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A B S T R A C T   

The SARS-CoV-2 is one of the most infectious and deadly coronaviruses, which has gripped the world, causing 
the COVID-19 pandemic. Despite the numerous studies being conducted on this virus, many uncertainties are 
with the disease. This is exacerbated by the speedy mutations acquired by the viral strain, which enables the 
disease to present itself differently in different people, introducing new factors of uncertainty. This study aims at 
the identification of regulatory pathways across two cell lines, namely, the peripheral blood mononuclear cell 
line (PBMC) and the normal human bronchial epithelial (NHBE) cell line. Both the above-mentioned cell lines 
were considered because they support viral replication. Furthermore, the NHBE cell line captures vital changes in 
the lungs, which are the main organs affected by the COVID-19 patients, and the PBMC cell line is closely linked 
to the body’s immune system. RNA-Seq analysis, differential gene expression and gene set enrichment analysis 
for pathway identification were followed. Pathway analysis throws light upon the various systems affected in the 
body due to the COVID-19. Gene regulatory networks associated with the significant pathways were also 
designed. These networks aid in identifying various gene targets, along with their interactions. Studying the 
functionality of the pathways and the gene interactions associated with them, aided by long COVID studies, will 
provide immense clarity about the current COVID-19 scenario. In the long term, this will help in the design of 
therapeutic approaches against the SARS-CoV-2 and can also contribute to drug repurposing studies. Ultimately, 
this study identifies and analyses the relationship of various undiscovered or lesser explored pathways in the 
human body to the SARS-CoV-2 and establish a clearer picture of the association to help streamline further 
studies and approaches.   

1. Introduction 

Coronaviruses, known for their spiked structure, belong to the 
Coronaviridae family, which infects the upper gastrointestinal and res-
piratory tract in mammals [1]. SARS-CoV-2 outbreaks in 2002 and 2003, 
as well as MERS-CoV, which has been causing an epidemic in some parts 
of Africa since 2012, have aided researchers in their understanding of 
coronaviruses. COVID-19, which started in late December 2019, was 
declared a pandemic by the World Health Organization on March 11, 
2020 [2]. Although there is no effective cure for the infection, which 
affects general health, vaccines have shown promising results. Among 
the unavailability of treatment regimens, an overwhelming amount of 
research has been carried out on drug discovery. These include, but are 
not limited to, understanding the role of repurposed drugs like 

Hydroxychloroquine, Favipiravir, remdesivir [3] along with carbon 
fullerene and nanotubes as potential binding agents against the protein 
targets [4]. Apart from synthetic compounds, Phyto-actives are under 
intense investigation for its anti-viral activity [5]. The potential targets 
also inculcated signalling pathways like NF-kB (inflammatory and 
apoptosis related) pathways, which are targeted during drug discovery 
[6]. Researchers are still trying to understand the virus and its potential 
mutations to find a permanent solution to this global concern. However, 
the key to understanding the secrets of this virus lies in its genetic ma-
terial. Coronaviruses have the largest genome of approximately 26–32 
kB among the RNA viruses. SARS-CoV–2 has a positive-sense single--
stranded RNA as its genetic material [7]. Transcriptome studies of other 
types of coronaviruses have revealed much information about the kind 
of infection and the pathways that affect the body, and they have also 
exposed novel approaches. However, it is uncertain if SARS-CoV – 2 has 
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the same transcriptome properties as SARS-CoV – 1 and whether the 
prior techniques would be effective against this virus. As a result, 
transcriptomics is being used in this study to unveil previously undis-
closed information regarding COVID-19 and SARS-CoV – 2. 

Transcriptomics is an NGS-based approach that helps analyse the 
region of the actively transcribed genome. RNA-Seq involves the 
sequencing of the entire RNA population without any annotation to the 
genome. More reads are generated if the sequence is transcriptionally 
active, which plays a significant role in the analysis [8]. RNA–Seq 
analysis yields valuable information about the differentially expressed 
genes, which helps in discovering the novel pathways associated with 
these genes. 

To characterize the genes involved and analyse the affected path-
ways, transcriptomics of cell lines derived from lungs and blood were 
considered for this study, and were later subjected to gene enrichment 
analysis. Normal human bronchial epithelial cell lines were considered 
for the study, as the virus directly affects the lungs of the infected person. 
Peripheral blood mononuclear cells (PBMCs) were considered for the 
following reasons: (i) viral replication in these cell lines, (ii) dynamic 
changes in the disease during the infection could be detected in these 
cell lines [9], and (iii) these cell lines are directly related to the immune 
system. 

This study draws attention to the pathways at a more intricate level 
to obtain valuable information about the virus and COVID-19 using two 
different cell lines. Since not much work has been done concerning these 
two cell lines, this study can provide potential insights into the virus and 

viral infection. 

2. Materials and methodology 

Fig. 1 represents the overall methodology that is followed for this 
study. 

2.1. Dataset collection 

From the NHBE and PBMC cell lines, three healthy and patient 
samples were obtained. Run Selector is a tool available through the 
Sequence Read Archive (SRA), which fine-tunes web-based search re-
sults based on the two dozen fields to filter SRA data in Run Selector. In 
this study, the Run Selector was narrowed down to search transcriptome 
data, and the RNA-Seq assay type was selected. Clicking on the hyper-
links inside the data table will lead to the NCBI page for the SRA Study or 
BioProject. The healthy and patient sample IDs from both the cell lines 
were collected. 

The or file transfer protocol (FTP) links to fetch these samples were 
taken from European Nucleotide Archive (ENA). The human reference 
genome data were available from the most recent version, GRCh38, 
released in 2013, also called hG38. GRCh38 V.32 was used by down-
loading all the GTF and GFF files from Gencode. 

NHBE samples were taken from an open-access project. In the 
mentioned project, biological replicates were created using uninfected 
human lung biopsies derived from one female aged 60 and one male 

ABBREVIATIONS 

SARS CoV-2 Severe Acute Respiratory Syndrome Coronavirus-2 
MERS CoV Middle East Respiratory Syndrome Coronavirus 
COVID-19 Coronavirus Disease 2019 
PBMC Peripheral Blood Mononuclear Cells 
NHBE - Normal Human Bronchial Epithelial Cells 
ACE2 Angiotensin Converting Enzyme 2 
NCBI National Center for Biotechnology Information 
ENA European Nucleotide Archive 
GRCH Genome Reference Consortium Human genome 
GFF General Feature Format 
GTF General Transfer Format 

FNA - FASTA Nucleic Acid 
SRA Sequence Read Archive 
HISAT Hierarchical Indexing for Spliced Alignment of Transcripts 
SAM Sequence Alignment Map 
BAM Binary Alignment Map 
DGE - Differential Gene Expression 
KEGG Kyoto Encyclopedia of Genes and Genomes 
KOBAS KEGG Orthology-Based Annotation System 
GSEA Gene Set Enrichment Analysis 
ENCODE ENCyclopedia Of DNA Elements 
GO Gene Ontology 
NDD Neurodegenerative disease  

Fig. 1. Pipeline methodology flowchart.  
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aged 72. Technical replicates were processed by deriving lung samples 
from a single deceased male, a COVID-19 patient aged 74. The bio-
samples were accessed from the BioProject ID PRJNA615032 (https:// 
www.ncbi.nlm.nih.gov/sra/?term=PRJNA615032) [10,11]. 

The samples for PBMCs were collected from a study that consisted of 
6 convalescent patients, 10 RTP patients, and 10 healthy controls for the 
analysis of the immunological characteristics of PBMCs. Transcriptome 
sequencing performed a comprehensive characterization of the tran-
scriptional changes in the three groups. The biosamples were accessed 
from the BioProject ID SRP304889 (https://www.ncbi.nlm.nih. 
gov/sra/?term=SRP304889). 

2.2. Indexing 

Indexing the sequences help differentiate between multiple se-
quences by using various techniques and algorithms. These techniques 
also help reduce the computer memory acquired by the human genome, 
thus enabling a faster and efficient indexing of the sequence. This 
characteristic allows the aligner to narrow down the query sequence of 
the genome, which in turn saves time and memory [8]. In this study, the 
human reference genome was indexed before the sample reads were 
mapped and aligned for better results. Once the human reference was 
indexed, the NHBE and PBMC sample sets were mapped and aligned 
with it. 

2.3. Mapping and alignment 

After the human reference genome is indexed, the sample sequences 
must be mapped or aligned to the human reference genome or a de novo 
assembly must be conducted. This is one of the primary steps in tran-
scriptome analysis. Mapping is done to locate the origins of the reads in 
the human reference genome [8] and to locate and identify the distances 
between the genes in the chromosome [12]. Therefore, the three sample 
sets of both cell lines in this work, including the healthy and patient 
conditions, were mapped and aligned to the human reference genome 
collected using the HISAT2 tool. 

The HISAT2 tool is a mapping and alignment tool that yields higher 
accuracy compared to other alignment tools. It uses several fast algo-
rithms like the Burrows–Wheeler Aligner and Bowtie [12]. 

The mapping results from the HISAT2 tool are stored in the Sequence 
Alignment Map (SAM) format (output file has a. sam extension). SAM is 
a tab-delimited format that is readable, slow to parse and easily exam-
inable. However, it must be converted to Binary Alignment Map (BAM) 
format to reduce the size of the samples and parse the sequences faster 
[8]. BAM is the compressed, binary version of SAM. BAM format com-
presses up to 128 Mb. The SAM/BAM format contains a header and an 
alignment section with 11 mandatory fields, with each line starting with 
the symbol ‘@’ [8]. 

Samtools were used to convert SAM into BAM. These tools were 
downloaded and installed using anaconda. Samtools looks for matches 
and mismatches at each genome coordinate of the reads and removes 
duplicates while compressing the files and changing the file format from 
the. sam to the. bam format [8]. 

The bam files obtained are indexed to obtain a companion file, called 
an index file or the bam index file. This file has the same name, suffixed 
with. bai. This allows programs to skip through some areas of the se-
quences and jump directly to specific parts of the bam file. The bai file is 
valid only when there is a corresponding bam file. For each alignment 
file in this study, the. bam.bai was kept in the same directory as the bam 
files of the sample. 

2.4. Differential gene expression 

RNA-Seq provides count data for quantitative readouts, statistical 
analysis and visualization with the aid of tools such as DESeq or R/ 
Bioconductor packages [13–15]. In transcriptome analysis, different 

conditions are compared using differential gene expression (DGE) 
analysis [16]. Here, the samples were subjected to pairwise DGE that 
used the count table generated from RNA-Seq for analysis using a tool 
called OmicsBox. 

OmicsBox is a bioinformatics software solution that has various 
modules to run with different types of NGS-based approaches [17]. 
However, the transcriptomics module was used in this study, and under 
this module, the DGE analysis tool was selected. The results obtained 
from the alignment in the form of BAM files and the human reference 
genome in the gff format were directly uploaded to OmicsBox. The genes 
between the experimental and contrast conditions were run over time 
with well-known and versatile statistical packages like NOISeq, edgeR 
and maSIg pro [18–21]. 

Differential expression analysis identifies which genes are expressed 
under specified conditions and the extent to which they are expressed. 
These genes offer biological insight into the processes affected by the 
conditions of interest. The count data used for differential expression 
analysis represent the number of sequence reads originating from a 
particular gene. A higher number of counts imply more reads associated 
with a particular gene and a strong assumption that there is a higher 
expression level of that gene in the sample. In this work, the count data 
were first normalized to account for differences between the library sizes 
and RNA composition between samples. Following this, the normalized 
counts were used to make some plots for QC at the gene and sample 
levels. Finally, differential gene expression analysis was performed. The 
gene count of counts per million (CPM) was the filter, which compared 
replicates between the same sample group. 

2.5. Gene set enrichment and pathway analysis 

The differentially expressed genes obtained after DGE from Omics-
Box were subjected to gene set enrichment (GSE). This analysis is a 
popular agenda to interpret and analyse the. 

Information obtained from the DGE was used for pathway summary. 
This approach is flexible, robust, dramatically reduces background noise 
and can be used for highly heterogeneous datasets. It also helps in 
detecting pathway activity changes based on the differentially expressed 
genes, and the employment of GSE methods in this pipeline has helped 
model the associated pathways [22]. 

Kobas 3.0 tool was used for pathway analysis, and EnrichR tool was 
used to optimizethe pathways obtained. Visualization and networking of 
pathways were done using InBio Map™. KOBAS version 3.0, named 
KOBAS intelligent version (KOBAS-i), is a web server and software that 
annotates an input set of genes or proteins by mapping to genes with 
known pathways in the KEGG PATHWAY database. It uses a hyper-
geometric test to identify significant pathways. Moreover, it uses five 
different pathway databases, namely KEGG PATHWAY, PID, BioCyc, 
Reactome and Panther, and five human disease databases, including 
OMIM, KEGG DISEASE, FunDO, GAD and NHGRI GWAS Catalog. 
KOBAS-i accepts different types of inputs, like gene IDs, symbols, FASTA 
sequence, or tabular BLAST output [23,24]. 

The two programs in KOBAS 3.0 are ‘annotate’ and ‘identify’. The 
annotate program identifies the coding regions and locations of the 
genes. The enrichment module provides information about the path-
ways and GO terms that are statistically significantly associated with the 
input gene list or expression [23]. Two different enrichment analyses are 
available: gene-list enrichment and exp-data enrichment. For this study, 
the KEGG pathway database was chosen as the filter to map the input 
genes to the KEGG pathway database. The upregulated and down-
regulated gene lists were uploaded separately after selecting the 
Gene-set enrichment option. The two lists were uploaded separately due 
to the input limit of 3000 gene symbols set by KOBAS-i. This tool outputs 
statistically significant pathways associated with the statistically sig-
nificant genes obtained after gene set enrichment analysis in the form of 
bar and bubble plots. KOBAS 3.0 is freely available at: http://kobas.cbi. 
pku.edu.cn/. 
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The Enrichr tool was used to optimize the pathways. Enrichr 
currently contains an extensive and diverse collection of 102 gene set 
libraries available for analysis [25]. Features such as submission of fuzzy 
sets, uploading of BED (Browser Extensible Data) files and visualization 
in the form of clustergrams are incorporated. The clustergram generates 
correlation plots of the most significant pathways. The upregulated and 
downregulated cell lines from both the cell lines were uploaded to 
Enrichr to output a bar plot representing the most significant pathways 
obtained from different pathway databases. Enrichr is freely available at 
http://amp.pharm.mssm.edu/Enrichr [26–28]. 

For networking, interpretation and visualising the pathways ob-
tained from KOBAS 3.0 and Enrichr, another tool called InBio Map™ 
was used. With this tool, relevant annotations from the enrichment 
analysis results were selected. Custom network visualizations were 
created using annotations, and gene expression datasets about this study 
were given as input. Networks were filtered based on topology or pro-
teins. InBio Map™ is freely available at https://inbio-discover.com/ 
[29]. 

Further details and the codes used are available in the published 
protocol [30]. 

3. Results and discussion 

3.1. Results obtained from omics box 

3.1.1. Count table generation 
In the count tables, 38,199 genes are acquired from both cell lines. 

The gene expression of RNA-seq studies is approximated using the count 
table. The number of reads that overlap a certain feature, such as a gene, 
is referred to as a count. Supplementary Tables S2A–S2B provides count 
tables for both cell lines. 

In Supplementary figures, S1A–S1D, bar charts depicting counts per 
category and box plots depicting count distributions are presented. 

3.1.2. Differential gene expression 
Tables containing differentially expressed genes obtained from the 

two cell lines were generated and are provided in Supplementary 
Tables S2C and S2D. These tables show whether a gene is upregulated 
(FDR ≤0.05, logFC ≥1) or downregulated (FDR ≤0.05, logFC. 

< − 1). Genes that have not passed the filtering step are not shown 
here. The logFC values describe the gene expression changes between 
different experimental conditions (healthy and patient). The log CPM 
tag averages the log2-counts-per-millions. The False discovery rate 
(FDR) is generally estimated by the Benjamini–Hochberg method. 
Typically, the p-values indicate how significant the results are. A p-value 

Fig. 2. Fig. 2A: DGE results from the NHBE cell line. Fig. 2B: DGE results from the PBMC cell line. The first rectangle represents the total number of features (genes) 
obtained from the count table. The next block represents the number of genes that were obtained after applying the normalisation filter. The third block represents 
the genes that did not show any expression pattern. The last two blocks show the number of upregulated and downregulated genes, respectively. 
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less than 0.05 (typically ≤0.05) is statistically significant. FDR is an 
adjusted p-value to trim false-positive results. Since there are hundreds 
and thousands of genes, false positives may enter by chance. Therefore, 
FDR offers more confidence than just a p-value. FDR values less than 
0.05 are considered real. The likelihood ratio (LR) statistic for the 
generalized linear model (LR test) evaluates the integrity of two 
competing statistical models based on the ratio of their commonness or 
likelihood. The results from the differential gene expression analysis of 
both cell lines are summarized in the bar plots shown in Fig. 2. The 
heatmap showing the regulation of the top 50 differentially expressed 
genes is represented in Fig. 3. 

The volcano plots shown in Fig. 4 represent the regulation of genes 
based on their FDR and logFC values. The FDR values are less than 0.05 
for both upregulated and downregulated genes, and the logFC values are 
higher than 1 for the upregulated genes and lower than − 1 for the 
downregulated genes. Genes that do not show any expression pattern are 
denoted by black. In Figs. 3 and 4, the upregulated genes are denoted by 
red, and the downregulated genes are denoted by green. The MA and 
MDS plots representing the differentially expressed genes of both cell 
lines are provided in the Supplementary Figs. S1E–S1H. 

3.2. Results from pathway analysis 

3.2.1. KOBAS 3.0 pathway analysis 
In KOBAS 3.0, the gene lists from both samples were uploaded 

separately, and the above-mentioned plots containing the significant 
pathways were obtained. This tool allows the user to visualize the output 
in different ways, as follows. 

Enriched pathways visualized in cirFunMap: Each node represents an 
enriched pathway, and the node colour portrays different clusters. The 
node size corresponds to six levels of enriched p-values. Furthermore, 
the node size ranges from small to large: [0.05,1], [0.01,0.05], 
[0.001,0.01], [0.0001,0.001], [1e-10,0.0001] and [0,1e-10]. 

Enriched pathways visualized in barplot: Each row represents an 
enriched pathway, and the length of the bar represents the enrich ratio, 
which is given by the ratio of the number of input genes to the back-
ground gene number. Here, the genes present in the whole human 
genome are considered the background genes; however, the users can 
input their own set of background genes. The colour of the bars 

corresponds to the different clusters to which they belong. If there are 
more than five pathways for each cluster, the top five pathways with the 
highest enrich ratio will be displayed. Hence, only the most significant 
pathways are displayed in the plot. Fig. 5 represents the bar plots 
derived from the upregulated and downregulated genes of the NHBE cell 
line. Fig. 6 represents the bar plots derived from the upregulated and 
downregulated genes of the PBMC cell line. 

Bubble plots visualising the enriched pathways were also obtained 
for both cell lines and are provided in the Supplementary Fig. S1I–S1L. 

3.2.2. Enrichr 
The gene lists from the two cell lines were uploaded to Enrichr, 

which then generated significant pathways from different pathway da-
tabases. All the pathways generated by Enrichr and the significant genes 
associated with them are provided in the supplementary tables. The 
corresponding p-values and corrected p-values are also mentioned. A 
corrected p-value provides more confidence in the results obtained. 

The bar chart represents the top 10 enriched pathways and their p- 
values. The blue coloured bars indicate that the pathways have signifi-
cant p-values (<0.05). An asterisk (*) next to the p-value indicates that 
the pathway also has a significant adjusted p-value (<0.05). 

One of the most significant pathways represented in Fig. 7A is the 
coronavirus disease pathway. The figure implies that most of the sig-
nificant genes correlate with this disease, which also implies that the 
other associated pathways must be closely observed to draw conclusive 
results about the coronavirus infection. 

Fig. 7B shows the bar plot obtained from the gene set enrichment of 
the PBMC cell line, which implies that the significant genes obtained 
from the upregulated and downregulated gene lists of the PBMC cell line 
correlate with the immunological pathways, which is one of the most 
heavily affected systems of the human body in COVID-19. 

4. Discussions 

Based on the results obtained, all the significant pathways can be 
broadly classified into glucose metabolism pathways, immunological 
pathways, pathways of neurodegeneration, cellular physiology, and 
signalling pathways. Gene networks for some categories mentioned 
above were drawn by loading the significant genes from the different 

Fig. 3. Fig. 3A represents the heatmap for the differentially expressed genes of the NHBE cell line. The first half of the genes (till FER1L6-CS2) are upregulated in the 
healthy samples and downregulated in the patient samples. The second half of the genes (from HNRNPH3) are downregulated in the healthy samples and upregulated 
in the patient samples. Fig. 3B represents the heatmap for the differentially expressed genes from the PBMC cell line. The first half of the genes (till ZNF503) are 
upregulated in the healthy samples and downregulated in the patient samples. The second half of the genes (from LINC01089) are downregulated in the healthy 
samples and upregulated in the patient samples. 

L. C et al.                                                                                                                                                                                                                                         
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significant pathways obtained, to InBio Discover™. 

4.1. Association of glucose metabolism pathways with COVID-19 

According to the American Diabetes Association, people with dia-
betes are more likely to get COVID-19. They are also more prone to 
severe complications after contracting this disease [31]. Diabetes is one 
of the major comorbidities correlated with severe COVID-19. The 
replication rate of the causative virus increases with the increase in 
glucose levels in the host. Such an increase in the replication rate is 
followed by a cytokine storm and ACE-2 upregulation [32]. 

Several studies have attempted to model the important role of the 
pathways associated with glucose metabolism in increased SARS-CoV-2 
replication, which in turn elicits an immune response in the host. 

The results showed that in diabetes complications, the pathways 
classified under the glucose metabolism pathways are glycolysis/ 
gluconeogenesis, insulin resistance, insulin signalling, type 1 diabetes 
mellitus, and AGE-RAGE signalling pathways. The insulin resistance and 
signalling pathways were downregulated, whereas the other pathways 

were upregulated. Targeting those pathways related to glucose meta-
bolism will eventually shed light on the changes in all systems in a body 
under viral attack. This will help design new anti-viral approaches that 
target the pathogen. A gene network consisting of the significant genes 
belonging to the above-mentioned pathways was constructed to 
examine the interaction between the families of genes, as shown in 
Fig. 8. 

4.2. Association of neurodegenerative pathways with COVID-19 

The hospital admission data indicated that the mortality rate is 
higher in COVID-19 patients who have dementia and other neurode-
generative diseases, than in patients who do not suffer from any 
neurodegenerative comorbidities. To date, no particular cause for the 
above phenomena has been noted. However, SARS-CoV-2 infection 
possibly damages the nasal epithelium, which is connected to the central 
nervous system. It was further observed that, due above, neurodegen-
erative diseases may occur in the future [33]. During the 15th Interna-
tional Virtual Conference on Alzheimer’s Disease (AD) and Parkinson’s 

Fig. 4. Fig. 4A represents the volcano plot visualising the differentially expressed genes from the NHBE cell line and Fig. 4B represents the volcano plot visualising 
the differentially expressed genes from the PBMC cell line. 

Fig. 5. Fig. 5A shows the bar plots visualising the significant pathways from the upregulated genes of the NHBE cell line. Fig. 5B shows the bar plots visualising the 
significant pathways from the downregulated genes of the NHBE cell line. 

L. C et al.                                                                                                                                                                                                                                         
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Fig. 6. Fig. 6A shows the bar plots visualising the significant pathways from the upregulated genes of the PBMC cell line. Fig. 6B shows the bar plots visualising the 
significant pathways from the downregulated genes of the PBMC cell line. 

Fig. 7. The above bar plots show the most significant pathways obtained from the KEGG database for the NHBE and PBMC cell lines.  

L. C et al.                                                                                                                                                                                                                                         
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Disease (PD) 2021, the clinical and social implications of COVID-19 on 
neurodegenerative disorders were evaluated. A group of physicians and 
researchers are currently conducting clinical trials to establish conclu-
sive results regarding the same [34]. 

Our study has shown neurodegenerative disorders, such as prion 
disease, Parkinson’s disease (PD), Huntington’s disease (HD), Alz-
heimer’s disease (AD) and amyotrophic lateral sclerosis (ALS), as some 
of the highly significant pathways associated with COVID-19. All the 
above pathways were observed to be upregulated in the NHBE cell line. 

The significant genes associated with the abovementioned pathways 
were ND6, NOTCH1, NDUFB10, UQCRB, NDUFA12, ATP6, ATP12, 
ITPR1, UQCR10, UBE2L4, TUBA1B, TUBB6, LRP1, and UCHL1 (S2E). 

There were scattered families of involved genes belonging to the 
above-mentioned significant pathways. Gene association and interac-
tion studies must be conducted to obtain a consolidated gene network. 
The finding above suggests that COVID-19 is significantly related to 
neurodegenerative disorders, which must be further studied to obtain 
conclusive results. 

4.3. Association of immunological pathways with COVID-19 

The immune system is one of the most heavily affected systems in 
COVID-19. Many studies have shown that a host immune response is 
elicited by the SARS-CoV-2. SARS-CoV-2 infection has been observed to 
trigger both the adaptive and innate immune systems. Furthermore, B 
and T cells are essential for generating an immunogenic response against 
the virus. Moreover, COVID-19 is associated with cytokine storms. The 
genes associated with cytokine storms have also been identified [35]. 

Most of the upregulated immunological pathways were observed in 
the PBMC cell line. The pathways in this category include the antigen 
processing and presentation pathway, the phagosomal pathway, the 
hematopoietic cell lineage pathway, the influenza A pathway, the allo-
graft rejection pathway and the lysosomal pathway. Lysosomes create 
an acidic environment that helps in combating the SARS-CoV-2 [36]. All 
the above-mentioned pathways are significant. 

The CD74 gene is associated with pulmonary inflammation in 
COVID-19. The HLA family of genes regulates the immune system to 

combat pathogens. The regulation of the HLA family of genes depends 
on many factors, such as disease severity and ethnicity of the test and 
control groups [37]. A gene network was obtained from the significant 
genes of the pathways belonging to this category, as shown in Fig. 9. 
Knowledge about the genes responsible for a host’s immune response 
helps in monitoring the spread of the infection and can aid in further 
mutation studies. 

4.4. Association of cellular signalling and physiological pathways with 
COVID-19 

Pathogens utilize the regulatory and signalling pathways of a host 
organism to provide for themselves, and this phenomenon exerts a 
profound impact on signalling pathways during a viral infection. Grimes 
et al. (2020) observed that the MAPK (Mitogen-activated protein kinase) 
signalling pathway is upregulated, serving as a pro-inflammatory 
response against pathogenic attacks [38]. The AMPK (adenosine 
monophosphate-activated protein kinase) pathway controls the auto-
phagy response against viral infections. Downregulation of this pathway 
may result in a cytokine storm, which is an essential host immune 
response against COVID-19. The pathways in this category are the focal 
adhesion, ECM–receptor interaction, cellular senescence, TNF signal-
ling, AMPK signalling and MAPK signalling pathways. All of these 
pathways are involved in cell proliferation, differentiation and, in the 
maintenance of cell integrity. In the NHBE cell line, some of the most 
significant pathways associated with the upregulated genes are the focal 
adhesion, ECM–receptor interaction and cellular senescence pathways, 
whereas the AMPK and TNF (Tumour Necrosis Factor) signalling path-
ways are associated with the downregulated genes. The presence of 
upregulated genes in the PBMC cell line indicates that the MAPK sig-
nalling pathway is one of the most significant pathways. Studying the 
regulation of cellular signalling pathways associated with COVID-19 
will help us identify the different receptors and cell targets in order to 
narrow down and verify the various therapeutic approaches for 
COVID-19. A gene network for the above pathways is shown in Fig. 10. 

Furthermore, a genetic network developed from the most significant 
genes associated with COVID-19 is presented in Fig. 11. These genes 

Fig. 8. represents the gene network of the glucose metabolism pathways derived from the significantly regulated genes of the NHBE cell line.  
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proved to be potential therapeutic targets against viral infection. Further 
gene functionality studies must be conducted to obtain conclusive re-
sults regarding the same. 

5. Future work and conclusion 

The coronavirus epidemic continues to spread over the world on an 
unpredictable trajectory. However, with the knowledge of pathways 
involved in COVID-19, the predictability of the disease increases and the 
control taken against this disease is also more assertive. Gene Regulatory 
pathways have become a wide focus of interest recently. The pathways 
obtained can determine the long-term effects of the coronavirus infec-
tion. Further, it can also help evaluate various therapeutic approaches 
based on the different gene targets found in the above-mentioned 
pathways. Understanding changes in glucose metabolism pathways 

can help assess the contributing factors of long covid effects on diabetic 
patients. Although evidence from further studies is required, the link 
between neurodegenerative diseases and COVID-19 can ensure better 
care facilities for patients with neurodegenerative disorders during the 
pandemic. Early detection of patients with characteristic host immune 
response markers can help identify the progression of the disease in such 
patients and can guarantee appropriate measures accordingly. 
Comprehensive assessment of cellular physiology and signalling path-
ways paves the way toward novel therapeutic approaches and drug 
repurposing studies. Other important cell signalling targets of bronchial 
epithelial cells of COVID-19 patients must be identified in order to verify 
the current treatment strategies and propose potential strategies against 
the same. 

Gene networks provide information regarding the interaction of 
various genes and can also throw light on potential protein interactions. 

Fig. 9. represents the gene network for the immunological pathways derived from the significantly regulated genes of the PBMC cell line.  

Fig. 10. visualises the gene network of the cellular signalling and physiology pathways derived from the significantly regulated genes of both the cell lines.  
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The need of the hour is to perform long COVID studies to determine the 
exact impact of COVID-19 on individuals and societies. The SARS-CoV-2 
mutates at an exponential rate and each variant presents different 
symptoms and attacks different pathways in the body. Under such cir-
cumstances, expanding research on the scope of the disease by going 
back to the basics will generate new and valuable information about the 
virus. This knowledge will help us combat the disease in a better and 
more appropriate manner. 
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