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Abstract: Since 2007, heterogeneous, high-viscosity active bituminous formations have often occurred
during the drilling process in Yadavaran oilfield (Iran), Halfaya oilfield (Iraq), and tar sands (Canada).
The formation of bitumen exhibits plastic and creep properties, and its adhesion is strong, so drilling
accidents are easily caused, such as adhering vibrating screen, drill pipe sticking, lost circulation,
and even well abandonment. These complex problems cause huge economic losses. Solvents used
to dissolve bitumen are a feasible technology to remove bitumen effectively. In order to solve this
problem, we used crude bitumen samples from Halfaya oilfield to study the relation between the
bitumen component and different solvents. In this study, the temperature, crude bitumen sample to
solvent ratio, stirring rate, stirring time, and ultrasound time on bitumen recovery by toluene were
investigated by a single factor experiment. The optimum process parameter for bitumen recovery
was obtained. Toluene, n-heptane, tetrahydrofuran, cyclohexane, cyclopentane, ethyl acetate, and
n-pentane were chosen as the solvents for single solvent extraction and composite solvent extraction.
The bitumen recovery increased significantly with the use of a composite solvent compared to a
single solvent. The composite solvent ratio was 1:1. The highest bitumen recovery was 98.9 wt% by
toluene/cyclohexane composite solvent. The SARA (saturates, aromatics, resins, and asphaltenes)
components of the bitumen were analyzed. The toluene showed the highest asphaltene content,
while the n-alkanes showed the lowest asphaltene content. The higher the asphaltene content, the
higher the bitumen recovery. The composite solvent obtained the highest asphaltene content and
bitumen recovery. The viscosity of bitumen extraction by different solvents was measured. The lower
the bitumen viscosity, the higher the bitumen recovery. The element analysis indicated the solvent’s
ability to extract bitumen colloids with the C/H ratio. This study provides a reliable theoretical basis
for the subsequent adoption of effective anti-bitumen polluted drilling fluid additives.
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1. Introduction

Since 2007, heterogeneous and active bituminous formations have been encountered in the
development of Yadavaran oilfield in Iran, Halfaya oilfield in Iraq, the deep-water oilfield in the Gulf
of Mexico, the tar sands in Canada, etc. [1–6]. Bituminous formations have plastic and creep properties,
and the bitumen adhesion property is always strong (Figure 1). This property can easily cause several
safety accidents, such as viscose vibrating screen, drilling pipe sticking, lost circulation, and even
well abandonment.
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Figure 1. Typical formation of bitumen drilled in the oil-gas drilling process. 

Considering the complexities in the drilling process for bituminous formations, drilling 
engineers often take some technical measures, including increasing the density of drilling fluids, 
adding diesel and emulsifiers, partially replacing the contaminated pulp, or combining chemical 
plugging [7]. 

Through investigating the influence of drilling fluid (contaminated by the formation of 
bitumen) performance (Figure 2), it was shown that bitumen formation on drilling fluid caused the 
rheological properties of bitumen to deteriorate seriously. Moreover, the viscosity increased 
significantly and the energy consumption increased significantly. As was shown in Figure 2, the 
bitumen density varied greatly, which affected the drilling fluid circulation, and could well kick and 
leak occurrences. The bitumen caused the lubrication performance to deteriorate, and could even 
cause the drill pipe to break. The bitumen pollution made the next operation process difficult, and 
the harm caused is more serious than water pollution [8].  

Therefore, it is important to find methods to remove formation bitumen. The solvent extraction 
of bitumen proved to be an important method to remove bitumen. Research was mainly 
concentrated on the oil sands separation process. 

 
Figure 2. Schematic diagram of the formation of bitumen pollution and the sticking mechanism. 

Oil sands are significant unconventional oils [9,10], and the utilization of unconventional oil is 
a hot research issue [11]. The methods of obtaining bitumen from oil sands consist of the hot 
water-based extraction (HWBE) process [12–15], the solvent extraction process [16,17], and pyrolysis 
[18–21]. Emulsion is usually used in the oil sands separation or enhanced oil recovery (EOR) 
processes [22–25]. Oil sands are categorized as oil-wet, water-wet, and neuter-wet. The HWBE 
process is only suitable for water-based oil sands and not suitable for oil-wet sands [26]. The HWBE 
process has many disadvantages, such as high energy consumption and environmental pollution. 
Bitumen recovery by solvent extraction shows more advantages than the HWBE process.  

Figure 1. Typical formation of bitumen drilled in the oil-gas drilling process.

Considering the complexities in the drilling process for bituminous formations, drilling engineers
often take some technical measures, including increasing the density of drilling fluids, adding diesel
and emulsifiers, partially replacing the contaminated pulp, or combining chemical plugging [7].

Through investigating the influence of drilling fluid (contaminated by the formation of bitumen)
performance (Figure 2), it was shown that bitumen formation on drilling fluid caused the rheological
properties of bitumen to deteriorate seriously. Moreover, the viscosity increased significantly and
the energy consumption increased significantly. As was shown in Figure 2, the bitumen density
varied greatly, which affected the drilling fluid circulation, and could well kick and leak occurrences.
The bitumen caused the lubrication performance to deteriorate, and could even cause the drill pipe to
break. The bitumen pollution made the next operation process difficult, and the harm caused is more
serious than water pollution [8].
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Figure 2. Schematic diagram of the formation of bitumen pollution and the sticking mechanism.

Therefore, it is important to find methods to remove formation bitumen. The solvent extraction of
bitumen proved to be an important method to remove bitumen. Research was mainly concentrated on
the oil sands separation process.

Oil sands are significant unconventional oils [9,10], and the utilization of unconventional oil is a
hot research issue [11]. The methods of obtaining bitumen from oil sands consist of the hot water-based
extraction (HWBE) process [12–15], the solvent extraction process [16,17], and pyrolysis [18–21].
Emulsion is usually used in the oil sands separation or enhanced oil recovery (EOR) processes [22–25].
Oil sands are categorized as oil-wet, water-wet, and neuter-wet. The HWBE process is only suitable
for water-based oil sands and not suitable for oil-wet sands [26]. The HWBE process has many
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disadvantages, such as high energy consumption and environmental pollution. Bitumen recovery by
solvent extraction shows more advantages than the HWBE process.

Due to the differences between oil sands and crude bitumen samples from Halfaya oilfield (Iraq),
the conclusions reached from oil sands solvent extraction were not suitable for crude bitumen; therefore,
crude bitumen samples from Halfaya oilfield (Iraq) were chosen for the solvent extraction process and
the mechanism that guides the bitumen removal process.

Although many research studies have focused on the operational parameters of bitumen
recovery, they were incomplete. Bitumen can be divided into four SARA (saturates, aromatics,
resins, and asphaltenes) components, which are different in polarity, solubility, density, and molecular
weight [10,27,28]. The relationship between SARA content and bitumen recovery is unclear; therefore,
exploring the relationship between SARA content and bitumen recovery is important to optimizing
the bitumen recovery process.

Many researchers have focused on the mechanical properties of asphaltic materials, which
constitute a significant issue for the application of bitumen in pavement design. Bazzaz put forward
a procedure to characterize the nonlinear viscoelastic response of asphalt concentration at high
temperatures [29]. Darabi put forward a coupled nonlinear viscoelastic (VE)- viscoplastic(VP)-
hardening-relaxation(HR) model and proposed a systematic analysis procedure to study the nonlinear
viscoelastic-viscoplastic with a hardening–relaxation constitutive relationship for asphalt mixtures [30].
In this paper, we focused on the viscosity of bitumen from different extraction processes, the relationship
between bitumen viscosity and bitumen recovery, and the mechanical properties of bitumen.

Previous studies have focused on a single solvent to extract bitumen from oil sands, with most
research works focused on toluene’s role in bitumen recovery from oil sands. Toluene has many
disadvantages; it is toxic, flammable, and causes harm to the surroundings. Therefore, finding other
low-toxic solvents is a vital issue for researchers. We studied the role of different solvents on the
bitumen recovery from crude bitumen samples taken from Halfaya oilfield (Iraq). The composite
solvent was designed to study the effect on bitumen recovery from crude bitumen samples.

In this study we explored the bitumen role with different solvents, in order to further solve the
problem of bitumen sticking. Besides, we obtained the optimal operation parameters for bitumen
recovery from crude bitumen samples by toluene extraction. In the end, we identified the bitumen
recovery and SARA of single solvent extraction and composite solvent extraction.

2. Materials and Methods

2.1. Chemicals and Samples

Toluene, n-heptane, tetrahydrofuran, cyclohexane, cyclopentane, ethyl acetate, n-heptane,
methanol, and trichloroethylene were of analytical grade and were purchased from Qingdao Baoze
Technology Co. Ltd., Qingdao, China. The crude bitumen samples were from Halfaya oilfield (Iraq)
(23.8 wt% sands).

2.2. Single Factor Experiment

The solvent extraction conditions were optimized using single factor experiments. Temperature,
crude bitumen sample to solvent ratio, stirring rate, stirring time, and ultrasound time were the
parameters for bitumen recovery from the crude bitumen samples.

The detailed experiment procedure is documented in Tables 1 and 2. Table 1 shows the experimental
conditions for single solvent extraction. The other factors in Table 1 are explained in detail in Table 2.
First, 2.5 g of crude bitumen samples and 50 mL of toluene were weighed and put into a 200 mL
beaker. The beaker was then put into a water bath at the set temperature, which was agitated in a
magnetic blender. After the stirring process, the mixture was centrifuged at 7000 rpm for 15 min, and
the supernatant was transferred into a flask. The solvent was removed by a rotary evaporator and
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the bitumen was oven-dried and then weighed. Similar experiment procedures were repeated twice.
The third extraction was the final bitumen recovery.

Table 1. The list of experimental conditions for the single factor experiment.

Variable Factors 1 2 3 4 Other Factors

Temperature (◦C) 25 40 55 70 Condition a
Oil sands to solvent ratio 1:1 1:5 1:10 1:20 Condition b

Stirring rate (rpm) 100 300 500 700 Condition c
Stirring time (min) 20 40 60 80 Condition d

Ultrasound time (min) 0 30 60 120 Condition e

Table 2. The detailed description for conditions a, b, c, d, e in Table 1.

Condition Temperature
(◦C)

Oil Sands to
Solvent Ratio

Stirring Rate
(rpm)

Stirring Time
(min)

Ultrasound
Time (min)

a Variable 1:10 500 60 30
b 40 Variable 500 60 30
c 40 1:10 Variable 60 30
d 40 1:10 500 Variable 30
e 40 1:10 500 60 Variable

2.3. Single Solvent Extraction and Composite Solvent Extraction

The optimum technical conditions for bitumen recovery from crude bitumen samples by toluene
were as follows: the temperature was 40 ◦C, crude bitumen sample to solvent ratio was 1:10, stirring
rate was 500 rpm, stirring time was 60 min, ultrasound time was 30 min. Other solvents (n-heptane,
tetrahydrofuran, cyclohexane, cyclopentane, ethyl acetate, n-pentane) were used to extract bitumen
from crude bitumen samples at the optimum conditions, and the extraction process was repeated twice,
as described in Section 2.2.

The composite solvents, including toluene/n-heptane, cyclohexane/cyclopentane,
tetrahydrofuran/n-pentane, toluene/ethyl acetate, toluene/tetrahydrofuran, cyclohexane/ethyl
acetate, and toluene/cyclohexane, were used to extract bitumen from crude bitumen samples at the
optimum conditions. All of the composite solvents were mixed at a ratio of 1:1, and then the composite
solvents were used to extract bitumen from crude bitumen samples.

2.4. SARA Analysis

The four bitumen fractions (SARA) were identified as important properties of bitumen quality, and
the SARA content differences influenced the bitumen recovery. In this study, the four fractions were
carried out using ASTM D4124. The bitumen from single solvent extraction and composite solvent
extraction were all analyzed by ASTM D4124. Asphaltene was the component that could dissolve
into toluene, but could not dissolve into n-heptane [25]. First, 2.0 g bitumen was put into a 500 mL
beaker, 100 mL n-heptane was added, and the bitumen was sonicated at 50 ◦C for 1 h. The mixture was
centrifuged and the supernatant was transferred to a 500 mL flask. The insoluble solids were put into
another flask. The process was repeated with 100 mL n-heptane until the supernatant was colorless.
The insoluble solids were then dried and identified as asphaltene. The supernatant was placed under a
rotary evaporator to obtain the mixtures (saturates, aromatics, and resins). The mixtures were eluted
with different solvents following the literature [31].

2.5. Viscosity Measurement and Element Content Analysis

The viscosity of bitumen, by single and composite solvent extraction from crude bitumen samples,
was measured by a viscometer (NDJ-5S, Shanghai Youyi Instrument Co. Ltd., Shanghai, China).
The bitumen temperature was 50 ◦C. In the viscosity measurement, the relationship between bitumen
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viscosity and bitumen recovery was studied. The element content of bitumen from single solvent
extraction and composite solvent extraction was analyzed by an elemental analyzer (vario micro cube,
Elementar, Langenselbold, Germany), and the C, H, O, N, S element contents in different bitumen
samples were measured.

3. Results and Discussion

3.1. Single Factor Experiment

The bitumen recovery increased quickly with increasing temperatures from 25 to 55 ◦C (black
line). The increasing temperature caused the rate of bitumen dissolving into toluene to increase, which
caused the bitumen recovery to increase. The bitumen recovery decreased when the temperature
increased from 55 to 70 ◦C, due to the volatilization of toluene and the higher temperature influence on
the bitumen recovery. The bitumen recoveries at 40, 55 ◦C were 96.5 wt%, 97.2 wt%. The bitumen
recovery increase was low, so 40 ◦C was the optimal temperature.

The bitumen recovery increased from 88.2 to 96.5 wt% with the crude bitumen sample to solvent
ratio increasing from 1:1 to 1:10 (red line). This is because the bitumen dissolution increases as the
toluene content increases. The bitumen recovery increased 0.7 wt% when the toluene increased from
1:10 to 1:20. Thus, 1:10 was the optimal ratio.

The bitumen recovery initially increased after 100 rpm, and then reached a plateau as the stirring
rate increased to 500 rpm (green line). This indicated that 100 rpm was the threshold stirring rate
for the dissolution of bitumen in the organic solvent. The increasing stirring rate helped bitumen
liberate from the minerals and dissolve into the toluene phase, though the bitumen recovery decreased
0.3 wt% as the stirring speed increased from 500 to 700 rpm. This was due to the increasing stirring
rate influencing the SARA of bitumen, and then decreasing the bitumen recovery. Therefore, 500 rpm
was the optimal stirring rate.

The bitumen recovery increased greatly when the stirring time increased from 20 to 60 min (yellow
line) because the bitumen recovery process dissolved into toluene. The increased stirring time caused
the bitumen dissolution to increase; however, when the stirring time increased from 60 min to 80 min,
the bitumen recovery increased just 0.6 wt%. Therefore, 60 min was the optimal stirring time.

Figure 3e shows that bitumen recovery increased from 95.5 to 96.5 wt% when the ultrasound
time increased from 0 to 30 min, because ultrasound promoted the bitumen dissolution process.
The bitumen recovery decreased when the ultrasound time was higher than 30 min, which was due to
the ultrasound cavitation effect influencing the mixture stability. Therefore, 30 min was the optimal
ultrasound time.

In order to obtain a higher bitumen recovery by toluene, the optimal operation condition was as
follows: the temperature was 40 ◦C, crude bitumen sample to solvent ratio was 1:10, stirring rate was
500 rpm, stirring time was 60 min, and ultrasound time was 30 min. The process parameters were
used for the next single solvent extraction and composite solvent extraction.
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3.2. Single Solvent Extraction Experiment

The varying solvent extractions of bitumen were applied to study the effects of different solvents
on bitumen recovery from crude bitumen samples, as shown in Figure 4. It was shown that the
final bitumen recovery could reach at least 77.4% by n-heptane. Because n-heptane cannot dissolve
asphaltene in bitumen, it could only dissolve the SAR (saturates, aromatics, and resins) components.
Toluene showed the highest bitumen recovery (96.5 wt%) among these solvents, because it is an aromatic
solvent that can dissolve bitumen components efficiently. Cyclohexane and cyclopentane obtained
87.2 and 88.4 wt% bitumen from crude bitumen samples, because cyclohexane and cyclopentane are
cycloalkanes which are similar to the structure of aromatics and resins. When toluene or cycloalkanes
were taken as solvents, most of the heavy components (e.g., resins and asphaltenes) could be dissolved
into the solvent. However, for n-alkanes, bitumen heavy substances could not easily be extracted,
so the bitumen recovery was low. Tetrahydrofuran, ethyl acetate, and n-pentane showed bitumen
recovery among the toluene and n-heptane. Although toluene showed the highest bitumen recovery
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from crude bitumen samples, the toxicity of toluene limited the application. Therefore, finding an
alternative solvent is a significant issue.Materials 2019, 12, x FOR PEER REVIEW 7 of 13 
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Figure 4. Final bitumen recovery by different solvents for crude bitumen samples.

Figure 5 indicates that increasing extraction times increase bitumen recovery. For different
solvents, the influence of extraction time on bitumen recovery was varied. Bitumen recovery by
toluene increased from 87.6 wt% (first extraction) to 93.4 wt% (second extraction), and the final bitumen
recovery was 96.5 wt%, which is higher than other solvents. The final bitumen recovery by different
solvents was in the order of toluene > cyclopentane > n-pentane > cyclohexane > ethyl acetate >

tetrahydrofuran > n-heptane. The first bitumen recovery order was toluene > cyclopentane > ethyl
acetate > cyclohexane > n-pentane > tetrahydrofuran > n-heptane. The second bitumen recovery order
was toluene > n-pentane > cyclopentane > cyclohexane > ethyl acetate > tetrahydrofuran > n-heptane.
For different extraction times, the bitumen recovery orders were different.
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3.3. SARA Analysis of Bitumen from Single Solvent Extraction

Figure 6 shows the SARA contents of bitumen by different single solvent extractions. For saturates
and aromatics, n-heptane and n-pentane showed high contents compared to other solvents, as shown
in Figure 6a,b. The linear hydrocarbon dissolved the light components of bitumen. The bitumen by
toluene extraction showed low saturate and aromatic contents, so the toluene dissolution of light
components was low. The resin contents by n-heptane and n-pentane extraction were 26.9 and 23.4 wt%,
which were higher than those obtained by toluene extraction (Figure 6c). These results indicate that
linear hydrocarbons have a good solubilization with resins. The resin contents by toluene extraction
showed the lowest bitumen recovery, which meant that toluene could not dissolve resin well. As shown
in Figure 6d, the asphaltene content decreased from 23.2 to 0 wt% when the solvent was changed from
toluene to n-heptane. Toluene was the aromatic solvent that showed the highest asphaltene content
(23.2 wt%) among the solvents. The asphaltene content of the bitumen extracted by n-heptane was
0 wt%, because asphaltene is defined as the component that is insoluble in n-heptane but soluble in
toluene. N-pentane obtained 6.5 wt% asphaltene. These results indicate that linear hydrocarbons do
not have a good solubilization with asphaltene. The asphaltene contents obtained by tetrahydrofuran,
cyclohexane, cyclopentane, and ethyl acetate extraction were 18.6, 15.4, 12.8, and 11.7 wt%, respectively.
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As shown in Figures 4 and 6, toluene showed the highest bitumen recovery, but the bitumen
(extracted by toluene) composition contained low saturate, aromatic, and resin contents. The asphaltene
content obtained by toluene extraction was the highest. The dissolution of asphaltene by the solvent
indicated the ability to obtain bitumen.

3.4. Composite Solvent Extraction

As shown in Figure 7, the bitumen recovery increased significantly by composite solvent compared
to the single solvent. In Figure 4, bitumen recovery was lower than 90 wt% (toluene exempt). In
Figure 7, bitumen recovery was higher than 90 wt% (tetrahydrofuran/n-pentane exempt). The highest
bitumen recovery for composite solvent was 98.9 wt% (toluene/cyclohexane) because toluene could
dissolve the asphaltene component and cyclohexane could dissolve SAR components. Therefore, the
toluene/cyclohexane composite solvent showed the highest bitumen recovery.
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The bitumen recovery extracted by composite solvents including toluene, namely
toluene/n-heptane, toluene/ethyl acetate, toluene/tetrahydrofuran, and toluene/cyclohexane, was
higher than the bitumen extracted by single solvent extraction.

3.5. SARA Analysis of Bitumen from Composite Solvent Extraction

Figure 8 shows the relative contents of SARA fractions of bitumen from different composite
solvent extractions. As shown in Figures 6d and 8d, the asphaltene content increased significantly
from single solvent extraction to composite solvent extraction.

Among the composite solvents, toluene/cyclohexane showed the highest asphaltene content,
while tetrahydrofuran/n-pentane showed the lowest asphaltene content. During the extraction process,
the asphaltene content was closely related to the bitumen recovery. The higher the asphaltene content,
the higher the bitumen recovery.
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3.6. Viscosity Analysis

The bitumen samples that were extracted from different solvents showed different viscosities.
The low bitumen viscosity helped liberate bitumen from minerals. Figure 9a indicates that the
bitumen extracted from toluene showed the lowest viscosity (110 Pa·s), and the bitumen extracted
from n-heptane showed the highest viscosity (234 Pa·s). Toluene dissolved the heaviest component
(asphaltenes), so the viscosity decreased. The cyclic hydrocarbons (cyclohexane and cyclopentane)
showed low viscosities (160 and 142 Pa·s). The bitumen viscosity decreased significantly according to
the composite solvent, as shown in Figure 9b. The lower the bitumen viscosity, the higher the bitumen
recovery. Bitumen is a non-Newtonian fluid, and the relationship between the shearing force and shear
rate was not linear. Bitumen mixtures showed linear viscoelastic properties under low temperatures
and small deformations, but showed nonlinear viscoelastic properties under high temperatures and
large deformations. Many researchers have focused on the mechanical properties of bitumen [29,30].
Bazzaz put forward a straightforward procedure to characterize the nonlinear viscoelastic response of
asphalt concrete at high temperatures [29]. Darabi put forward a new model that could accurately
describe the asphalt material behavior under different loading paths, and this model can help in
experiment design [30].
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3.7. The Element Content Analysis of Bitumen

As shown in Table 3, the bitumen by toluene extraction showed the highest C/H ratio, while
bitumen by the n-heptane extraction showed the lowest C/H ratio. This was due to the fact that toluene
could dissolve heavy components (asphaltene), and the C/H in asphaltene is higher than the ratios in
other components; meanwhile, n-heptane could only dissolve the SAR components. The C/H ratio
for different solvents was different, which influenced bitumen recovery. The C content extracted by
composite solvent was higher than that extracted by the single solvent, as shown in Table 4. The highest
C/H ratio was achieved by toluene/cyclohexane extraction. The higher the C/H ratio, the higher the
bitumen recovery.

Table 3. The elemental analysis of bitumen (wt%) from single solvent extraction.

Bitumen from Single Solvent Extraction C H O N S

toluene 83.358 9.650 0.072 0.490 6.430
n-heptane 79.652 12.152 2.766 0.347 5.083

tetrahydrofuran 81.642 11.048 2.623 0.322 4.365
cyclohexane 82.658 10.346 0.028 0.432 6.536
cyclopentane 82.356 10.586 1.481 0.440 5.137
ethyl acetate 81.568 11.036 2.874 0.354 4.168

n-pentane 82.265 10.952 1.057 0.406 5.320

Table 4. The elemental analysis of bitumen (wt%) from composite solvent extraction.

Bitumen from Composite Solvent Extraction C H O N S

toluene/n-heptane 83.532 10.564 0.442 0.379 5.083
cyclohexane/cyclopentane 83.048 10.298 1.509 0.265 4.889
tetrahydrofuran/n-pentane 82.653 11.892 0.662 0.336 4.458

toluene/ethyl acetate 84.685 8.780 0.455 0.405 5.675
toluene/tetrahydrofuran 84.068 9.365 0.094 0.376 6.097

cyclohexane/ethyl acetate 82.964 11.068 0.021 0.983 4.964
toluene/cyclohexane 85.026 8.460 0.803 0.344 5.367
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4. Conclusions

This research put forward a new method to solve the heterogeneous formation of bitumen
occurring during the oil-gas drilling process. In order to alleviate the deterioration of drilling fluid
performances caused by the formation of bitumen and to eliminate the negative influence of bitumen
adhesion in time, we studied the solvent extraction process from crude bitumen samples taken
from Halfaya oilfield (Iraq). The relation between the solvent and bitumen was analyzed. It was
concluded that:

(1) The optimal operation condition for bitumen recovery by toluene from crude bitumen samples
was, as follows: the temperature was 40 ◦C, crude bitumen sample to solvent ratio was 1:10,
stirring rate was 500 rpm, stirring time was 60 min, ultrasound time was 30 min.

(2) The bitumen recovery increased significantly using the composite solvent compared to the single
solvent. The highest bitumen recovery from crude bitumen samples was 98.9 wt%. SARA analysis
indicated that the asphaltene content increased significantly from the single solvent to composite
solvent. Toluene and cycloalkane showed the highest asphaltene content, while the n-alkanes
showed the lowest asphaltene content. The composite solvent obtained the highest asphaltene
content and bitumen recovery.

(3) The bitumen samples extracted from different solvents showed different viscosities. The bitumen
viscosity influenced the bitumen recovery, and the lower the bitumen viscosity, the higher the
bitumen recovery. The C/H ratio of the bitumen followed this rule.
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