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Introduction

Key goals of the emerging field of landscape genetics are

to gain an understanding of how processes such as migra-

tion, genetic drift, and the distribution and connectivity

of populations affect genetic structure (Manel et al. 2003;

Storfer et al. 2007). Less attention has been paid to iden-

tifying general system-level features that arise from pat-

terns of connectivity. In many complex systems, patterns

of connectivity give rise to system-level properties that

are not apparent from analysis of pairwise relationships

between components. The ability to characterize these

system-level properties, along with the local properties of

individual landscapes, could improve resource manage-

ment in complex, natural ecosystems. Valid inference at

this level of analysis requires genetic samples from multi-

ple populations and an analytical framework within which

the influence of landscape variables on genetic variation

can be determined.

We were interested in investigating the link between

landscape quality and genetic connectivity among fishers

(Martes pennanti) sampled from 34 landscapes in the

Great Lakes Region of ON, Canada (Carr et al. 2007a).

We used graph theory to model gene flow within the

resulting network of genetic connectivity among fishers in

order to relate system- and node-level biological charac-

teristics to landscape quality.

Graph theory (see Table 1 for a glossary of terms) has

provided a powerful framework for characterizing pro-

cesses that take place in complex interconnected systems

in such diverse disciplines as physics, mathematics, and

sociology (Newman 2003), as well as in biology where

protein–protein interactions, social structure, and food

webs have been modeled (Proulx et al. 2005; May 2006).

The distribution of genetic variation can also be intui-

tively conceptualized as a network of genetically intercon-

nected nodes representing individuals from sampled sites

connected by gene flow (Dyer and Nason 2004; Dyer
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Abstract

We investigated the relationships among landscape quality, gene flow, and pop-

ulation genetic structure of fishers (Martes pennanti) in ON, Canada. We used

graph theory as an analytical framework considering each landscape as a net-

work node. The 34 nodes were connected by 93 edges. Network structure was

characterized by a higher level of clustering than expected by chance, a short

mean path length connecting all pairs of nodes, and a resiliency to the loss of

highly connected nodes. This suggests that alleles can be efficiently spread

through the system and that extirpations and conservative harvest are not likely

to affect their spread. Two measures of node centrality were negatively related

to both the proportion of immigrants in a node and node snow depth. This

suggests that central nodes are producers of emigrants, contain high-quality

habitat (i.e., deep snow can make locomotion energetically costly) and that

fishers were migrating from high to low quality habitat. A method of commu-

nity detection on networks delineated five genetic clusters of nodes suggesting

cryptic population structure. Our analyses showed that network models can

provide system-level insight into the process of gene flow with implications for

understanding how landscape alterations might affect population fitness and

evolutionary potential.
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2007). We employed a recently developed technique to

construct our network based solely upon genotypes of

individuals sampled from multiple landscapes, avoiding

the need for a priori assignment of barriers to gene flow

(Dyer and Nason 2004). We considered the fishers sam-

pled within each landscape as a node in the network.

There are three particularly well-described classes of

networks that may be of general interest to landscape

geneticists: small-world, scale-free, and random (described

in Table 2; Barabasi and Albert 1999; Erdos and Renyi

1959; Watts and Strogatz 1998). These classes are of inter-

est because they each imply characteristic dynamic

features that can be interpreted in the context of dis-

persal, gene flow, resilience to extirpations, and genetic

structure (Table 2). Generally, small-world networks are

characterized by highly clustered nodes, suggesting

Table 1. A short glossary of terms and concepts in graph theory.

Betweenness: the number of shortest paths that a particular node or edge lies on. Assuming that interactions take place through the

shortest path, then betweenness is a measure of the importance of a node or edge in terms of the bottleneck it creates.

Centrality: a measure of the relative position of a node or an edge in terms of connectivity or facilitation of node interaction

(e.g., betweenness, degree, eigenvector centrality).

Characteristic path length: the mean of all pairwise graph distances connecting nodes. It can be used as a ‘fitness’ measure describing

the ease of node communication.

Clustering coefficient: a measure of the probability that two nodes connected to a particular other node are themselves connected.

Degree: the number of edges connected to a node. If the edges are weighted, then edge weights are summed and this measure

is generally termed ‘strength’.

Degree distribution: the distribution of node degree values of a network. The degree distribution is a particularly important measure of

network topology and together with other metrics is diagnostic of certain classes of networks and some general properties of network topology.

Eigenvector centrality: a similar in concept to ‘degree’ but accounts for the fact that not all connections are equally connected. Here

connections to well-connected nodes will likely be more influential than connections to less well-connected nodes and are weighted as such.

Graph theory: a branch of mathematics that deals with describing and understanding the properties of networks.

Modularity: a measure of community structure within a network.

Network: a set of entities (represented as nodes) that interact (represented as edges). Interactions can be represented as simple binary

connections, can have direction, or weighted values representing the strength of interactions.

Graph distance: the sum of the shortest number of distinct edges (or edge weights) connecting a pair of nodes.

Table 2. A description of the characteristics of random, small-world, and scale-free networks with possible biological interpretations in terms of

landscape connectivity.

Random networks: A class of networks characterized by a short characteristic path length, binomial degree distribution, and a small average

clustering coefficient. Because each node is approximately equally well connected, the characteristic path length increases monotonically after

random or targeted node removal. If the genetic connectivity among populations displays random graph properties, this would suggest that

dispersal among populations was entirely random and unstructured and that populations are separated by short paths (direct or through

intermediate populations). Extirpations of populations would steadily decrease the ease through which genes were exchanged among populations.

Small-world networks: A class of networks characterized by a short characteristic path length, binomial degree distribution, and a large mean

clustering coefficient. Small-world networks are similar to random networks in that each node has approximately the same influence on the

characteristic path length if removed, however the added feature of clustering might create alternate paths between nodes such that impact

of node removal could be less than on random networks. If genetic connectivity has these characteristics genes can be efficiently

exchanged among populations ‘locally’ and ‘globally’. Given that there will likely be increasing fitness costs of dispersal with increasing

geographic distances and greater robustness to losses of populations, we might predict the small-world network characteristics to be

common to well connected populations.

Scale-free networks: A class of networks characterized by a short characteristic path length and a power-law degree distribution. The average

clustering coefficient can vary. Most nodes have relatively few connections while a few nodes are highly connected hubs Because most nodes

are not particularly well connected, the random removal of even a high proportion of nodes tends to have little impact on the network

characteristic path length. However, the targeted removal of the most connected nodes leads to a rapid increase in the characteristic path

length and network fragmentation. From a biological perspective, the random removal of population nodes could be considered analogous to

stochastic extirpation perhaps due to severe weather events, whereas removal of the most connected nodes might occur, for example, due

to over harvest of populations in high quality habitats. In this case ‘hub’ populations would warrant considerable concern within

management and conservation strategies.
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efficient transfer of information (in our case alleles) and a

decentralized network structure. Scale-free networks are

characterized by a few highly connected nodes that have

disproportionate importance in maintaining network con-

nectivity. These connected ‘hubs’ are also points of vul-

nerability for the network if removed. Finally, random

networks are useful ‘straw-men’. When constructed with

similar node and edge properties as empirical networks,

random networks can aid in determining whether

observed properties of a network are a consequence of

some nonrandom process or simply a byproduct of ran-

dom linkages among nodes.

Previous research has demonstrated that fishers are ter-

ritorial and relatively philopatric, exhibiting short dis-

persal distances for a carnivore of their size (Arthur et al.

1993; Kyle et al. 2001; Koen et al. 2007). We hypothesized

that this would lead to a highly clustered network of

genetic connectivity, with either small-world or scale-free

properties. A tendency for philopatry could lead to the

clustered nodes of a small-world network. A few impor-

tant source populations in high quality habitat, however,

could act as the hubs of a scale-free network. We also

simulated the effect of local extirpation (i.e., node

removal) on network structure. A small-world network

should be more resilient than a scale-free network to

node removal.

Aside from system-level properties of the network, we

were also interested in how the topological positions of

individual nodes on the network characterized their influ-

ence on the network’s dynamic processes. There are

numerous metrics of node and edge position (Costa et al.

2007). Three particularly relevant measures of node cen-

trality are degree, eigenvector centrality, and betweenness

(Table 1). The degree of a node is a measure of its con-

nectivity (number of connections); eigenvector centrality

incorporates both direct and indirect connectivity (how

connected a node’s immediate connections are); and

betweenness is a measure of the bottleneck a particular

node forms in the network. Assessing the effects of tar-

geted removal of nodes with high values for these mea-

sures on the characteristic path length should help

identify nodes that are particularly important for main-

taining genetic connectivity.

Metrics of node position may also be valuable for

understanding the ecological properties of the network.

To investigate this, we related indices of node centrality

(degree and eigenvector centrality; Table 1) to the pro-

portion of genetically identified immigrants in each node

and to other measures of habitat suitability so as to iden-

tify biologically meaningful traits of the topological posi-

tion of nodes. The fisher population that we studied was

increasing (Bowman et al. 2006) and fishers appear to

exhibit density-dependent dispersal such that, during a

population increase, the proportion of immigrants into

each landscape is negatively related to habitat suitability

(Carr et al. 2007b). In this ecological context, central

nodes should be productive and well connected. Thus, we

hypothesized that node centrality should be inversely

related to the proportion of immigrants to each node,

and therefore directly related to habitat suitability.

Finally, a network approach to the analysis of gene flow

among nodes may provide an informative method for

identifying genetic structure. Many other naturally occur-

ring networks including biological networks of social

interactions (Lusseau et al. 2006) and metabolic pathways

(Guimera and Amaral 2005) display structure within net-

works. These networks are characterized by communities

of nodes with dense node connectivity within groups and

relatively more sparse connections among groups. Thus,

existing graph-theoretic methods for clustering based

upon network topology may also be useful for clustering

genetically well-connected nodes and identifying cryptic

population structure. An effective method for detecting

structure within networks is ‘modularity’ optimization

(Danon et al. 2005; Gustafsson et al. 2006) as character-

ized by eigenvectors of the network matrix (Newman

2006). This method searches for natural divisions such

that there are more connections within clusters or fewer

connections among clusters than expected at random.

In our analyses we have compared the network’s charac-

teristic path length and clustering to that of similarly struc-

tured random networks to determine whether network

clustering was a feature of the number of nodes and edges

or a result of some other potentially non-random process

(i.e., we tested whether the network had small-world prop-

erties). We then assessed the distribution of node connec-

tivity to determine whether the network was characterized

by a few hubs of particularly well-connected nodes (was

the network scale-free?). We examined the effects of the

sequential removal of the most central nodes on the net-

work’s characteristic path length to gain an understanding

of possible effects of node extirpation on gene flow. Mea-

sures of node centrality were related to the proportion of

immigrants in each node, as well as the show depth and

proportion of coniferous forest cover within the area

encompassed by the node. Finally, we assessed the ability

of a network clustering technique, modularity optimiza-

tion, to identify population genetic structure.

Methods

Our data set consisted of 722 fishers genotyped at 16

microsatellite loci (See Carr et al. 2007a,b for a complete

description of molecular techniques). Samples were

obtained from an ordered lattice of 34 landscapes, each

approximately 300 km2 and selected such that daily fisher
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movements and home ranges did not connect the land-

scapes (Fig. 1; Arthur et al. 1993; Bowman et al. 2002).

The mean number of fishers sampled per landscape was

21.2. For the purposes of our network analysis, a sample

of fishers from a landscape was considered a network

node.

We constructed our network following Dyer and

Nason (2004). Individuals within n nodes defined the

nodes’ multidimensional centroid. Based upon among-

node genetic covariance structure, centroids were assigned

a coordinate in n dimensional space. Pairwise distances

among node centroids were written as a genetic distance

matrix with the off diagonal values representing network

edges, which were weighted as the statistical distance

between nodes. This distance matrix can be represented

as a saturated network where all nodes are connected. A

more informative topology is the minimal edge set that

describes among-node genetic covariance. The edge set is

selected based upon the statistical concept of conditional

independence, where network edges are analogous to pre-

dictor variables. We retained edges between nodes that

contributed most to genetic covariance structure after

taking into account the genetic covariance among all

nodes. The alpha level for the fit of the network after

edge removal is 0.05. The values for this matrix defined

genetic distances between connected nodes. For some

measures described below however, we either considered

the network as unweighted (each node either connected

or not) or as a similarity matrix (the inverse of the dis-

tances measures). For a full statistical description of this

method for constructing networks and how fit is calcu-

lated see Dyer and Nason (2004) and references therein.

The network was constructed using the software

GENETIC STUDIO (Dyer 2008).

Network properties

There are numerous metrics to describe network topology

that could provide insight into gene flow dynamics. We

calculated node degree, eigenvector centrality, and

betweenness as measures of node centrality and connec-

tivity (Table 1). Degree is simply the number of connec-

tions a node has (Freeman 1979). Eigenvector centrality is

based on the leading eigenvector of a network’s matrix

and measures both how well a node is connected and

how well its immediate connections are connected

(Newman 2004). Betweenness is a measure of the bottle-

neck a particular node creates on a network, calculated as

the number of times a particular node falls on the short-

est path between any two other nodes with edges

weighted, in our case as genetic distances.

The shortest path length between pairs of nodes on the

network was assessed in relation to pairwise measures of

geographic distance and FST (Weir and Cockerham 1984;

Goudet 2001) to test for isolation by distance. Correla-

tions between distance measures were determined using
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Figure 1 Location of fisher (Martes pennanti) sample sites from the Great Lakes region of ON, Canada. Samples were taken between 2000 and

2003. Two-letter codes refer to sample site geographic names, which are given in Appendix A. The inset map shows a section of eastern North

America.
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Mantel tests and considered significant at P < 0.05 after

9999 randomizations.

A characteristic path length that is similar to a random

network and a clustering coefficient that is high relative

to a random network indicate that a network has small-

world characteristics (Watts and Strogatz 1998). The

clustering coefficient varies between 0 and 1 and measures

how well the connections of a node are themselves con-

nected (Holme et al. 2007). To test for these small-world

properties, we generated 1000 random networks with the

same number of nodes, edges, and edge weight distribu-

tion as the fisher network and calculated the clustering

coefficient and characteristic path for each network. If the

clustering coefficient of the fisher network was greater

than 95% of those from random networks and character-

istic path length was similar to the random networks,

then we considered the network to display small-world

characteristics (Watts and Strogatz 1998).

We then examined the node degree distribution. If

node degree has a binomial distribution around an aver-

age, then a network has a connectivity pattern similar to

that expected in both random and small-world networks

and all nodes are relatively equally well connected. Alter-

natively, if the distribution decays as a power-law then

the network has scale-free properties and is characterized

by a few highly connected hubs (Barabasi and Albert

1999).

We conducted node removal experiments to examine

the network’s resilience to node loss. The characteristic

path length is an indicator of network resilience, in that

connectivity decreases with increasing path length. We

sequentially removed the eight nodes with the highest

degree (most connected) and then highest betweenness

(largest network bottleneck) values. If the characteristic

path length increased or the network fractured after the

removal of those nodes, then they were particularly

important for maintaining network connectivity.

Node properties

We used linear regressions to test our predicted relation-

ships between node centrality and the proportion of

immigrants in each node. We considered each of the

node centrality measures, degree and eigenvector central-

ity, as independent variables, and the proportion of

immigrants in each node as the dependent variable.

Immigrants were identified as individuals assigned to a

genetically identifiable population other than the one they

were sampled in with ‡0.60 probability based upon

Bayesian clustering with the program STRUCTURE

(Pritchard et al. 2000; Carr et al. 2007b). The proportion

of immigrants is related to habitat suitability (Carr et al.

2007b), so we were also interested in assessing whether

network topology could be related to the habitat features

previously shown to be important (snow depth and conif-

erous forest cover). We used two criteria to determine

whether model effects were likely to have occurred by

chance. First, the dependent variable in each of the

above-mentioned linear regressions was permuted 9999

times. If variable parameter estimates from the real data

were greater or less than 95% of randomly generated val-

ues, we considered the effects as statistically significant.

Second, if 95% confidence intervals around beta values

did not overlap 0, then the effects were considered bio-

logically meaningful. Spatial autocorrelation of centrality

measures was assessed with Moran’s I at eight Euclidean

distance classes. Distance classes were selected such that

samples sizes were approximately equal and large enough

for tests across each class.

Network community structure

Network communities are defined as groups of nodes

with either a higher density of connections between nodes

than that expected by chance or fewer connections

between communities than that expected by chance. Max-

imization of network modularity [Q; number of edges

within groups minus the expected number in a similar

network with edges placed at random (Newman 2004)]

over possible network divisions has been shown to be an

effective method for detecting such community structure

in networks (Danon et al. 2005; Gustafsson et al. 2006).

Modularity can have positive or negative values with

positive [greater than 0.3 as a rule of thumb (Newman

2004)] values indicating that the network can be reason-

ably subdivided. Communities are detected by searching

for divisions that yield peak values for Q. The network

(or subsequent subdivision) is indivisible if there is no

division that increases modularity. We calculated modu-

larity by using eigenvectors of the network’s characteristic

matrix of genetic similarity (Newman 2006). Eigenvalues

for nodes indicate the certainty of node assignment to a

community with values farthest from 0 indicating the

greatest certainty. We then heuristically compared com-

munity divisions to a previously published individual

Bayesian clustering of the same genotypes (Carr et al.

2007b) undertaken with STRUCTURE.

Modularity was calculated in SOCPROG MATLAB

modules written by Whitehead and Lusseau (Whitehead

2005). SOCPROG was written for the analysis of social

structures and so we imported the matrix of genetic

similarity among nodes as an association matrix for our

analysis. All other standard and graph-theoretic analyses

were conducted using igraph (Csárdi and Nepusz 2006)

for R statistical software (R Development Core Team

2008).
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Results

Network properties

The network that best fit the data contained 93 edges

connecting the 34 nodes (Fig. 2). Mantel tests indicated

that graph distance between nodes was correlated with

geographic distance (R2 = 0.44, P = 0.001; Fig. 3A) and

FST (R2 = 0.50, P < 0.001; Fig. 3B). The distribution of

the genetic-distance-weighted edges was skewed toward

shorter distances (Fig. 4A). The characteristic path length

was 11.1 for the distance-weighted network and 2.26 for

the binary network. Node degree was binomially distrib-

uted (Fig. 4B) indicating that the network was not scale-

free. The clustering coefficient of the network was 0.254.

The average clustering coefficient of 999 generated Erdos-

Renyi random networks containing the same number of

nodes, edges and edge-weight distribution was 0.16 (SD

0.027). The clustering coefficient of the fisher network

was greater than those from all but one of the random

networks (P = 0.999). The average characteristic path

length from the random networks was 13.2 (SD 3.1) for

weighted randomizations and 2.22 (SD 0.033) for binary

calculations on the same networks. Taken together, the

significantly high clustering coefficient and similar charac-

teristic path length in the fisher network relative to the

random networks as well as the binomial degree distribu-

tion suggest that this network had small-world but not

scale-free characteristics. The sequential removal of the

eight nodes with the highest degree (24% of nodes) had

little effect on the characteristic path in either the

weighted or binary network. The characteristic path

length of the weighted network changed from 11.1 (SD

3.6) before removal to 12.1 (SD 4.8; Fig. 5) and from

2.26 to 2.60 in the binary network after these nodes were

removed. The sequential removal of the eight nodes with

the highest betweenness resulted in an increase in the

characteristic path length from 11.1 to 15.0 (Fig. 5).

Node properties

Moran’s I tests for spatial autocorrelation after Bonferroni

corrections for simultaneous inference (Legendre and For-

tin 1989) demonstrated that node degree was not spatially

autocorrelated at any distance class (all P-values

>0.00625). Eigenvector centrality was spatially autocorre-

lated (n = 43, r = 0.53, t = 3.94, df = 41, P = 0.0003) at

the first distance class of approximately 4 km. Permutation

tests on linear regression models and 95% confidence

intervals around parameter estimates indicated that node

degree and eigenvector centrality were negatively related to

the proportion of immigrants in a node (Table 3). Simi-

larly, the models relating degree and eigenvector centrality

Figure 2 A two-dimensional projection representing the genetic relationship among fishers (Martes pennanti) sampled from 34 locations in ON,

Canada during 2000–2003 and profiled at 16 microsatellite loci. Node size is proportional to increasing connectivity (degree) and edge length is

proportional to the genetic distance between populations.
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to snow depth and the proportion of dense coniferous for-

est suggested that only snow depth had a relationship with

these measures of node centrality as the 95% confidence

interval around parameter estimates for the term for pro-

portion of dense coniferous forest overlapped 0, and per-

mutation tests were not significant (Table 3). Snow depth

was negatively related to both degree and eigenvector

centrality.

Network community structure

Modularity optimization divided the network into five

communities (Fig. 2, Appendix A). Modularity for this

division was greater than 0.3 (Q = 0.457) suggesting that

this was a useful division of the network. Previous clus-

tering using the program STRUCTURE also identified five

genetic populations (Carr et al. 2007a). Modularity opti-

mization clustered 26 of the 34 (76.4%) populations simi-

larly to STRUCTURE (Appendix A).

Discussion

It is difficult to predict system-level processes based solely

on processes occurring within a system’s component

parts. We found that characterization of the fisher genetic

structure as a network provided understanding of gene

flow and resiliency in the system that we could not obtain

from traditional population genetic measures. In the

fisher network, nodes were more clustered than would be

expected if they were randomly connected and the char-

acteristic path length was short. In fact, nodes were con-

nected by a mean of just over two edges (2 degrees of

separation). This high degree of clustering in the network

was not surprising given that there are likely fitness costs

associated with longer distance dispersals and previous

research has suggested relative philopatry in fishers

(Arthur et al. 1993; Kyle et al. 2001). The clustering of
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nodes within the network explains the small observed

effects of removing high-degree nodes on the network

characteristic path length. A higher number of triangles

(clusters) in a network leads to redundancy in paths

between nodes such that there were alternate short paths

through the network connecting nodes even after the

removal of highly connected nodes. This suggests that

genetic connectivity may not be particularly affected by

the loss of even well-connected nodes. The characteristic

path length between any two nodes remained approxi-

mately 2 after the removal of just over 24% of the most

connected nodes. This is a stark contrast with scale-free

networks such as the internet and the world-wide web

where the removal of only the top 2% of best connected

nodes leads to a more than doubling of the network’s

characteristic path length (Albert et al. 2000). The robust-

ness of the fisher network to the loss of nodes has impor-

tant implications for management and conservation.

Fishers are harvested in most nodes and our removal

experiments suggest that conservative harvest regimes are

unlikely to affect genetic connectivity or induce

harvest-related genetic differentiation, at least under

current conditions.

Taken together, the small characteristic path length and

high level of clustering are consistent with the well-char-

acterized class of networks known as ‘small-world

networks’. This network structure facilitates the efficient

spread of information, disease, and indeed many network

processes through ‘short-cuts’ among clusters (Watts and

Strogatz 1998). The classic example of this phenomenon

is the sociological concept of six degrees of separation

which suggests that the average number of links between

any two people in a social network of over six billion

nodes (i.e., people) is approximately six (Milgram 1967).

Small-world characteristics suggest that the fisher network

is well connected such that information, in this case

alleles, can be efficiently transferred among nodes with

minimal restrictions on gene flow. Some biological

examples of similar structures to the small-world fisher

network can be found in animal social structures

(Lusseau et al. 2006), food webs (Williams et al. 2002),

neural connectivity (Achard et al. 2006), and cellular and

metabolic networks (Wagner and Fell 2001) among oth-

ers. It is easy to see the value of short cuts between nodes

and robustness in network connectivity to loss of nodes

for maintaining network function in many if these set-

tings. In the fisher example, it seems likely that small-world

patterns of connectivity among nodes are an emergent

property of the spatial relationship between populations,

the distribution of habitat, and the costs of dispersal.

Nodes with high betweenness values tend to be on the

edge of clusters and act as bridges between different parts

of the network and so their removal can have nonlocal

impacts on network flow. Perhaps not surprisingly then,

the removal of nodes with high betweenness did increase

the network’s characteristic path length relative to the

removal of the same number of high-degree nodes, likely

reducing genetic connectivity although in this case the

network did not fragment and the increase was not dras-

tic. This underscores that nodes that are not well con-

nected can still play an important role in maintaining

genetic connectivity. To avoid isolation of populations

and maintain the potential for system wide gene flow,

nodes with high betweenness appear to warrant particular

management concern.

Our results demonstrate a negative relationship

between the two measures of node connectivity (degree

and eigenvector centrality) and the proportion of
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Figure 5 The effects of the sequential removal of nodes with the

highest degree (diamond shaped points) and betweenness (square

shaped points) on the network characteristic path length (measure of

ease of gene flow through the network). Fishers were sampled from

34 different landscapes in and around ON, Canada during 2000–2003

and profiled at 16 microsatellite loci.

Table 3. Regression relationships for node properties of a fisher

(Martes pennanti) genetic network in ON, Canada.

Model Constant Parameter estimate r2 P

Degree

Prop. immigrants 6.4 (0.94) )5.0 (4.3) 0.11 0.033

Snow depth 9.1 (3.4) )0.09 (0.08) 0.15 0.021

Coniferous forest – )8.0 (13) – –

Eigenvector centrality

Prop. immigrants 0.20 (0.037) )0.27 (0.17) 0.24 0.004

Snow depth 0.31 (0.14) )0.004 (0.0003) 0.16 0.010

Coniferous forest – )0.23 (0.53) – –

Linear regression models relate degree and eigenvector centrality to

the proportion of genetically identified immigrants as well as snow

depth and coniferous forest cover. P-values were generated by ran-

domly permuting the dependent variable and are the proportion ran-

domly generated parameter estimates that were more extreme than

those generated from the data.
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immigrants in a node. This suggests that well-connected

nodes are important producers of emigrants both locally

through direct connections (degree) and more broadly

and indirectly through nodes connected to direct connec-

tions (eigenvector centrality). Therefore, although the

characteristic path length between nodes increased very

little with sequential removal of the most connected

nodes, these nodes were likely important contributors of

individuals to other nodes. Further, node connectivity

(degree and eigenvector centrality) was also negatively

related to snow depth suggesting that measures of node

centrality are related to habitat suitability, and ultimately

to individual fitness. Deep snow is thought to be a com-

ponent of poor habitat suitability for fishers, as it

impedes movement and induces higher energetic costs

(Krohn et al. 1995). Fishers disperse during winter and

may assess habitat suitability based in part on snow depth

(Krohn et al. 1995). Our samples were from a period of

population expansion in the region, where density-depen-

dant dispersal may have led to the negative relationship

between the proportion of immigrants and node central-

ity (e.g., Morris et al. 2004; Carr et al. 2007b).

Our heuristic look at the potential utility of modularity

maximization for identifying genetically similar popula-

tions suggests that this method could be a valuable tool.

We observed concordance between the popular program

STRUCTURE, which takes a Bayesian approach to clus-

tering individuals, and our estimated network communi-

ties such that both produced five genetic groupings. In

addition, general patterns of node assignment were con-

cordant; however, eight nodes assigned differently. This

can be attributed to the differences in criteria for assign-

ing sites to clusters or communities. STRUCTURE identi-

fied the highest mean ancestry and the highest proportion

of highly assigned residents to provide a conservative esti-

mate of effective migrants (Carr et al. 2007a,b). This

Bayesian approach does not include a measure of genetic

distance among nodes however, whereas the network

approach includes genetic distance in the estimation of

the mean genetic individual at a given site. As a result,

the contribution of ancestries from other genetic clusters,

whether through admixture or migrants, is incorporated

in this mean ‘individual’ in the network approach but

not in STRUCTURE. The network approach to identify-

ing genetically similar clusters of nodes warrants further

investigation and may be a valuable intermediate and

complementary method between indirect estimates such

as FST and individual-based Bayesian assignment tests.

FST provides pairwise estimates of gene flow among sam-

pled sites, whereas Bayesian models can estimate the

number of subpopulations or genetic clusters and the

ancestral contribution of each individual, but not genetic

distance among populations.

Our results empirically support previous theoretical

work demonstrating that population structure and pro-

cesses can be modeled and visualized with biologically

meaningful interpretations of network structures built

solely upon genetic data (Dyer 2007). Graph theoretic

approaches to understanding genetic connectivity are still

relatively novel but the potential applications are excit-

ing. From a landscape ecology perspective concepts in

graph theory combined with knowledge of species habi-

tat use and species life history have been used to model

patch connectivity (Urban and Keitt 2001; O’Brien et al.

2006) and as a basis for reserve design (James et al.

2005). McRae (2006) and Brooks (2006) incorporated

genetics and graph theory into analyses of isolation by

distance that incorporate landscape heterogeneity and

understanding scales of population organization and

movement among patches, respectively. Dyer and Nason

(2004) and Dyer (2007) have demonstrated through

simulations that many traditional population genetic

parameters can be derived from their approach to the

construction of networks (which we have used here).

Finally, and beyond the scope of this paper, our general

approach to assessing network topology can be similarly

applied to network edges. Analogous to node centrality

there are measures of edge centrality that could be

related to features thought to inhibit or promote con-

nections between nodes such as road density, human

settlement, and forest loss. An advantage of this

approach would be that genetic connectivity could be

used to identify important habitat linking nodes rather

than using habitat models to infer genetic connectivity.

Similarly, edge removal experiments similar to the node

removal experiments conducted here may identify con-

nections important for maintaining gene flow within a

system. In summary, we found that graph theoretic

measures of a node’s position on a network and system-

level models of network connectivity could be used to

derive novel population-genetic measures. These mea-

sures provided novel insight into the gene flow and

resiliency of a fisher genetic network. Our network

approach to landscape genetics can be used where repli-

cated, landscape-scale or system-level inference are desired.
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Appendix A

Clustering results from eigenvector-based modularity

maximization for a fisher (Martes pennanti) genetic net-

work in ON, Canada. Network nodes were samples for

fisher DNA during 2000–2003. Numbers under the head-

ing Network Community represent node clustering based

upon modularity maximization and letters in brackets

represent population clustering from Carr et al. 2007b.

Eigenvalues close to 0 indicate uncertainty in assignment

of a population to its cluster.

Site

Site

ID

Sample

size

Network

community Eigenvalues

Adirondack, NY AD 22 l (a) )0.08

Escott-Yonge EY 20 l (a) )0.29

Montague MT 21 l (a) )0.42

Prescott PR 48 l (a) )0.24

Ramsey-Huntley RH 20 l (a) )0.37

Gatineau, Que. GA 18 l (c) )0.22

Anson-Lutterworth AL 25 2 (b) )0.23

Algonquin AQ 20 2 (b) 0.07

Anstruther AS 24 2 (b) )0.06

Badgerow BA 22 2 (b) )0.37

Falconer FL 22 2 (b) )0.05

Galway GW 20 2 (b) )0.26

Olrig Cluster OL 14 2 (b) )0.29

Carlow-Bangor CB 20 2 (d) )0.09

Orillia-Ramara OR 17 2 (e) )0.29

Broughman BR 23 3 (c) 0.34

Dalhousie DL 20 3 (c) 0.32

Darling DR 22 3 (c) 0.23

Fraser-Richards FR 21 3 (c) 0.42

Lyndoch LN 19 3 (c) 0.11

McNab MN 24 3 (c) 0.23

Ross RO 19 3 (c) 0.22

Hungerford-Huntington HH 14 4 (b) 0.28

Angelsea-Grimsthorpe AG 16 4 (c) 0.25

Kennebec KB 23 4 (c) 0.19

Loughborough-Bedford LB 31 4 (c) )0.03

Belmont BL 7 4 (d) 0.40

Marmora-Lake ML 32 4 (d) )0.03

Conger-Freeman CM 15 4 (e) 0.18

Burton-McKenzie BK 16 5 (e) 0.13

Blair-Mowat BM 26 5 (e) 0.43

Bruce Peninsula BP 25 5 (e) 0.55

Carling-Ferguson CF 8 5 (e) 0.31

Monteith-Christie MC 26 5 (e) 0.07
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