmia, apoptosis, 

increase of early retinal 

cells, decrease of late 

progenitors 

Georgi & Reh, 2010, 

[67] 

    Detached iris pigmented 

epithelium, hypoplastic 

ciliary body 

Davis et al., 2011, 

[70] 

Tyrp2-cre 

[80] 

E9 From E11 in pigmented 

retinal cells, at late 

embryogenesis in 

presumptive pigmented 

epithelia of the ciliary 

body and the iris and in 

the muscles/stroma of 

iris; (detectable from E9 

onwards in eye, 

forebrain and DRGs); 

Poor at adult 

stages  

Microphthalmia, most iris 

tissues missing, 

hypoplastic ciliary body 

Davis et al., 2011, 

[70] 

Pou4f3-cre 

[81] 

P1 Non-pigmented ciliary 

body and iris pigmented 

epithelium 

Die soon after 

birth (most) 

Detached iris pigmented 

epithelia, hyperplastic 

ciliary body 

Davis et al., 2011, 

[70] 

Foxg1-cre 

[78] 

E8.5 Optic vesicle, lens, 

telencephalon, olfactory 

epithelium, ear, foregut, 

isthmus 

Die just before 

birth 

Microphtalamia mostly 

associated with high 

apoptosis and 

depigmentation in nasal 

retina, lens missing. 

Kersigo et al., 2011, 

[77] 

Dkk3-cre 

[82] 

E10.5 Retinal progenitors Die 4–6 weeks 

postnatal 

Micropthalmia, apoptosis, 

defects in retinal cell 

differentiation 

Iida et al., 2011, [79] 

In summary, these data resulting from the conditional deletion of Dicer have lead to multiple 

interesting phenotypes discovering possible functions of miRNAs in retinal development and cell 

maintenance. One has to, however, take some caution. We are not yet at a point to fully understand all 

the functions of Dicer in the cell and therefore cannot automatically attribute all phenotypes seen in 

Dicer mutants exclusively to miRNA function. More work has to be done in the analysis of individual 

miRNAs, miRNA families, or pathways specific to miRNAs in order to get unambiguous data. This 

point is supported for example by findings from a recent study investigating the molecular basis for 
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geographic atrophy (GA), an advanced form of age-related macular degeneration (AMD) where cells 

of the retinal pigmented epithelium (RPE) degenerate [83]. The authors detected lower levels of 

DICER1 in RPE cells of humans with GA. Dicer deletion in mouse RPE cells by expressing the  

Cre-recombinase under the RPE-specific BEST1 promoter (using an Adeno-associated viral vector) in 

a Dicer
fl/fl

 background lead to specific cell degeneration. A first possible conclusion was that the  

lack of miRNAs is responsible for the degenerative effects. Further analysis however showed that this 

was not the case, since the injection of the same AAV-BEST1-cre vector into other mouse models 

where different genes essential for the miRNA biogenesis pathway were conditionally targeted, 

including Drosha
fl/fl

, Dgcr8
fl/fl

 or Ago2
fl/fl

 mice [84–86], did not result in similar RPE degeneration. 

Surprisingly, Dicer was found to have a completely different function, namely in protecting the RPE 

cells from toxic RNA elements. It was shown that primary transcripts from the Alu elements present in 

the human genome (B1/B2 RNA in mice) are inducing cell death in the RPE and that in the normal 

situation Dicer cleaves these approx 300 nucleotide-long sequences into small, non-toxic fragments. 

Dicer down-regulation in GA therefore leads to an accumulation of Alu RNA (or B1/B2 RNA in mice) 

that induces cell death [83]. As discussed above, all studies to date using conditional Dicer deletions 

reported a large increase in apoptosis in the affected tissue. Considering the data from the AMD model, 

it remains to be seen if cell death in other tissues than the RPE, is indeed exclusively a consequence of 

the lack of miRNAs or if Dicer here also—at least in part—plays a wider role, for example through 

clearing the cells of toxic RNA. Interestingly, possible additional roles of Dicer were already pointed 

out in the first report of a retina-specific Dicer deletion [60]. These results make a strong case for using 

other approaches in addition to Dicer-deletions to globally delete miRNAs in order to analyze 

unambiguously their function in a system, for example by using different conditional deletions 

affecting the miRNA pathway. 

3.2. Functions of Individual miRNAs in the Visual System 

Only a few reports exist where the role of a one particular or a small group of miRNAs have been 

investigated in the visual system. In Xenopus, a set of miRNAs, miR-129, miR-155, miR-214 and 

miR-222, was identified that targets the otx2 and vsx1 genes and leads to their translational inhibition. 

These two genes are essential to specify late-born bipolar cells in the retina [87–89] and although 

transcribed already in early progenitors, their translation is not detected until later stages. The authors 

found that the cell-cycle dependent expression of the four miRNAs is needed to inhibit early 

translation of these homeobox transcription factors until the appropriate time to generate bipolar 

cells [90]. A different study performed in Xenopus investigated the role of the brain-specific miR-124 

during retinal development [91]. Although a reliable down-regulation of miR-124 could not be 

achieved, the overexpression of this miRNA resulted in an elongated retina coupled with a shorter 

optic stalk and an inhibition of retinal cell proliferation. As a possible direct target, Lhx2 was 

identified [91]. The down-regulation of an other miRNA, miR-24, in the Xenopus eye lead to increased 

apoptosis and a small eye phenotype, whereas its over-expression was sufficient to prevent cell 

death [92]. RNA-binding assays identified the pro-apoptotic factors caspase9 and apoptosis  

protease-activating factor 1 (apaf1) as direct target genes, suggesting that miR-24 acts as an important 

regulator of cell death during retinal development by repressing an apoptotic program [92].  
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In mouse, a study analyzed the genetic deletion of miR-182, a miRNA highly abundant in the retina 

that belongs to the miR-183/96/182 cluster discussed above [93]. Given its strong expression in the 

retina, one would have predicted a clear phenotype upon deletion of the gene. However, the resulting 

miR-182 mutant mice did not reveal any structural abnormalities in the retina during development  

and throughout the first weeks after birth [93]. Furthermore, no significant changes in global gene 

expression could be detected in the miR-182 loss of function mice, using microarray profiling. It 

remains to be shown if these mice show any physiological phenotypes in the retina. 

Finally, we summarize here some recent exciting findings that investigated the role of specific 

miRNAs not directly related to a function in the retina, but rather in the general visual system. The  

first study came from the Filipowicz lab [94] and performing a detailed investigation on the  

miR-183/96/182 cluster and on miR-204 and miR-211, two miRNAs located in introns of two genetic 

loci encoding cation channels. The miR-183/96/182, mostly expressed in photoreceptors, and the  

miR-204/211 enriched in the cells of the inner nuclear layer showed a highly dynamic profile of 

expression, being up-regulated in light condition and down-regulated upon dark adaptation. Interestingly, 

the authors showed a surprisingly fast turnover of miRNA molecules in the order of an hour, against the 

previous general view of a very slow miRNA turnover in cells [95]. The rapid turnover was shown to  

be activity-dependent and resulted from a fast decay coupled to a fine regulation of Pri-miRNA 

transcription upon light adaptation. In turn they regulate neuronal activity through a pathway involving 

the voltage-dependent glutamate transporter SLC1A1 and the sodium/potassium transporting ATPase 

ATP1B3 [94]. Interestingly, the results in this study suggest not to be visual system specific, but rather 

represent a general mechanism for activity-dependent turnover rates for neuronal miRNAs, enabling 

fast changes in mRNA translation for example in dendritic spines.  

Two recent reports described the crucial role of miR-132 in the plasticity of the mouse visual  

cortex during the ―sensitive period‖ shortly after eye opening [96,97]. Independently, they showed that  

pri-miR-132 transcription is regulated at epigenetic levels by activity-dependent mechanism, activated 

upon light induction. Through in vivo gain-and loss-of-function approaches using miR-132 mimics [96] 

and miR-132 sponges [97] the authors showed a recovery of plasticity and synaptic development 

concerning binocular area of visual cortex and a prevention of ocular dominance shift, respectively,  

in mice with monocular deprivation. These experiments showed that light- (i.e., activity) induced  

miR-132 levels are crucial for ocular dominance plasticity during the critical period in visual cortex.  

4. MicroRNAs and Retinal Diseases 

Studies over the last decade have clearly established a link between miRNAs and diseases within 

and outside the nervous system [98,99]. A particular focus has been the involvement of this family of 

non-coding RNAs in neurodegeneration [100], where the majority of data available is based on either 

linkage analysis of mutations in miRNAs or their 3′UTR target binding sites and the disease or simply 

on profiling miRNAs in different diseases. In the retina, studies have been shown that different mouse 

models of retinitis pigmentosa (RP) exhibit altered miRNA expression profiles [52,101]. The authors 

found that all the members of the miR-183/96/182 cluster are down-regulated in RP mice, whereas 

miR-1, miR-133 and miR-142 are up-regulated. Computational analysis has resulted in a long list of 

possible direct and indirect targets for these miRNAs, but the clear mechanisms how the small RNAs 
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lead to the retinal degeneration remain to be elucidated. Similar profiling experiments have been done 

in hypoxia-induced retinal and choroidal neovascularization, because of the link of these processes to 

several diseases including age-related macular degeneration and diabetic retinopathy [102]. The authors 

identify seven miRNAs that are substantially increased and three that are substantially decreased in these 

mouse models. Injection of pre-miR-31, -150 or -184 significantly reduced retinal neovascularization, 

and injection of pre-miR-31 or -150 significantly reduced choroidal neovascularization, although no 

clear link to possible target genes has been established in vivo so far [102].  

As discussed already above, in a specific form of age-related macular degeneration a causal effect 

has been demonstrated for Dicer, but surprisingly in relation to a miRNA-independent function [83]. 

Therefore changes in miRNA profiles in a particular disease can obviously be due to a secondary 

effect and not represent the underlying cause for the development of the disease. More work is needed 

to establish the causal relation between miRNAs and the disease. However, independent of this, the 

possibility remains to use such expression profiles as biomarkers.  

5. Long Non-Coding RNAs in the Visual System 

Several studies in the last decade have lead up to the identification of more than a thousand  

long non-coding RNAs (lncRNAs) [103] some of which are specifically expressed in the nervous 

system [104]. They are functionally clearly distinct from the miRNAs discussed above. Many lncRNAs 

are also subject to a specific post-transcriptional modification such as splicing, polyadenylation and 5′ 

capping, similar to conventional mRNA processing [105]. A difference to the shorter miRNAs is that 

lncRNAs can control every level of the gene expression pathway, such as chromatin modification  

and transcriptional control in addition to post-transcriptional regulation [19]. Such modulation can be 

carried out through cis- and trans-acting mechanisms [106]. Recently a database has been developed 

grouping together information from several lncRNAs, including some expressed in the retina [29]. 

In most cases that have been characterized for the developing retina, lncRNAs share the 5′  

cis-regulatory element with protein-encoding genes but they are transcribed in a head-to-head divergent 

way. Here the lncRNAs are named natural antisense transcript (NAS) or opposite sense transcript  

(OST) [30,107]. Many retinal homeodomain factors that are critical during retinal development have 

NAS/OST associated with their transcriptional unit, including Six3, Pax6, Six6, Vax2, Otx2, Pax2 and 

Rx [107,108]. Studies on such NAS/OST revealed the presence of many isoforms suggesting a detailed 

transcriptional and post-transcriptional regulation. Some of the isoforms are also translated, however 

the functions of the resulting proteins are unknown [107]. The NAS/OST expression pattern can either 

perfectly overlap with [109] or can be absolutely different from [107] the partnered protein-coding 

transcript. In several cases perturbation of protein transcript levels affected also the partnered 

NAS/OST level of expression as seen for Vax2 [107]. A study by the Blackshaw laboratory described 

that for 100 transcription factors expressed during retinal development, no less than 35 are NAS/OST 

associated [30]. Considering the vast data on lncRNA expression, it is surprising that only in a  

few cases the function of lncRNAs have been characterized. Recently, the Banfi laboratory performed 

an elegant functional study on the activity of the opposite strand transcript Vax2os during retinal 

development [110]. From the 5 different isoforms present, the authors focused their study on the 

strongest expressed isoform Vax2os1. They first showed that Vax2os1 expression, similar to the sense 
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Vax2 transcript, is localized in the ventral retina during mouse embryogenesis and strongly down 

regulated during postnatal stages. However, unlike Vax2, Vax2os1 is mainly expressed in the outer 

neuroblastic layer (oNBL) and is again upregulated in adult animals in the ventral outer nuclear layer 

(ONL). Through functional analysis using a gain-of–function approach, the authors demonstrated that 

overexpression of Vax2os1 in retinal proliferating neuroblasts results in an alteration of normal cell 

cycle progression of the photoreceptor progenitor cells toward their final differentiation. In particular, 

they demonstrated a delay in the differentiation of the photoreceptor progenitor cells upon Vax2os1 

overexpression. This therefore suggests that lncRNAs can act as regulators of cell cycle progression 

during cell differentiation. However, further studies need to be performed in order to identify in detail 

the molecules that interact with such lncRNAs and the underlying mechanisms.  

Another example, although in a model different from the retina, is Evf-2, a lncRNA associated with 

the Dlx5/6 locus (encoding two homeodomain transcription factors expressed in retinal progenitors). 

Through an interaction with DLX2, another Dlx family member, Evf-2 can regulate in trans the Dlx5/6 

transcription [111]. A recent study characterized the Six3 opposite strand transcript (Six3OS) in the 

developing mouse retina [112]. The data shows that Six3OS plays an important role in retinal cell 

specification. Furthermore, using gain- and loss-of-function experiments, the authors illustrate that 

Six3OS does not control Six3 expression levels but rather regulates Six3 activity, suggesting an 

interaction in trans. Binding studies suggest that Six3OS acts through the recruitment of histone 

modification enzymes to Six3 target genes [112]. Several possible interactions in trans between 

lncRNAs and their own or different loci have been hypothesized for the retina, but are still subject to 

investigation [30]. Additional evidence of genetic regulation by lncRNAs in trans outside the retina 

exists for example in Drosophila, where ncRNAs of trithorax response elements recruit epigenetic 

modulators to the specific location of ultrabithorax [30,113,114].  

Other cases where lncRNAs may regulate related protein-coding genes in cis through a mechanism 

of transcriptional facilitation or interference, have been described in yeast, where for example the 

Serine-mediated expression of the intergenic transcript SRG1 represses an adjacent gene SER3, which 

is involved in serine biosynthesis [115], and in pituitary cells where a 5′ locus control region activates 

the transcription of adjacent genes [116]. These results leave the possibility for similar cis-mechanisms 

present also in the retina [30].  

In addition, lncRNAs that are not located near protein-coding genes are also expressed in the retina. 

For example the lncRNA Tug1 has been identified as a regulator of rod photoreceptor development, 

even if the exact mechanism has not yet been characterized [117]. Furthermore, the twin nuclear 

localized lncRNAs Xist and Tsix (regulators of X chromosome inactivation) are expressed in a subset 

of retinal cells in the outer and inner neuroblastic layers during development, keeping a low expression 

level in some RGCs and photoreceptor cells upon differentiation. However, neither the role nor a 

possible correlation with the X-chromosome inactivation pathway of Xist/Tsix in these cells has  

been clarified [108]. The retinal non-coding RNA 2 (RNCR2), expressed widely in developing nervous 

system, represents 0.2% of all polyadenylated RNAs in the neonatal retina. RNCR2 negatively 

regulates amacrine differentiation and development of Muller glia cells. Nevertheless, also in this case, 

the underlying molecular mechanism remains unclear [118].  
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In the future, the use of high-throughput sequencing and microarray hybridization approaches in 

combination with functional in vitro and in vivo studies should shine some more light on the role of 

lncRNAs during retinal development and functional maintenance.  

6. Conclusion 

Considering the relatively short time since the initial discovery of non-coding RNAs, the studies to 

characterize their function have resulted in a large amount of novel data and successfully pushed the 

field forward. However, new findings also show that the system is probably more complex than initially 

thought. In the visual system we have made steady progress in characterizing miRNAs and lncRNAs 

and linking them to function, although for many there is still a gap present regarding their precise 

action or their actual target genes. For the future, it will be both challenging and exciting to discover 

much more about the ncRNAs involved in the complex regulatory mechanisms to generate a fully 

functional retina, including its connectivity and physiological properties. 
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