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A B S T R A C T   

Background: Cognitive dysfunction is widespread in psychiatric disorders and can significantly impact quality of 
life. Deficits cut across traditional diagnostic boundaries, necessitating new approaches to understand how 
cognitive function relates to large-scale brain activity and psychiatric symptoms across the diagnostic spectrum. 
Objective: Using random forest regression, we aimed to identify transdiagnostic patterns linking cognitive 
function to resting-state EEG oscillations. 
Methods: 216 participants recruited through an outpatient psychiatric clinic completed the Cambridge Neuro-
psychological Test Automated Battery and underwent a 5-minute eyes-closed resting state EEG recording. We 
built random forest regression models to predict performance on each cognitive test using the resting-state EEG 
power spectrum as input, and we compared model performance to a sampling distribution constructed with 
random permutations. For models that performed significantly better than chance, we used feature importance 
estimates to identify features of the EEG power spectrum that are predictive of cognitive functioning. 
Results: Random forest models successfully predicted performance on measures of episodic memory and asso-
ciative learning (Paired Associates Learning, PAL), information processing speed (Choice Reaction Time, CRT), 
and attentional set-shifting and executive function (Intra-Extra Dimensional Set Shift, IED). Oscillatory power in 
the upper alpha range was associated with better performance on PAL and CRT, while low alpha power was 
associated with worse CRT performance. Beta power predicted poor performance on all three tests. Theta power 
was associated with good performance on PAL, and delta and theta oscillations were identified as predictors of 
good performance on IED. No differences in cognitive performance were found between diagnostic categories. 
Conclusion: Resting oscillations are predictive of certain dimensions of cognitive function across various psy-
chiatric disorders. These findings may inform treatment development to improve cognition.   

1. Introduction 

While psychiatric research and treatment have traditionally focused 
on the affective changes that characterize mental disorders, cognitive 
function is gaining increasing attention as a relevant dimension of psy-
chiatric illness. Cognitive deficits are widespread across disorders and 
can significantly impact overall functioning and quality of life (Millan 
et al., 2012). As such, cognitive difficulties are often a primary 
complaint for which patients seek treatment (Nieman, 2016). Under-
standing the neurobiological mechanisms underlying cognitive function 
should therefore be a central goal in efforts to improve treatment and 
enhance quality of life for patients. 

Cognitive function encompasses a broad range of domains including 
memory, attention, language, problem solving and decision making. 
Every major diagnostic category in the Diagnostic and Statistical Manual 
of Mental Disorders (DSM) is associated with altered cognitive func-
tioning in at least one domain (Millan et al., 2012). Perturbations in 
executive function occur across multiple disorders, affecting various 
subdomains including planning and decision making (e.g. depressive 
disorders; Marazziti et al., 2010), cognitive flexibility (e.g. autism 
spectrum disorder (ASD); Robinson et al., 2009), and inhibitory control 
(e.g. obsessive–compulsive disorder (OCD); Penades et al., 2007) and 
bipolar disorder (Kurtz and Gerraty, 2009)). Executive function is most 
severely compromised in individuals with schizophrenia, who have 
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deficits in all of these subdomains (Dickinson and Harvey, 2009; Kalk-
stein et al., 2010). Deficits in working memory and semantic memory 
are also common in schizophrenia (Barnett et al., 2010), while episodic 
memory is compromised in depression, bipolar disorder, schizophrenia, 
ASD, posttraumatic stress disorder (PTSD) and OCD (Millan et al., 
2012). Changes in attention are also associated with most disorders, 
including attention deficit hyperactivity disorder (ADHD; Vaidya and 
Stollstorff, 2008), PTSD (McNally, 2006), OCD (Burdick et al., 2008), 
and generalized anxiety disorder (GAD; Castaneda et al., 2008). 

It is difficult to disentangle disorder-specific patterns of cognitive 
impairment from general deficits transcending diagnostic categories. 
Cognitive function is highly complex, involving multiple cognitive do-
mains that interact with each other and with emotional and social 
processing, making it difficult to isolate individual cognitive processes 
for scientific study. Furthermore, psychiatric disorders themselves are 
not clearly delineated but instead have broad symptom overlap and high 
rates of comorbidity. To address this issue, recent research initiatives 
have attempted to elucidate biological processes underlying psychopa-
thology more broadly without being bound to traditional diagnostic 
categories (e.g., Research Domain Criteria (RDoc; (Insel et al., 2010); 
Hierarchical Taxonomy of Psychopathology (HiTOP; Kotov et al., 
2017)). Such transdiagnostic approaches focus on specific domains such 
as cognition, arousal, and emotion regulation, which are implicated in 
psychopathology across the diagnostic spectrum and are more closely 
linked to basic biological processes than complex and heterogeneous 
psychiatric disorders are. By taking a fine-grained, bottom-up approach 
to link specific dimensions of functioning with biological parameters, we 
may develop a more biologically grounded understanding of psychiatric 
illness across the diagnostic spectrum. 

Cognitive function can be understood in biological terms as precisely 
orchestrated interactions of brain regions and networks. Breakdowns in 
the coordination of brain activity are also associated with diverse forms 
of psychopathology, as evidenced by aberrant network organization in 
all major psychiatric disorders (Buckholtz and Meyer-Lindenberg, 
2012). Measuring large-scale neural activity can therefore provide 
important insights into brain function subserving cognition and impli-
cated in psychopathology. 

Electroencephalography (EEG) provides millisecond temporal reso-
lution in measuring ongoing electrical activity, which constitutes the 
basis of information exchange across the brain in the form of synchro-
nized oscillations (Basar et al., 2001). These oscillations are evident in 
the EEG power spectrum, particularly in specific frequency ranges 
referred to as alpha (8–13 Hz), beta (13–30 Hz), gamma (30–90 Hz), 
theta (4–8 Hz), and delta (1–4 Hz). A significant proportion of the EEG 
literature in psychiatric illness focuses on oscillatory power in these 
frequency bands, with the EEG signals typically recorded in the resting- 
state. The changes observed between psychiatric cases and controls are, 
however, highly variable within disorders and not diagnostically spe-
cific (for review see Newson and Thiagarajan, 2018). Resting-state EEG 
power changes likely hold important information about brain function 
in psychiatric illness, but it is unclear what specific pathophysiological 
processes such changes reflect. Thus, taking a more fine-grained 
approach to link specific EEG changes to specific domains of func-
tioning may offer new interpretations of neurophysiological abnormal-
ities in psychiatric disorders. 

This study takes a transdiagnostic approach to explore the relation-
ship between resting-state EEG activity and cognitive function across 
multiple psychiatric disorders. 216 participants with disorders across 
seven diagnostic categories were recruited from an outpatient psychi-
atric clinic and included in the study. Machine learning methods are 
becoming increasingly employed to identify novel patterns in large 
datasets, and are particularly well suited for the emerging field of 
transdiagnostic computational psychiatry to mine information-rich 
biological signals such as EEG and identify relationships with symp-
tom domains across disorders. One study of patients with schizophrenia 
employed machine learning methods to identify task-based EEG features 

that predict working memory performance (Johannesen et al., 2016), 
highlighting the utility of machine learning methods for extracting 
relevant features from high-dimensional EEG data. The present study 
employs a similar approach, using random forest regression to identify 
resting-state EEG features associated with cognitive performance across 
multiple cognitive domains and psychiatric disorders. This approach 
may shed light on the neurobiological basis and clinical relevance of 
cognitive dysfunction in psychiatric illness. 

2. Materials and methods 

2.1. Sample 

Data are reported from 216 participants who were recruited through 
an outpatient clinic of the Department of Psychiatry at the Amsterdam 
University Medical Centers (UMC) in Amsterdam, the Netherlands. In-
clusion criteria were: age 18–75 years, ability to give informed consent, 
having a DSM-IV-TR or DSM-V diagnosis, being clinically stable, and 
being fluent in Dutch. Exclusion criteria were: high risk of suicide, un-
stable medical disorder, premorbid IQ < 70, history of seizures or 
neurological disorder. Informed consent was obtained from all partici-
pants. Of 955 patients who participated in the Across study, 256 par-
ticipants agreed to participate in the EEG substudy. 6 participants were 
excluded because their EEG data were unusable due to technical issues. 
Of the remaining participants, 216 completed the CANTAB battery and 
were included in analyses. 

2.2. Procedure 

The Across study is an ongoing, observational longitudinal cohort 
study and consists of the assessment of cognitive performance, psychi-
atric symptoms, and collection of biological data (DOI https://doi.org// 
10.17605/OSF.IO/YHVTB). All instruments and procedures are 
described in Nieman et al. (2020). Participants underwent an extensive 
psychiatric and medical assessment at the outpatient clinic, performed 
by experienced psychiatrists and psychologists. The current study uses 
baseline data from the computerized cognitive assessment, EEG re-
cordings, and symptomatology questionnaires (see Supplementary Ma-
terial). The study protocol was approved by the Medical Ethical Review 
Committee of the Amsterdam UMC (ABR no. NL55751.018.15), and 
data is stored according to privacy laws. 

2.2.1. Cognitive assessment 
Cognitive functioning was assessed with the Cambridge Neuropsy-

chological Test Automated Battery (CANTAB Cognitive Assessment 
Software, 2018). The CANTAB test battery is composed of the following 
subtests: Verbal Recognition Memory (VRM), Rapid Visual Information 
Processing (RVP), Intra/Extradimensional Set Shift (IED), Choice Re-
action Time (CRT), One Touch Stockings of Cambridge (OTS), Paired 
Associates Learning (PAL), and Spatial Working Memory (SWM). 

Table 1 
Description of Cambridge Neuropsychological Test Automated Battery subtests.  

Subtest Description 

Verbal Recognition Memory 
(VRM) 

Assesses free recall, and immediate and delayed 
recognition memory for verbal information 

Rapid Visual Information 
Processing (RVP) 

Tests visual sustained attention and processing 
speed 

Intra/ Extradimensional Set 
Shift (IED) 

Assesses rule acquisition and attentional set 
shifting 

Choice reaction time (CRT) Measures alertness and motor speed 
One Touch Stockings of 

Cambridge (OTS) 
A planning test measuring frontal lobe 
functioning 

Paired Associates Learning 
(PAL) 

Assesses visual episodic memory and learning 

Spatial Working Memory 
(SWM) 

Assesses working memory and strategy use  
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Descriptions of the subtests are found in Table 1. 

2.2.2. EEG acquisition and processing 
EEG was recorded with a WaveGuard cap with Ag/AgCl electrodes 

with standard 10/10 layout fed into the 64-channel ANT TMSi Refa 
amplifier, using Fpz as ground, horizontal EOG electrodes affixed to the 
outer canthus and vertical EOG electrodes affixed above and below the 
right eye, and two mastoid channels (M1/M2). The vertex electrode (Cz) 
was used as the recording reference. Eyes-closed resting state EEG was 
recorded for 5 min, in addition to eyes-open resting state and an audi-
tory oddball task for a total recording session of 45 min. Eyes-closed 
resting state was used for the current analysis, since the majority of 
studies of EEG oscillations in psychiatric disorders report data from eyes- 
closed recording (Newson and Thiagarajan, 2018). Recordings were 
sampled at 512 Hz with a 128 Hz low-pass filter. 

All analyses were performed in MATLAB R2018b. EEG preprocessing 
was performed for each subject using EEGLAB (Delorme and Makeig, 
2004). Data were re-referenced offline to an average reference and 
filtered using a FIR bandpass filter from 1 to 50 Hz. Bad channels were 
removed and interpolated. Data were epoched into 2-second segments to 
manually reject artifactual epochs, after which data were re- 
concatenated into continuous data. Independent component analysis 
was performed to manually identify and reject noise components. 
Ocular and muscular artifacts were removed using blind source sepa-
ration and canonical correlation analysis techniques implemented in the 
AAR plugin for EEGLAB (De Clercq et al., 2006). 

For all 64 channels, a fast Fourier transform was computed after 
applying a 512-point Hanning window. The resulting power spectrum 
was segmented into bins of 1 Hz, ranging from 1 to 50 Hz (50 bins) and 
log-transformed. To control for the effects of age and gender, power 
spectra for all electrodes were regressed on age and gender, and residual 
scores were used as corrected power values for all analyses. 

2.2.3. Random forest prediction 
To estimate performance on each CANTAB cognitive test, we used a 

random forest model with power at each channel in 1-Hz bins from 1 to 
50 Hz as input features after correcting for age and gender. Random 
forest is one of the most popular machine learning algorithms for clas-
sification and regression (Breiman, 2001), and is particularly suited for 
high dimensional data. The algorithm creates a large number of decision 
trees, where each tree is trained on a bootstrap sampling of the data with 
a random subsample of features. The algorithm builds a maximally 
informative decision tree for each sampling, with each level moving into 
a branch based on a critical value for an input feature. After multiple 
decisions, each tree leads to end nodes that are associated with a clas-
sification into either of two groups. In the regression extension, each 
decision tree assigns a value for the outcome variable based on decisions 
made for the sampled features falling above or below a certain 
threshold. After all decision trees are run and the forest of trees is 
created, the prediction of the random forest is the average prediction of 
the individual trees. Bootstrap aggregation or “bagging” of decision 
trees means that each tree is trained on a subsample of the data, so the 
performance of each model on its left-out samples (“out-of-bag” obser-
vations) when averaged provides an estimate of model accuracy. In this 
way, out-of-bag performance provides a metric of generalization per-
formance that is very similar to cross-validation. 

Because our primary aim was to identify EEG features associated 
with cognitive performance, our choice of random forest regression 
among various machine learning techniques was primarily due to its 
utility in estimating feature importance. Besides being versatile in pre-
diction of continuous and categorical outcomes, random forest naturally 
allows for the inspection of predictor importance. Due to its randomi-
zation and ’bagging’ component, it will result in a gradual distribution 
of importance of features, in contrast with, for example, penalized re-
gressions that will result in sparse weights across space and frequency, 
especially when features are highly correlated. This is crucial for 

visualizing scalp topography of predictor importance. 
For each cognitive test, we built a random forest with the number of 

trees set to 20,000 and with the number of predictors to sample set to 12. 
These hyperparameters were selected not to optimize model perfor-
mance per se, but rather to optimize predictor importance estimates to 
determine which EEG features are most predictive of cognitive func-
tioning. We found that predictor importance estimates were highly 
variable with <5000 trees, and predictor importance estimates became 
steadily less variable as the number of trees was increased to 20,000. 
Model performance did not improve above 5000 trees, and neither 
model performance nor predictor importance estimates improved with 
>12 predictors sampled. 

Model performance was evaluated using the coefficient of determi-
nation or Nash-Sutcliffe efficiency (NSE), reflecting model fit between 
observed cognitive scores and predicted scores for out-of-bag observa-

tions. NSE is computed as NSE = 1 −

∑
(Ym − Yp)

2
∑

(Ym− Y)2
, where Ym and Yp are 

observed and predicted values, respectively, and y is the mean of ob-
servations. NSE ranges from –∝ to 1. 

For each model, permutation testing was conducted to determine if 
the model performed significantly better than chance. Cognitive test 
scores were randomly permuted and a random forest model was built for 
each permutation, thus obtaining a null distribution of the NSE statistic. 
The p-value is the frequency of random models that perform equal to or 
better than the original model, reflecting the probability of obtaining 
equal or better model performance due to chance alone. The significance 
threshold was set at p = 0.00714 (0.05/7, correcting for number of 
cognitive tests), and 2000 permutations were performed to provide a p- 
value resolution of 0.0005 (1/2000 = 0.0005). 

For models that performed significantly better than chance, predic-
tor importance was estimated for EEG features as the increase in pre-
diction error if the values of the predictor are randomly permuted for 
out-of-bag observations. To identify frequencies with the highest pre-
dictor importance for each model, we plotted predictor importance by 
frequency (averaged across electrodes) and selected peaks, defined as 
local maxima exceeding one standard deviation above the mean pre-
dictor importance estimate. To investigate the direction of effect for 
each frequency predictor on cognitive outcome, we identified the top 
three channels with greatest predictor importance within each selected 
frequency and examined their relationships with cognitive performance 
using univariate regression models. 

2.2.4. Statistical analysis 
Follow-up analyses were performed to assess differences among 

diagnostic groups. For cognitive tests that were found to be predictable 
from EEG data (based on significance of permutation testing), a Welch’s 
ANOVA was performed to determine if cognitive scores differed among 
diagnostic groups. Welch’s ANOVA was used due to unequal variances 
across groups. We first corrected the scores by residualizing them for age 
and gender across the whole sample as in the random forest models. 
Next, the Welch’s ANOVA included diagnostic groups with n > 10 (see 
Table 2). Further analyses to investigate possible effects of medication 
and diagnostic category on predictor-outcome relationships are 
included in Supplementary Material (Supplementary Tables 2 and 3). An 
important and clinically relevant question is how cognitive (dys)func-
tion interacts with other dimensions of psychiatric illness. We decided to 
investigate the relationship between cognitive function and other 
symptom dimensions in order to more effectively interpret the rela-
tionship between EEG activity and cognition. We therefore performed a 
series of Pearson correlations between CANTAB scores and symptom 
scores on five symptom dimensions. These symptom dimensions were 
identified using factor analysis of self-report symptom questionnaires 
(see Supplementary Material) and were labeled as social/interpersonal, 
anxious, depressive, somatic, and anomalous (psychosis-spectrum 
symptoms). To rule out the possibility that predictability of cognitive 
performance is related to specific diagnosis, we used the same model 
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parameters to build random forest models to predict each diagnosis and 
assessed performance using the same methods described above. 

3. Results 

Table 2 shows demographic information and CANTAB cognitive test 
scores for 216 participants. Further medication data are presented in 
Supplementary Table 1. 

Table 3 shows random forest model performance statistics for each 
cognitive test. NSE (ranging from –∞ to 1) reflects model fit between 
observed scores and predicted scores for out-of-bag observations. The p- 
value is the frequency of random permutation models that perform 
equal to or better than the original model, reflecting the probability of 
obtaining equal or better model performance due to chance alone. For 
models that performed significantly better than chance, predictor 
importance was estimated for EEG features. 

3.1. Paired associate learning 

The random forest model performed significantly better than chance 
predicting PAL score from EEG data. Fig. 1A shows the observed NSE 
value relative to the null distribution of permuted NSE statistics. 
Fig. 1B–F show predictor importance estimates, computed for each 
predictor as the increase in prediction error if the values of the predictor 
are randomly permuted for out-of-bag observations. Topography of 
predictor importance estimates for each frequency (1–50 Hz in 1 Hz 
bins) are shown in Supplementary Material Fig. 1. Fig. 1D–F show a 
selection of topographical maps corresponding to frequency peaks, 
identified at 6 Hz, 13 Hz, and 17 Hz. These peaks were selected for 
subsequent analyses to determine directions of effects. 

To assess the direction of effect for frequencies with high predictor 
importance, linear regression models were used with power as inde-
pendent variables and PAL score (total errors adjusted) as the dependent 

variable. For each peak frequency, three channels with the highest 
predictor importance were tested in univariate models. 6 Hz power at 
F4, AF4 and O1 all exhibited inverse relationships with PAL errors 
(greater power associated with better performance; βF4 = − 0.49, βAF4 =

− 0.41, βO1 = − 0.25). 13 Hz power also showed an inverse relationship 
with PAL errors (βOz = − 0.27, βO2 = − 0.29, βPO4 = − 0.30). 17 Hz power 
exhibited a positive relationship with PAL errors (greater power asso-
ciated with worse performance; βC1 = 0.48, βC3 = 0.49, βFCz = 0.52). 

3.2. Choice Reaction Time 

The random forest model performed significantly better than chance 
predicting CRT scores from EEG data. Fig. 1A shows the observed NSE 
value relative to the null distribution of permuted NSE statistics. 
Fig. 2B–F show predictor importance estimates. Topography of predictor 
importance estimates for each frequency (1–50 Hz in 1 Hz bins) are 
shown in Supplementary Material Fig. 2. Fig. 2D–F show a selection of 
topographical maps corresponding to frequency peaks, identified at 8 
Hz, 12 Hz, and 17 Hz. These peaks were selected for subsequent analyses 
to determine directions of effects. 

To assess the direction of effect for frequencies with high predictor 
importance, linear regression models were used with power as inde-
pendent variables and CRT score (mean correct latency) as the depen-
dent variable. For each peak frequency, three channels with the highest 
predictor importance were tested in univariate models. 8 Hz power at 
FC5, FT7, and TP7 all exhibited positive relationships with CRT latency 
(greater power associated with worse performance; βFC5 = 0.30, βFt7 =

0.39, βTP7 = 0.32). 17 Hz power also exhibited a positive relationship 
with CRT latency (βC1 = 0.47, βC3 = 0.56, βFCz = 0.41). 12 Hz power 
exhibited an inverse relationship with CRT latency (greater power 
associated with better performance; βCP1 = − 0.07, βO2 = − 0.20, βPO6 =

− 0.21). 

3.3. Intra-Extra dimensional set Shift 

The random forest model performed significantly better than chance 
predicting IED score from EEG data. Fig. 3A shows the observed NSE 
value relative to the null distribution of permuted NSE statistics. 
Fig. 3B–F show predictor importance estimates. Topography of predictor 
importance estimates for each frequency (1–50 Hz in 1 Hz bins) are 
shown in Supplementary Material Fig. 3. Fig. 3D–F show a selection of 
topographical maps corresponding to frequency peaks, identified at 2 
Hz, 5 Hz, and 22 Hz. These peaks were selected for subsequent analyses 
to determine directions of effects. 

To assess the direction of effect for frequencies with high predictor 

Table 2 
Participant demographics and CANTAB scores.   

Total MDD BP PSY OCD GAD ASD ID-NOS 

n 216 34 4 15 49 9 4 101 
Age mean (SD) 38.6 (15.0) 41.5 (15.7) 38.0 (18.3) 29.3 (10.6) 43.7 (14.8) 45.1 (16.3) 26.3 (6.3) 36.5 (14.4) 
Gender # male (%) 83 (38.4) 14 (41.2) 2 (50.0) 8 (53.3) 21 (42.9) 4 (44.4) 3 (75.0) 31 (30.7) 
Medication status # medicated (%) 68 (31.5) 16 (47.1) 1 (25.0) 9 (60.0) 14 (28.6) 4 (44.4) 0 (0.0) 24 (23.8) 
Premorbid IQ mean (SD) 103.1 (13.1) 102.9 (15.2) 100.5 (13.2) 105.8 (16.0) 106.1 (14.6) 95.7 (11.7) 99.5 (1.73) 102.2 (11.3) 
CRT mean (SD) 351 (87.9) 395 (118) 337 (61.9) 305 (41.8) 351 (63.8) 393 (221) 322 (40.0) 340 (66.9) 
IED mean (SD) 26.4 (27.4) 29.7 (40.0) 21.8 (23.0) 30.4 (26.9) 30.8 (31.0) 39.2 (38.8) 9.50 (2.65) 22.2 (18.1) 
OTS mean (SD) 1.39 (0.255) 1.39 (0.270) 1.42 (0.373) 1.35 (0.202) 1.45 (0.281) 1.58 (0.384) 1.49 (0.212) 1.34 (0.219) 
PAL mean (SD) 12.3 (18.9) 18.1 (26.6) 11.3 (13.7) 10.2 (11.5) 11.9 (13.0) 24.0 (29.4) 9.50 (10.1) 9.87 (18.0) 
RVP mean (SD) 0.898 (0.054) 0.876 (0.068) 0.870 (0.066) 0.884 (0.053) 0.903 (0.042) 0.868 (0.053) 0.952 (0.005) 0.908 (0.050) 
SWM mean (SD) 21.0 (18.5) 24.9 (20.4) 27.3 (12.1) 27.9 (25.7) 25.3 (20.9) 28.0 (18.4) 9.25 (13.3) 16.2 (14.3) 
VRM mean (SD) 6.75 (2.70) 6.29 (2.60) 9.25 (3.59) 6.13 (2.45) 7.00 (3.19) 5.78 (2.17) 5.25 (2.22) 6.92 (2.49) 

Note: MDD = Major depressive disorder; BP = Bipolar disorder; PSY = Psychosis spectrum disorders; OCD = Obsessive-compulsive disorder; GAD = Generalized 
anxiety disorder; ASD = Autism spectrum disorder; ID-NOS = Impulse-control disorder, not otherwise specified (misophonia). Note: large ID-NOS sample is due to 
specialized misophonia research group located at the AUMC. Premorbid IQ assessed with National Adult Reading Test (NART; Nelson and Willison, 1991). CRT =
Choice Reaction Time, mean correct latency; IED = Intra-Extra Dimensional Set Shift, total errors adjusted; OTS = One Touch Stockings of Cambridge, mean choices to 
correct; PAL = Paired Associates Learning, total errors adjusted; RVP = Rapid Visual Information Processing, A-prime; SWM = Spatial Working Memory, between 
errors; VRM = Verbal Recognition Memory, free recall total correct. 

Table 3 
Random forest model performance for each cognitive test   

NSE p-value* 

VRM − 0.0018  0.0560 
RVP − 0.0487  0.5605 
IED 0.0226  0.0070 
CRT 0.0242  0.0065 
OTS − 0.0419  0.4500 
PAL 0.0348  0.0055 
SWM − 0.0434  0.4805 

*Significant p-values (<0.00714) shown in bold 
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importance, linear regression models were used with power as inde-
pendent variables and IED score (total errors adjusted) as the dependent 
variable. For each peak frequency, three channels with the highest 
predictor importance were tested in univariate models. 2 Hz power at 
F1, FC1 and P8 all exhibited inverse relationships with IED errors 

(greater power associated with better performance; βF1 = − 0.35, βFC1 =

− 0.50, βP8 = − 0.44). 5 Hz power also showed an inverse relationship 
with IED errors (βF4 = − 0.47, βCP1 = − 0.38, βCP5 = − 0.38). 22 Hz power 
exhibited a positive relationship with IED errors (greater power asso-
ciated with worse performance; βC4 = 0.34, βCP3 = 0.13, βCP4 = 0.19). 

Fig. 1. (A) Distribution of NSE values from 2000 permutations of random forest model with PAL scores randomly shuffled. Observed NSE shown in purple. 11 out of 
2000 permutations exceeded the observed NSE value, yielding a p-value of 0.0055 (B) PAL predictor importance estimates for all 3200 predictors (electrode ×
frequency). (C) Estimated predictor importance by frequency (averaged across electrodes). (D) Topography of predictor importance at 6 Hz (corresponding to 
predictor importance peak at 6 Hz, see C). (E) Topography of predictor importance at 13 Hz. (F) Topography of predictor importance at 17 Hz. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. (A) Distribution of NSE values from 2000 permutations of random forest model with CRT scores randomly shuffled. Observed NSE shown in purple. 13 out of 
2000 permutations exceeded the observed NSE value, yielding a p-value of 0.0065 (B) CRT predictor importance estimates for all 3200 predictors (electrode ×
frequency). (C) Estimated predictor importance by frequency (averaged across electrodes). (D) Topography of predictor importance at 8 Hz (corresponding to 
predictor importance peak at 8 Hz, see C). (E) Topography of predictor importance at 12 Hz. (F) Topography of predictor importance at 17 Hz. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.4. Follow-up analyses: Clinical relationships 

To assess whether PAL, CRT, and IED scores differed among diag-
nostic groups, we performed a Welch’s ANOVA for each cognitive test 
controlling for age and gender, including only diagnostic groups with n 
> 10 (MDD, PSY, OCD, and ID-NOS). For all three cognitive tests, scores 
did not differ significantly among diagnostic groups (PAL: F(3,53.14) =
1.27, p = 0.30; CRT: F(3,55.17) = 2.45, p = 0.07; IED: F(3,46.32) =
1.09, p = 0.36). There were no significant correlations between CANTAB 
scores and symptom scores for any of the five symptom dimensions, as 
seen in Table 4. 

We next tested whether a random forest model would also success-
fully predict diagnosis, which could suggest that the relationship be-
tween EEG oscillations and cognition is secondary to the relationship 
between EEG oscillations and specific psychopathology. We built a 
random forest model to predict each diagnosis, with the same model 
parameters that were used to predict cognitive scores. Although a clas-
sification model is generally used to predict a binary target variable 
(diagnosis or no diagnosis), we used a regression model to maintain 
methodological consistency with the continuous prediction of cognitive 
scores and to allow graded (continuous) prediction values, perhaps 
reflecting disorder severity. Table 5 shows NSE and p-values for each 
model. No model performed better than chance in predicting diagnosis. 

4. Discussion 

The aim of this study was to identify correlates of cognitive function 
in the resting EEG power spectrum, across various psychiatric disorders 
and multiple cognitive domains. Using resting EEG data as input, 
random forest models performed significantly better than chance in 
predicting performance in tasks measuring episodic memory and asso-
ciative learning (PAL), information processing speed (CRT), and atten-
tional set-shifting and executive function (IED). Power in the upper 
alpha range (12–13 Hz) was associated with better performance on PAL 
and CRT, while power in the beta frequency range was associated with 
poorer performance on all three tests. Theta oscillations were associated 
with better performance on PAL, and theta and delta oscillations were 
associated with better IED performance. Random forest models with the 
same hyperparameters were unable to predict diagnosis at a level above 
chance. Scores for PAL, CRT, and IED did not differ significantly among 
diagnostic groups. 

4.1. Resting oscillations and cognition 

4.1.1. Alpha oscillations 
We found that better performance on PAL and CRT was associated 

with greater power in the upper alpha range, while increased power in 
the lower alpha range was associated with worse CRT performance. 
Resting alpha power, particularly in the high-alpha range, has been 

Fig. 3. (A) Distribution of NSE values from 2000 permutations of random forest model with IED scores randomly shuffled. Observed NSE shown in purple. 14 out of 
2000 permutations exceeded the observed NSE value, yielding a p-value of 0.007 (B) IED predictor importance estimates for all 3200 predictors (electrode × fre-
quency). (C) Estimated predictor importance by frequency (averaged across electrodes). (D) Topography of predictor importance at 2 Hz (corresponding to predictor 
importance peak at 2 Hz, see C). (E) Topography of predictor importance at 5 Hz. (F) Topography of predictor importance at 22 Hz. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Correlations between CANTAB scores and symptom dimension scores   

PAL CRT IED 

r p r p r p 

Social/interpersonal − 0.128  0.080  0.138  0.058 − 0.012  0.869 
Anxious − 0.075  0.305  − 0.073  0.352 − 0.060  0.411 
Depressive − 0.040  0.585  − 0.080  0.271 0.029  0.691 
Somatic 0.092  0.207  0.113  0.121 0.071  0.333 
Anomalous − 0.048  0.515  − 0.001  0.990 − 0.084  0.252  

Table 5 
Random forest model performance for diagnostic categories  

Diagnosis NSE p-value 

MDD − 0.0299  0.2753 
BP − 0.0158  0.1325 
PSY − 0.0470  0.5345 
OCD − 0.0355  0.3545 
GAD − 0.0097  0.0950 
ID-NOS − 0.0362  0.3630  
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found to correlate with cognitive performance and memory in particular 
(Klimesch et al., 1997; Mahjoory et al., 2019; Prat et al., 2016; Vogt 
et al., 1998). Several studies also provide evidence that individual alpha 
frequency (IAF) is an indicator for speed of cognitive processes (Kli-
mesch et al., 1997; Surwillo, 1963, 1964), which may explain why 
power in the low alpha range was associated with worse CRT 
performance. 

Alpha oscillations have been traditionally thought to reflect idling or 
inhibition of task-irrelevant cortical areas, given that they desynchron-
ize in response to most task demands. However, recent findings that 
alpha oscillations increase in certain conditions, particularly in working 
memory tasks (Palva et al., 2010; Smit et al., 2009), have led to a revised 
understanding that ascribes alpha oscillations an active role in cognitive 
processing. Alpha oscillations serve a critical top-down modulatory role 
by acting as a selective inhibitory filter (Klimesch et al., 2007) and by 
controlling rhythmic changes in neural excitability (Mathewson et al., 
2012; Sadaghiani and Kleinschmidt, 2016). This enables the precise 
timing of neuronal firing rates as a function of alpha phase and modu-
lates higher frequency oscillations (Palva and Palva, 2007). High resting 
alpha power may therefore reflect effective top-down cognitive control 
that allows for efficient information processing (Klimesch et al., 2007). 
This function may be compromised in psychiatric illness, as alpha os-
cillations are reduced across multiple disorders (see Newson and Thia-
garajan, 2018 for review). Given the critical role of alpha oscillations in 
modulating and maintaining global brain dynamics, further work should 
attempt to clarify whether reduced alpha oscillations in psychiatric 
disorders relate specifically to cognitive dysfunction, or if alpha re-
ductions underlie broad network disruptions leading to diverse 
symptoms. 

4.1.2. Beta oscillations 
We found that resting beta power was associated with poor perfor-

mance on PAL, CRT, and IED. While beta oscillations are classically 
considered to be related to sensorimotor functions through the main-
tenance of steady muscle contractions (Baker, 2007), work in the last 
few decades suggests that beta oscillations play a parallel role in 
cognition through the maintenance of ongoing cognitive operations 
(Buschman and Miller, 2007). Engel and Fries (2010) offer a unifying 
hypothesis of beta oscillations serving to maintain the current sensori-
motor and cognitive set, or “status quo”. Engel and Fries predict that 
pathological enhancement of beta activity is likely to result in deterio-
ration of flexible cognitive control and efficient information processing. 
This could explain why elevated resting beta is associated with poorer 
performance on flexible set shifting (IED) and slower processing of novel 
stimuli (CRT). Beta oscillations may maintain the current cognitive state 
in part by inhibiting oscillations in other frequencies (Engel and Fries, 
2010). Given evidence that associative learning is accomplished through 
the synchronous firing of different populations of neurons at gamma 
frequency (Gruber et al., 2001), this may explain why elevated baseline 
beta activity is associated with poorer performance on associative 
learning and memory (PAL). 

4.1.3. Theta and delta oscillations 
We found that theta oscillations were associated with better perfor-

mance on PAL, and theta and delta oscillations were associated with 
better IED performance. These findings are somewhat surprising, given 
that resting theta power has been associated with poorer cognitive 
performance (see Klimesch, 1999 for review), while increased delta 
oscillations at rest are commonly considered to indicate brain pathology 
and are observed in a number of neurological and psychiatric conditions 
including schizophrenia, ADHD, Alzheimer’s disease, Parkinson’s dis-
ease, Down syndrome, depression, anxiety, and OCD (see Knyazev, 2012 
for review). Delta and theta power also increase with normal aging (see 
Rossini et al., 2007 for review). However, age-dependent changes in the 
relationship between cognition and resting oscillations could offer a 
possible interpretation of the current findings. Several studies have 

found that enhanced delta and theta power show a positive relationship 
with cognitive performance in older, but not younger, adults (Finnigan 
and Robertson, 2011; Vlahou et al., 2014). It is possible that while in-
creases in delta and theta power are observed in aging and a range of 
pathological conditions, this serves a compensatory function when 
faster oscillations (particularly alpha) are compromised. In this sense, 
patients with various psychiatric disorders may have a general pathol-
ogy that results in increased delta and theta oscillations, but these os-
cillations may paradoxically preserve cognitive function. 

4.2. Cognitive function across disorders 

Performance on PAL, CRT, and IED did not differ significantly among 
diagnostic groups. This may suggest that executive function, episodic 
memory, and processing speed reflect transdiagnostic factors that are 
broadly affected across diagnostic categories. This is supported by a 
recent review of meta-analyses of neurocognitive impairment in psy-
chiatric disorders, which found that deficits in executive function and 
episodic memory are the most severe and most frequently reported 
across disorders (East-Richard et al., 2019; MDD, schizophrenia, ASD, 
ADHD, bipolar, OCD, and PTSD were considered in the review). The 
authors suggest that deficits in executive function and episodic memory 
constitute key transdiagnostic neurocognitive impairments and may 
reflect common pathophysiological mechanisms across disorders. They 
suggest that a common cognitive factor may underlie various cognitive 
deficits across the diagnostic spectrum, akin to the “p factor” proposed 
by Caspi et al. (2014) that reflects an overall susceptibility to psycho-
pathology. An impaired common cognitive factor could produce 
different cognitive deficits in different psychiatric disorders, and certain 
domains such as executive function and episodic memory may be more 
centrally related to a common cognitive factor and thus more often 
impaired. While processing speed was not identified as a central neu-
rocognitive impairment, well-established associations between pro-
cessing speed and oscillatory frequency (particularly alpha) suggest 
there may be a direct relationship between the speed of oscillatory and 
cognitive processes (Klimesch et al., 1997; Surwillo, 1963, 1964). This 
may explain why random forest models in the current study successfully 
identified neuro-oscillatory correlates of executive function, episodic 
memory, and processing speed, but not other cognitive domains. Deficits 
that are less severe or less ubiquitous across disorders may have simply 
been too slight to identify biological correlates. 

The concept of a common cognitive factor also implies that cognitive 
dysfunction is a core mechanism in the pathophysiology of psychiatric 
illness, rather than a peripheral symptom. Cognition depends on the 
precise orchestration of cerebral activity, and cognitive dysfunction may 
therefore be the most direct and immediate consequence of patho-
physiological alterations in cerebral networks in psychiatric disorders. It 
is therefore not surprising that EEG activity would be more strongly 
associated with cognitive function than with other symptoms or with 
disorders as a whole. 

4.3. Limitations 

The aim of the Across study is to examine dimensions of functioning 
without the categorical distinction between healthy, ‘normal’ control 
subjects and ill psychiatric patients. There is a broad range in cognitive 
functioning both in patient populations and among individuals without 
psychiatric diagnoses and this categorical distinction is a theoretical 
assumption that does not reflect clinical reality. However, since in-
dividuals without psychiatric diagnoses were not included in the current 
study it is unclear if our results reflect a general link between resting- 
state oscillations and cognitive function, or if our findings are specific 
to patients with psychiatric diagnoses and reflect a transdiagnostic 
pathological mechanism (i.e. biological correlates of cognitive 
dysfunction). 

As such, we suggest that future transdiagnostic studies would benefit 
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from the inclusion of healthy individuals not as comparison subjects per 
se, but to examine the full range of variability in cognition and other 
dimensions of functioning. 

Finally, as is often the case in psychiatric research, medication status 
may influence the results. While this is mainly problematic in the 
comparison of individuals with psychiatric diagnoses to unmedicated 
controls, medication status may still introduce confounding effects that 
are difficult to control for given the diverse range of medications used in 
a transdiagnostic sample. 

4.4. Clinical significance and implications 

Resting state EEG is a widely used tool in psychiatric research, with a 
considerable number of studies linking specific disorders to power 
changes in specific frequency bands. Our results show that resting EEG 
oscillations are predictive of cognitive performance across several do-
mains, but EEG data could not be used to predict diagnosis at a level 
above chance. Researchers should therefore be cautious when inter-
preting power abnormalities associated with psychiatric disorders. 
Without controlling for cognitive variables, it is possible that group 
differences in EEG frequency bands are driven by specific factors such as 
cognitive function that are not necessarily disorder specific. 

While this may present a challenge to psychiatry’s search for 
disorder-specific EEG biomarkers, it could compel a transition to new 
approaches that link EEG features to more basic dimensions of func-
tioning. For example, anhedonia has been considered a candidate 
endophenotype of depression and schizophrenia and is strongly linked 
to reduced electrophysiological responsiveness to reward (Padrao et al., 
2013; Pizzagalli, 2014). We may develop a more biologically grounded 
understanding of (transdiagnostic) psychiatric illness by isolating 
cognitive, emotional, or social processes and linking these processes to 
specific neurophysiological correlates. By taking a fine-grained, bottom- 
up approach to link dimensions of psychiatric illness with biological 
parameters, we may discover novel patterns and identify new targets for 
treatment. 

The current results could implicate resting-state oscillations as a 
potential treatment target to improve cognition for patients with severe 
deficits. In fact, existing research shows that neurofeedback training to 
increase resting upper alpha power can improve cognitive performance 
(Hanslmayr et al., 2005). Given the severe impact of cognitive impair-
ment on general functioning and overall wellbeing, researchers and 
clinicians are calling for increased attention to cognitive deficits in 
psychiatric disorders. Some have suggested that efforts should be made 
to develop pharmacological therapies that specifically target cognitive 
deficits in psychiatric disorders (Etkin et al., 2013). Efforts to identify 
the neurobiological correlates of cognitive function may be the first step 
in the endeavor to develop such therapies and improve quality of life for 
patients. 
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